
1

CloudImmu: Transparent Protection of Binary Applications in the Cloud
Xinyuan Wang, Member, IEEE

Abstract—As more organizations are moving their IT in-
frastructures from on-premises to the cloud, cloud security
breaches have just surpassed on-premises breaches. There is
a pressing need to develop practical and deployable cyber
defense capabilities to protect the enormous amount of potentially
vulnerable binary applications in the cloud from previously
unseen cyberattacks.

In this paper, we present CloudImmu, a practical cloud
cyber defense system that is built upon a novel combination
of binary rewriting and instrumentation techniques, virtual
machine introspection and hypervisor level anomaly detection
techniques. Our immunization tool has successfully “immunized”
large real world binary applications such as bash, Snort, and our
experiments with real world exploits have shown that CloudImmu
can detect and block cyberattacks on properly immunized,
otherwise vulnerable binary applications in virtual machines
in real-time without using any prior knowledge of the attacks.
Our benchmark experiments show that CloudImmu incurs less
than 1.06% overall run-time performance overhead on typical
applications with typical workloads.

Index Terms—Real-time intrusion detection and prevention,
cloud securty, hypervisor based cyber defense.

I. INTRODUCTION

Due to its advantages in cost, flexibility and scalabil-
ity, cloud computing is becoming increasingly popular for
businesses and government agencies. Now more and more
organizations are moving their IT infrastructures from on-
premise to the cloud. Garner Inc. has predicted that worldwide
cloud market size will grow from $270 billion in 2020 to
$332.3 billion in 2021, $397.5 billion in 2022 [1].

While cloud has brought many benefits to enterprises and
organizations, it has also introduced new attack surfaces and
security challenges. A recent study by IDC [2] has found that
79% of the 300 companies surveyed had experienced at least
one cloud data breach, and nealy 43% had experienced 10
or more cloud data breaches in the past 18 months. Verizon’s
2021 annual report on data breaches [3] has found out that 73%
of the 79,000 cybersecurity incidents analyzed involve external
clouds. It is the first time that cloud security breaches surpass
on-premises breaches. Specifically, cloud hosting and software
service provider Blackbaud was forced to pay a ransom to the
attacker who had stolen data from the cloud and threatened to
publish it online [4].

While existing cyber defense systems (e.g., firewall, authen-
tication, IDS/IPS) are very useful, they have been shown to
be inadequate in protecting mission critical systems in the
cloud from increasingly stealthy and damaging cyberattacks.
Specifically, currently deployed cloud security mechanisms
lack the intrusion detection capabilities to protect vulnerable

Xinyuan Wang is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030, USA. email: xwangc@gmu.edu

binary applications in the cloud from previously unseen appli-
cation specific exploits in real-time. Our mission critical cloud
systems can not be effectively secured before we can reliably
detect and block previously unseen, application specific ex-
ploits in real-time.

In this paper, we persent CloudImmu, a practical cloud cyber
defense system that is designed to provide transparent and real-
time protection for potentially vulnerable binary applications
in the cloud such that those vulnerable binary applications
may be immune from various known or unknown cyberattacks.
Specifically, CloudImmu is designed to detect and block
previously unseen, application specific exploits on potentially
vulnerable binary applications in the cloud in true real-time
without any prior knowledge of the exploits.

In order to achieve such an objective, we first use software
immunization tool to transparently “immunize” those binary
applications into “immunized” binary applications such that
each immunized binary application will 1) keep the original
application semantics; and 2) tag each run-time invocation of
system calls with some dynamically generated random mark.
Since the dynamically generated random mark is unknown to
any attacker, no attacker could invoke any system call with
the correct mark. This allows CloudImmu to detect and block
any illegal system calls from the attacker by simply checking
if each invoked system call has the correct random mark
at run-time. By using such a anomaly detection technique,
CloudImmu is able to detect and block previously unknown
cyberattacks without any prior knowledge (e.g., signature) of
the cyberattacks.

When the immunized binary application properly tags each
run-time invocation of system call with the correct random
mark, then any system call without the correct random mark
must be invoked by some foreign code (e.g., malware) rather
than the proper immunized applications. In other words, any
system call invoked with the wrong random mark must be
some attack. Therefore, CloudImmu is able to detect and block
previously unknown cyberattacks on properly immunized bi-
nary applications with no false positive while it can miss
detecting certain cyberattacks.

We have successfully implemented a working proto-
type of CloudImmu in Linux KVM [5], have immunized
large real world binary applications (e.g., Bash shell, Snort
IDS/IPS), and have empirically validated CloudImmu’s ef-
fectiveness with real world exploits. Our experiments show
that CloudImmu is able to transparently detect and block
cyberattacks on properly immunized, otherwise vulnerable
binary applications in virtual machines in real-time without
using any prior knowledge of the cyberattacks. Our SPEC
CPU2006 macro benchmarking tests show that CloudImmu
incurs less than 1.06% overall run-time performance overhead
on typical applications under typical workloads.

2

Fig. 1. CloudImmu Run-time Infrastructure inside Hypervisor

II. CLOUDIMMU FUNCTIONAL OVERVIEW

A. Threat Model and Assumptions

We assume the Linux KVM hypervisor is trustworthy,
and the to-be-protected binary applications in the cloud 1)
are not self-modifying and contain no deliberate obfusca-
tion; 2) can be either open source or commercial off-the-
shelf (COTS) binaries without symbol information. While the
binary applications could have known or unknown security
vulnerabilities, we assume that the whole target system (e.g.,
binary applications, libraries, operating system) is benign in
that there is no deliberate backdoor or malware built in the
system. Supply chain attacks (e.g., SolarWind breach) that
can implant backdoor or malware inside authentic software
distribution is beyond the scope of this work.

We assume the adversary can reach the to-be-protected
cloud applications via network, and he can exploit security
vulnerabilities in some cloud applications, and inject, execute
arbitrary code, read/write content from/to those memory lo-
cations allowed by the exploited cloud applications and the
underlying operating system.

B. CloudImmu Overview

The CloudImmu system consists of offline binary immu-
nization tool and CloudImmu infrastructure. Figure 1 illus-
trates the CloudImmu run-time infrastructure at the hypervisor
level and how it interacts with various binary applications in
various virtual machines. The hypervisor level infrastructure
is the key component of CloudImmu, and it is responsible
for 1) generating random mark for each new process/threat
in each virtual machine; 2) keeping track of each run-
time process/thread in each virtual machine via novel virtual
machine introspection (VMI) techniques; 3) checking and
handling each invocation of system calls by all monitored pro-
cesses/threads in monitored virtual machines; and 4) protecting
the immunized binary applications at run-time according to
user specified configuration.

III. IMMUNIZING SOFTWARE BINARIES

Given that Linux runs 90% of the public cloud workload
[6], we choose to instrument and immunize the Linux binaries
in the Executable and Linking Format (ELF) format.

ELF is a cross-platform, common standard binary file for-
mat for executable files, object files and shared libraries [7]
that supports different endianness, different address sizes and
different CPU instruction sets (e.g., X86, MIPS, ARM). Each
ELF file starts with a mandatory ELF header followed by op-
tional section header table, program header table, and sections.
For the purpose of protecting Linux binary applications, we
only need to immunize ELF executable file and ELF shared
object file.

To immunize a given ELF binary application, we need to
1) keep the original application semantics; and 2) instrument
the ELF binary application with our immunization code that
tags the invocation of each system call with the random mark
dynamically generated by the AppImmu infrastructure at run-
time. Given an ELF binary, our software immunization tool
automatically 1) creates a new text section and place our
immunization code in the new text section; 2) instruments
existing code to jump or call our immunization code in the
new text section. Such a approach keeps the existing ELF code
and data at their original locations as much as possible thus
avoids complications caused by indirect function calls (e.g.,
call *%eax) where the address of the called function is
determined at run-time.

We use two thread local storage (TLS) variables c_mark
and cover to pass the random mark between the immunized
binary applications and the CloudImmu infrastructure, where
c_mark is the covered random mark and cover is the
random cover. Since every thread has its own TLS, and
the called shared library function (e.g., printf()) can access
the TLS of the calling process/thread, our approach supports
multiple threads.

A. Immunizing ELF Binary Executables

To immunize an ELF executable, we first instrument the
entry point of the executable to call our immunization initial-
ization code in the new text section, which triggers a special
system call (e.g., system call #511) that is not used by the
operating system running in the virtual machine:

push %eax
push %ebx
mov $0x1ff, %eax
mov <auth code>, %ebx
call *%gs:0x10
pop %ebx
pop %eax

Such a special system call notifies the CloudImmu infras-
tructure that some immunized process/threat is starting. The
CloudImmu infrastructure intercepts the special system call
and checks register %ebx for the virtual machine specific
authentication code. If matches, it will dynamically generates
a random mark X and random number r for the process/threat
and secretly store X⊕r⊕vm_rand in TLS variable c_mark,
r in TLS variable cover where vm_rand is a virtual
machine specific random value. If the value of register %ebx

3

TABLE I
NUMBER OF SYSTEM CALL INVOCATIONS IN GNU C LIBRARIES

Library Name No. of int $0x80 No. of sysenter
ld-2.12.2.so 56 0
libanl-2.12.2.so 6 0
libc-2.12.2.so 10 501
libpthread-2.12.2.so 10 176
librt-2.12.2.so 48 0

does not match the correct virtual machine specific authenti-
cation code, the calling process/thread is marked immunized
without generating the random mark. This makes sure every
subsequent system calls from unauthorized binary executables
will be caught.

B. Immunizing ELF Libraries

The GNU C libraries in Linux use both the soft interrupt
instruction int $0x80 and the fast system call instruction
sysenter to trigger system calls. As shown in the following
snippet from libc-2.12.2, the GNU C library code moves the
system call number to register %eax before triggering the int
$0x80 or sysenter instruction.

98099: b8 be 00 00 00 mov $0xbe,%eax
9809e: cd 80 int $0x80

10f1ff: b8 75 00 00 00 mov $0x75,%eax
10f204: 65 ff 15 10 00 00 00 call *%gs:0x10

Out of all GNU C shared libraries (.so) used by the 32-
bit CentOS 6.4 Linux, we have found only 5 .so files have
system call invocations as shown in Table I. For each system
call invocation, our immunization simply replaces the 5-byte
move instruction (e.g., mov $0xbe,%eax) with a 5-byte
long unconditional jump instruction to a system call specific
stub function in the new code section. The system call stub
function recovers the process/thread specific random mark
from c_mark⊕cover⊕vm_rand and tags the system call
with the random mark via unused register space (e.g., %eax)
and jumps back to the next instruction after the move instruc-
tion. Our immunization tool has successfully immunized these
ELF binary libraries.

IV. REAL-TIME APPLICATION PROTECTION BY THE
HYPERVISOR LEVEL CLOUDIMMU INFRASTRUCTURE

Linux KVM (Kernel based Virtual Machine) [5] is a proven
open source hypervisor that can deliver near native perfor-
mance by utilizing the hardware virtualization support (e.g.,
Intel VT, AMD-V) from modern CPUs. KVM has become part
of standard Linux kernel since version 2.6.20 was released on
February 2007. It is also the most deployed (90%) hypervisor
for OpenStack – an open standard cloud computing platform
for both public and private cloud computing. We choose to
implement our CloudImmu infrastructure upon Linux KVM
hypervisor running Intel CPU with Intel VT virtualization.

A. Intercepting System Calls from Virtual Machines

In order to check system calls invoked by any applications
in the cloud, the CloudImmu infrastructure needs to intercept

every system call in every virtual machine managed and
monitored by the KVM hypervisor. For Intel and AMD CPUs,
system calls can be triggered by three instructions: 1) the
software interrupt instruction such as int 0x80 for Linux;
2) the sysenter instruction used in 32-bit Intel and AMD
CPUs; 3) the syscall instruction used in 64-bit Intel and
AMD CPUs. Therefore, we need to have the KVM hypervisor
to intercept all these instructions and cause VMexit for the
virtual machine from which those system calls have been
invoked. Unfortunately, neither Intel VT virtualization nor
AMD-V virtualization provide native interception of sysenter,
syscall instructions. In addition, Intel VT virtualization does
not intercept any software interrupt. Therefore, we need to
make the execution of these instructions (e.g., int n, sysen-
ter, syscall) to cause some other exceptions that will trigger
VMExit according to the exception-bitmap in the VMCS
structure.

1) Intercepting Software Interrupt from Virtual Machines:
To support the software interrupt instruction, Intel CPU main-
tains the interrupt descriptor table (IDT) which is an array
of 256 8-byte descriptors in memory. Each descriptor con-
tains the segment selector, privilege level and pointer to the
interrupt handler in memory. When some software interrupt
instruction (e.g., int n) is executed, the CPU will change to
the specified privilege level and jump to the interrupt handler
specified in the corresponding descriptor (e.g., descriptor #n).

In order to intercept the software interrupt from a virtual
machine, we need to make the execution of the software
interrupt causing the virtual machine VMExit so that our
CloudImmu infrastructure inside KVM hypervisor can have
chance to examine and process the software interrupt triggered
before the guest operating system in the virtual machine
process the software interrupt. Specifically, we need to make
the execution of the software interrupt in the virtual machine
cause some exception that Intel VT virtualization will catch.

Each descriptor in the IDT has a present bit that indicates
whether the segment is present or not. If the present bit
of a descriptor is not set, then any software interrupt to
that descriptor will cause the Segment Not Present (#NP)
exception. Fortunately the #NP exception is a catchable event
by the Intel VT virtualization. To intercept software interrupt
#n, we can simply clear the present bit of descriptor #n, and
set the corresponding #NP bit in the exception-bitmap in the
VMCS structure. Once our CloudImmu infrastructure catches
the VMExit, it needs to emulate the hardware actions of the
software interrupt before giving the control back to the virtual
machine. Upon user’s direction, our CloudImmu infrastructure
inside the KVM hypervisor can set or clear the present bit of
any specified IDT descriptor by directly overwriting the bit at
the correct guest virtual address.

2) Intercepting sysenter Instruction from Virtual Ma-
chines: sysenter is a fast system call instruction that
enables efficient transition from user code running at privilege
level 3 to operating system kernel code running at privilege
level 1. Before executing sysenter instruction, system soft-
ware needs to specify the privilege level 0 code segment, the
system call service routine address, and the privilege level 0
stack segment and stack pointer in the following MSRs (Model

4

Specific Registers):
• IA32 SYSENTER CS
• IA32 SYSENTER EIP
• IA32 SYSENTER ESP
When any sysenter is executed in protected mode, Intel

CPUs will generate the General Protection (#GP) exception if
IA32 SYSENTER CS[15:2]=0. To intercept the sysenter
instruction, we can simply set the IA32 SYSENTER CS
MSR to be all zero, and set the corresponding #GP bit
in the exception-bitmap in the VMCS structure. Once the
CloudImmu infrastructure intercepts the sysenter, it needs
to emulate the hardware actions in response to the sysenter
instruction before giving the control back to the virtual ma-
chine to allow the guest operating system kernel to com-
plete the processing of the fast system call triggered by the
sysenter instruction.

To stop intercepting the sysenter instruction, we
just need to restore the original value of the MSR
IA32 SYSENTER CS and clear the corresponding #GP bit
in the exception-bitmap in the VMCS structure.

3) Intercepting syscall Instruction from Virtual Ma-
chines: syscall is another fast system call instruction that
can only be executed in 64-bit mode. It invokes the kernel
level system call handler by loading register RIP from the
IA32 LSTAR MSR after saving the return address to register
RCX. One necessary condition to execute the syscall
instruction is that the System Call Extension (SCE) flag of the
Extended Feature Enable Register (EFER) IA32 EFER.SCE
must be set. If IA32 EFER.SCE is not set, any execution of
the syscall instruction will generate the Invalid Opcode
exception #UD, which is a catchable event by the Intel VT
virtualization.

To intercept the fast system calls invoked by the syscall
instruction inside the virtual machine, our CloudImmu can
simply set IA32 EFER.SCE=0 of the chosen virtual machine,
and set the corresponding #UD bit in the exception-bitmap
in the VMCS structure. Once the ImmuCloud intrastructure
catches the VMExit caused by the syscall instruction inside
the virtual machine, it needs to emulate the hardware actions
of the syscall instruction before resuming the virtual ma-
chine’s execution to allow the guest operating system kernel
to complete the processing of the fast system call triggered by
the syscall instruction.

To stop intercepting the syscall instruction, we just need
to set IA32 EFER.SCE=1 and clear the corresponding #UD
bit in the exception-bitmap in the VMCS structure.

B. Bridging the Semantic Gap via Virtual Machine Introspec-
tion

Once the CloudImmu infrastructure has intercepted the
VMExit triggered by some system call inside the virtual
machine as described in section IV-A, it needs to figure out
which process from what virtual machine invoked what system
call (i.e., the system call number and other system call related
parameters). Unlike the guest operating system kernel which
sees and manages such process information directly, the KVM
hypervisor does not directly see such high-level semantic rich

Fig. 2. Bridging the Semantic Gap via CloudImmu Run-time Virtual Machine
Introspection

information but only low-level information such as exceptions,
instructions, registers, guest physical memory. Therefore, there
is a semantic gap between what the hypervisor and the guest
operating system kernel can see directly.

As shown in Figure 2, the CloudImmu infrastructure uses
virtual machine introspection (VMI) techniques [8], [9] to
bridge the semantic gap via reconstructing the guest semantic
view from what the hypervisor can see. Since the guest
operating system kernel contains all the data structures (e.g.,
struct task_struct) in the guest memory, we can re-
construct the guest semantic view once we have found the
proper data structures in the guest memory.

Note, the location and offset of guest data structures depend
on the operation system running in the virtual machine. In X86
Linux that uses 8KB kernel stack, the current thread_info
location can be conveniently obtained by masking the 13
least significant bits of the stack pointer. By reading the
content of the current thread_info, we can obtain the
guest virtual address of the current task_struct from
field task_struct *task, and the process ID and process
name which are part of the current task_struct. The
system call number is always in the eax or rax register.

Based on effective VMI, the CloudImmu infrastructure is
able to figure out what process (e.g., process ID, process name)
from what virtual machine has triggered what system call (e.g.,
system call number) once it catches the VMExit due to some
system call inside some virtual machine monitored.

C. Managing Virtual Machines and the Guest Processes

To protect selected processes of selected virtual machines
in the cloud, the CloudImmu infrastructure needs to maintain
per-VM (e.g., whether it is being monitored, protected) and
per-process (e.g., the dynamically generated random mark,
immunization status) state information outside all virtual ma-
chines, and check the maintained per-VM and per-process
state information for every intercepted system call from every
monitored virtual machine. Given the high frequency (e.g.,
hundreds of times per second) of system calls inside every
virtual machine, we need to have a highly efficient access of
the maintained per-VM and per-process state information.

We have used hash tables to keep track of all virtual
machines and all processes inside each virtual machine. We
use the unique creator process ID of each virtual machine as
the VM hash table key. By definition, the process ID within
each virtual machine is unique. Thus we can use the process

5

Fig. 3. CloudImmu Run-Time Detection of Exploit of Vulnerable Snort 2.6.1 inside Linux Virtual Machine

ID as the key of the process hash table specific to some virtual
machine.

When the cloudImmu infrastructure starts to monitor some
virtual machine, it does not have any per-process state in-
formation of any process running inside the virtual machine.
It will, however, collect the information about each process
when it intercepts some system call invoked by the process.
Furthermore, the CloudImmu infrastructure intercepts any
process termination system call (e.g., exit) so that it can
remove the terminated processes from its process hash table.

V. EMPIRICAL EVALUATIONS

We have implemented a working prototype of CloudImmu
infrastructure upon KVM [5] in the standard 64-bit Linux
kernel 4.4.50, and the generic ELF binary immunization tool,
and we have used real world applications and real world
exploits, the SPEC CPU 2006 benchmarks to evaluate the
effectiveness and efficiency of our CloudImmu prototype.

A. Real-Time Detection and Blocking of Exploits of Vulnerable
Binary Applications inside KVM Virtual Machine

To validate the CloudImmu’s capability in detecting and
blocking previously unknown exploit on vulnerable binary
applications in virtual machines, we have used the DCE/RPC
Preprocessor Remote Buffer Overflow exploit of Snort 2.6.1
– the top free network intrusion detection system [10].

We have immunized the binary executable of Snort 2.6.1
have set the CloudImmu to detection mode only. Figure 3
shows that the CloudImmu is able to detect the exploit on
Snort 2.6.1 in real-time without using any prior knowledge of
the exploit. Specifically, the CloudImmu has detected the non-
self first system call (#112 that does not have the expected
tag) invoked by process snort.strip.tis of pid 3316
from KVM virtual machine: KVM-Guest-Linux32. It also has
captured all the rest non-self system calls invoked by the
exploited snort process. As shown in the highlighted area of
the CloudImmu Real-Time Protection Console, after invoking
system call #11, the exploit has successfully turned the process
3316 from snort into a shell (sh). When the CloudImmu is set
to blocking mode, it will stop the exploit upon detecting the
first non-self system call that does not have the expected tag
in real-time.

B. Run-Time Performance Overhead of CloudImmu

To understand how much run-time performance overhead
CloudImmu would introduce while it actively intercepts and
checks system calls from specified processes of specified
virtual machines, we have used the CPU2006 macro bench-
marks to measure the performance of typical applications
under typical workloads in the following two scenarios on
a computer with a quad-core 2.3 GHz Intel Core i7 CPU,
8GB RAM: 1) Host running the original 4.4.50 kernel, KVM

6

TABLE II
CLOUDIMMU RUN-TIME OVERHEAD BY SPEC CPU 2006 BENCHMARKS

SPEC CPU 2006 CloudImmu On Baseline Overhead
400.perlbench 22.10 22.50 1.7778%
401.bzip2 14.80 14.60 -1.3699%
403.gcc 20.30 22.00 7.7273%
429.mcf 15.90 15.60 -1.9231%
445.gobmk 18.60 18.70 0.5348%
456.hmmer 17.20 17.20 0.0000%
458.sjeng 17.90 17.80 -0.5618%
462.libquantum 34.80 35.40 1.6949%
464.h264ref 29.10 29.10 0.0000%
471.omnetpp 13.10 13.30 1.5038%
473.astar 11.60 11.70 0.8547%
483.xalancbmk 20.40 20.40 0.0000%
SPECint(R) base2006 18.70 18.90 1.0582%

VM running the original 2.6.32.20 kernel with the original
libraries; 2) Host running the CloudImmu 4.4.50 kernel with
active CloudImmu checking turned on, KVM VM running the
original 2.6.32.30 kernel with the immunized libraries.

Table II shows and compares the the SPEC CPU 2006
measurements of the baseline and the CloudImmu active
checking. The 403.gcc benchmark has the highest overhead of
7.7273% and all other benchmarks have very small overhead.
The overall SPEC CPU 2006 integer benchmark overhead
is 1.0582% – indicating that CloudImmu infrastructure has
negligible performance impact to typical applications.

C. Security Analysis

The security of CloudImmu is built upon the secrecy of
the random mark that tags each legitimate system call at the
run-time. CloudImmu uses multiple levels of obfuscation to
protect the secrecy of the dynamically generated random mark.
First, when the immunized binary software starts, it triggers
the special system call with a VM-specific and application-
specific authentication code (as shown in section III-A). Such
a VM-specific and application-specific authentication code is
randomly generated and statically encoded to the specified
binary application when it is immunized for the specified VM.
Therefore, a binary application immunized for a specific VM
can not be used in other VM.

Second, the CloudImmu infrastructure in the KVM hyper-
visor does not reveal the dynamically generated random mark
X to the properly immunized binary application but secretly
store the “covered” version of X (X ⊕ r⊕vm_rand) and
the random cover r in secret TLS locations c_mark and
cover respectively in the virtual machine. Here r is randomly
generated for each execution of any properly immunized
program, and vm_rand is a virtual machine specific random
value that prevents the adversary from obtaining the random
mark X even if he has somehow obtained values of c_mark
and cover.

Finally, the TLS locations for c_mark and cover are ran-
domly chosen for each VM. To increase the randomness, we
can divide the multi-byte c_mark and cover into multiple
parts of single byte (e.g., c_mark1, ... c_mark4, cover1,
... cover4) each of which can be allocated randomly. This
would force the adversary to figure out the exact location and

the exact order of those 8 parts before he could read the value
of c_mark and cover. As allocating 8 bytes from a 20-
byte TLS storage has 20!

12! = 5, 079, 110, 400 permutations, the
chance for the adversary to happen to figure out the values of
c_mark and cover is extremely low (≈ 2× 10−10).

VI. RELATED WORKS

System call based defense Ever since Forrest et al. [11]
first proposed using short sequences of system calls to build
intrusion anomaly detection, a number of followup works
[12], [13], [14] have improved the efficiency and effective-
ness of the system call sequence based anomaly detection.
Based on system call tagging rather than sequence of system
call, Wang et al. [15] proposed the software immunization
and anomaly detection approach that has eliminated run-time
training required by previous system call sequence based
approaches [11], [12], [13], [14]. However, their approach can
not immunize binary applications in that it requires the access
of the source code of the software to be protected.

Control flow integrity based defense Control flow integrity
(CFI) [16] aims to ensure the indirect control flow transfers
can only reach legitimate destinations in the control flow
graph (CFG) of the software at run-time. A large number of
CFI based approaches [17], [18], [19], [20], [21], [22], [23],
[24], [25] have been proposed to prevent, detect control flow
hijacking and code-reuse attacks under various assumptions
and countermeasures [26], [27], [28], [29].

Unlike CFI based cyber defense approaches, CloudImmu
does not seek to ensure every indirect control flow transfer is
within the CFG, but focuses on detecting and blocking illegal
system calls based on dynamically assigned secret mark. This
not only makes CloudImmu more efficient at run-time, but also
enables it to catch those illegal control flow transfers within
the CFG (e.g., control-flow bending [30]) that will be missed
by existing CFI approaches.

Hypervisor based defense Hypervisor has been used to
build various cyber defense capabilities such as 1) monitoring
and collecting activities inside the guest operating system
[8]; 2) detecting rootkits in the guest operating system [9],
[31]; 3) protecting the guest memory data and human-machine
interaction data from untrusted operating system kernels in the
virtual machine [32]. CloudImmu differs from existing hyper-
visor based cyber defense in that it can protect immunized
binary applications inside the virtual machines from many
cyberattacks (e.g., control flow hijacking attack) effectively
and efficiently in real-time.

VII. CONCLUSIONS

In this paper, we have presented the CloudImmu cyber de-
fense system that can transparently immunize and protect ELF
binary applications in the cloud. Our experiments with real
world binary applications and real world exploits demonstrate
that (1) CloudImmu is able to detect and block previously
unknown cyberattacks in real-time; (2) the combination of
binary rewriting, virtual machine introspection and hypervi-
sor level anomaly detection techniques is a promising and
practical approach to protect vulnerable real world binary

7

applications in the cloud. SPEC CPU 2006 benchmarks show
that CloudImmu incurs less than 1.06% overall performance
overhead to typical applications under typical workloads.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Army STTR
grants W56KGU-16-C-0064, W56KGU-17-C-0077.

REFERENCES

[1] Gartner, “Gartner Forecasts Worldwide Public Cloud End-
User Spending to Grow 23% in 2021,” Apirl 2021,
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-
gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-
23-percent-in-2021.

[2] Ermetic, “Nearly 80% of Companies Experienced a
Cloud Data Breach in Past 18 Months,” June 2020,
https://www.securitymagazine.com/articles/92533-nearly-80-of-
companies-experienced-a-cloud-data-breach-in-past-18-months.

[3] M. Korolov, “Report: Cloud Security Breaches Sur-
pass On-Prem Ones for the First Time,” May 2021,
https://www.datacenterknowledge.com/security/report-cloud-security-
breaches-surpass-prem-ones-first-time.

[4] C. Cimpanu, “Cloud provider stopped ransomware attack
but had to pay ransom demand anyway,” July 2020,
https://www.zdnet.com/article/cloud-provider-stopped-ransomware-
attack-but-had-to-pay-ransom-demand-anyway/.

[5] “Linux Kernel based Virtual Machine,” www.linux-kvm.org.
[6] T. Nuggets, “Why Linux runs 90 percent of the public cloud workload,”

August 2018, https://www.cbtnuggets.com/blog/certifications/open-
source/why-linux-runs-90-percent-of-the-public-cloud-workload.

[7] T. Committee, “Tool Interface Standard (TIS) Executable
and Linking Format (ELF) Specification,” May 1995,
https://refspecs.linuxbase.org/elf/elf.pdf.

[8] X. Jiang and X. Wang, “‘Out-of-the-box’ Monitoring of VM-based
High-Interaction Honeypots,” in Proceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection (RAID 2007),
September 2007.

[9] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection Through
VMM-Based ‘Out-of-the-Box’ Semantic View Reconstruction,” in Pro-
ceedings of the 14th ACM Conference on Computer and Communica-
tions Security (CCS 2007), November 2007.

[10] U. Team, “Top 6 Free Network Intrusion Detection Systems (NIDS)
Software in 2020,” August 2020, https://www.upguard.com/blog/top-
free-network-based-intrusion-detection-systems-ids-for-the-enterprise.

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense
of Self for Unix Processes,” in Proceedings of the 1996 IEEE Symposium
on Security and Privacy (S&P 1996). IEEE, May 1996.

[12] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intrusions
Using System Calls: Alternative Data Models,” in Proceedings of the
1999 IEEE Symposium on Security and Privacy (S&P 1999). IEEE,
May 1999, pp. 133–145.

[13] R. Sekar, M. Bendre, and P. Bollineni, “A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors,” in Proceedings
of the 2001 IEEE Symposium on Security and Privacy (S&P 2001).
IEEE, May 2001.

[14] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly Detection Using Call Stack Information,” in Proceedings of
the 2003 IEEE Symposium on Security and Privacy (S&P 2003). IEEE,
May 2003.

[15] X. Wang and X. Jiang, “Artificial Malware Immunization based on
Dynamically Assigned Sense of Self,” in Proceedings of the 13th
Information Security Conference (ISC 2010), October 2010.

[16] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow In-
tegrity: Principles, Implementations, and Applications,” in Proceedings
of the 12th ACM Conference on Computer and Communications Security
(CCS 2005). ACM, November 2005, pp. 340–353.

[17] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. A. Mccamant,
D. Song, and W. Zou, “Practical Control Flow Integrity & Random-
ization for Binary Executables,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy (S&P 2013). IEEE, May 2013.

[18] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,”
in Proceedings of the 22nd USENIX Security Symposium. USENIX,
August 2013.

[19] R. Gawlik and T. Holz, “Towards Automated Integrity Protection of
C++ Virtual Function Tables in Binary Programs,” in Proceedings of
the 30th Annual Computer Security Applications Conference (ACSAC
2014), 2014, pp. 396–405.

[20] M. Zhang, Q. Qiao, N. Hasabnis, and R. Sekar, “A Platform for Secure
Static Binary Instrumentation,” in Proceedings of the 10th ACM Inter-
national Conference on Virtual Execution Environments (VEE 20014),
July 2014, pp. 129–140.

[21] A. Prakash, X. Hu, and H. Yin, “vfGuard: Strict Protection for Virtual
Function Calls in COTS C++ Binaries,” in Proceedings of the 22th
Network and Distributed System Security Symposium (NDSS 2015),
February 2015.

[22] C. Zhang, K. Z. C. Chengyu Song, Z. Chen, and D. Song, “VTint:
Protecting Virtual Function Tables? Integrity,” in Proceedings of the
22th Network and Distributed System Security Symposium (NDSS 2015),
February 2015.

[23] M. Payer, A. Barresi, and T. R. Gross, “Fine-Grained Control-Flow
Integrity Through Binary Hardening,” in Proceedings of the 12th In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2015), July 2015, pp. 143–163.

[24] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque Control-Flow Integrity,” in Proceedings of the 22th Network
and Distributed System Security Symposium (NDSS 2015), February
2015.

[25] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary
Level,” in Proceedings of the 2016 IEEE Symposium on Security and
Privacy (S&P 2016). IEEE, May 2016.

[26] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
Control: Overcoming Control-Flow Integrity,” in Proceedings of the
2014 IEEE Symposium on Security and Privacy (S&P 2014). IEEE,
May 2014.

[27] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty of
Preventing Code Reuse Attacks in C++ Applications,” in Proceedings of
the 2015 IEEE Symposium on Security and Privacy (S&P 2015). IEEE,
May 2015.

[28] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the Weaknesses of
Fine-Grained Control Flow Integrity,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS 2015).
ACM, October 2015, pp. 901–913.

[29] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “It’s a TRaP:
Table Randomization and Protection against Function-Reuse Attacks,”
in Proceedings of the 22nd ACM Conference on Computer and Com-
munications Security (CCS 2015). ACM, October 2015, pp. 243–255.

[30] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
Proceedings of the 24th USENIX Security Symposium. USENIX,
August 2015.

[31] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor Support for
Identifying Covertly Executing Binaries,” in Proceedings of the 17th
USENIX Security Symposium. USENIX, August 2008, pp. 243 – 258.

[32] J. Ren, Y. Qi, Y. Dai, X. Wang, and Y. Shi, “AppSec: A Safe Execution
Environment for Security Sensitive Applicationst,” in Proceedings of the
11th ACM International Conference on Virtual Execution Environments
(VEE 20015), March 2015, pp. 187–199.

