
1

On the Feasibility of Detecting Software Supply Chain Attacks
Xinyuan Wang, Member, IEEE

Abstract—The Supply chain attack is the stealthy and sophisti-
cated cyberattack that aims to compromise a target by exploiting
weaknesses and vulnerabilities in its supply chain. Recent supply
chain attacks (e.g., SolarWinds attack) have compromised some
of the most secured IT infrastructures of government agencies
and enterprises. The European Union Agency for Cybersecurity,
ENISA, has predicted that there will be 3 times more supply
chain attacks in 2021 than in 2020.

In this paper, we look into the problem of supply chain attacks,
the challenges of defending software supply chain attacks. We
analyze what it takes to effectively prevent software supply chain
attacks, and show that it is indeed feasible and practical for
the customers to detect certain software supply chain attacks.
We propose an information flow based detection approach that
enables end users to detect many software supply chain attacks
without dealing with any of the underlying software suppliers.

Index Terms—Supply chain attack, advanced persistent threat,
cyber defense.

I. INTRODUCTION

In his 1984 ACM Turing Award lecture [1], Ken Thompson,
one of the creators of the Unix operating system, had illus-
trated the first software supply chain attack via a trojaned C
compiler. In the past few years, we started to see real world
supply chain attacks that compromised global enterprises and
caused massive data breaches. In 2013, cyber criminals com-
promised the data network and POS systems of Target via the
stolen network credential of Target’s HVAC service provider
Fazio Mechanical Services [2], stole 40 million credit/debit
cards of Target customers, and costed Target $202 millions.
According to the 2019 Cost of a Data Breach Report[3], the
average cost of massive data breach of 50 million records is
$388 million.

The 2020 SolarWinds hack is a sophisticated supply chain
attack that has breached tens of thousands of SolarWinds Orion
customers worldwide. Specifically, the adversary had gained
access to SolarWinds’ software build system by September
2019, and had planted malware into Orion software updates
in March 2020. 18,000 Orion customers including various
US government agencies (e.g., DoD, DHS, DOJ) and many
Fortune 500 businesses have downloaded and installed the
compromised Orion updates that contain stealthy backdoors.
Since SolarWinds Orion is the network monitoring and man-
agement system that oversees the whole network, hosts and
servers in the operation environment, the backdoors in the
Orion system gave the adversary stealthy access to all the
mission critical networks and systems being monitored. It has
been reported that adversary was able to access the email
system used by the highest-ranking officials in the Treasure
Department. “Having accessed data of interest, they encrypted

Xinyuan Wang is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030, USA. email: xwangc@gmu.edu

and exfiltrated it” [4]. Now solarleaks.net is selling
gigabytes of source code of Microsoft, Cisco, SolarWinds
and FireEye that were stolen and exfiltrated during the 2020
SolarWinds breach for $1,000,000 [5]. Microsoft president
Brad Smith considered SolarWinds attack as “the largest and
most sophisticated attack the world has ever seen” [6].

Besides SolarWinds Orion, other widely used software
such as Microsoft exchange server [7], Kaseya VSA remote
monitoring and management SaaS [8] have recently been
compromised to launch supply chain attacks and ransomware
attacks.

While existing cyber defense mechanisms such as firewall,
antivirus, intrusion detection and prevention system (IDS/IPS),
authentication and code signing are very useful, they have
been shown to be not effective against software supply chain
attacks. According to the CISA spokeswoman Sara Sendek,
none of existing deployed intrusion detection or prevention
systems – including the U.S. government’s multi-billion dol-
lar detection system, Einstein, was able to detect the 2020
SolarWinds breach [9].

After analyzing 24 software supply chain attacks that hap-
pened between January 2020 and early July 2021, the Euro-
pean Union Agency for Cybersecurity (ENISA) has recently
warned that current cyber defenses against software supply
chain attacks are not effective and has predicted that the
number of massive supply chain attacks in 2021 is likely to be
4 times of that in 2020 [10]. Therefore, there is a pressing need
to develop novel and practical defensive measures to detect,
mitigate and respond to potential supply chain attacks in the
near future.

In this paper, we look into the problem of software supply
chain attacks, the technical challenges in defending against
software supply chain attacks, and analyze what it takes to
defend against software supply chain attacks. Based on track-
ing information flows from strategic locations (e.g., mission
critical server), we propose a practical and signature-less
supply chain attack detection approach that enables enterprises
and organizations to detect novel supply chain attacks without
dealing with any of the underlying software and hardware
suppliers.

II. SUPPLY CHAIN ATTACKS

The supply chain is the ecosystem of organizations, peo-
ple, processes, activities and resources involved in creating,
distributing and supplying products or services to customers.
The supply chain attack is the cyberattack that attempts to
compromise a target by exploiting weaknesses and vulnera-
bilities in its supply chain. According to the 2021 European
Union Agency for Cybersecurity ENISA Threat Landscape
for Supply Chain Attacks [11], a supply chain attack starts



2

with the attack on one or more suppliers in the supply chain.
Once the attack on the suppliers has compromised supplier
assets (e.g., some software supplied to some customer by some
supplier), it will targets the customers of the suppliers (e.g.,
users of the software) aiming to compromise the customer
assets (e.g., sensitive data of the customer).

In a supply chain attack, the supplier assets targeted by the
attack could include software, hardware, data, processes and
people. Most of the 24 supply chain attacks (from January
2020 to early July 2021) analyzed by the 2021 ENISA Threat
Landscape for Supply Chain Attacks report [11] are software
related supply chain attacks. Specifically, 62% of those 24
supply chain attacks have used malware; 50% have been
attributed to well-known APT groups (e.g., APT 29) and 58%
have aimed at stealing customers’ data. In this work, we focus
on analyzing and detecting software supply chain attacks (e.g.,
SolarWinds attack [12], [13]) because of their prevalence and
far reaching impact.

III. CHALLENGES IN DEFENDING AGAINST SUPPLY CHAIN
ATTACKS

A. Supply Chain Attack Prevention
Ideally, we want to prevent supply chain attacks from

happening in the first place. Traditional cyberattack prevention
mechanisms are built upon the trust of certain credentials.
For example, firewalls generally trust outbound traffic more
than inbound traffic, and it only allows inbound traffic to
pass after it has been properly authenticated. Authentication –
including two factor authentication (2FA), and access control
mechanisms use various credentials such as 1) something you
know (e.g., secret password, private key); 2) something you
have (e.g., physical token, cell phone); 3) who you are (e.g.,
retina, fingerprint biometrics) to authenticate users, systems
and digital artifacts. In addition, critical code and code updates
from many software suppliers (e.g., Microsoft, SolarWinds)
are digitally signed to make sure only authentic code and code
updates from the trusted vendors will be installed and executed
in customers’ systems. In the current cybersecurity paradigm,
an user, system or digital artifact is considered trustworthy
once it has been properly authenticated and has passed existing
cybersecurity checks.

While traditional preventive measures (e.g., firewall, au-
thentication) are quite effective in preventing cyberattacks
from untrusted sources, they are not effective against insidious
supply chain attacks that exploit the inherent trust customers
generally have in the suppliers they choose.

The 2020 SolarWinds supply chain attack demonstrated
a particular challenging case in preventing the supply chain
attacks. Once the adversary had compromised the SolarWinds
Orion production system and had planted malicious code in
Orion software updates, those malicious Orion updates would
eventually be digitally signed by SolarWinds before distri-
bution. From customers’ perspective, those digitally signed
malicious Orion updates are authentic thus trustworthy given
their trust in SolarWinds Orion products. Once installed, the
digitally signed and trusted but malicious Orion updates would
make the trusted and privileged Orion network monitoring
system malicious!

From defender’s perspective, supply chain attacks have
essentially increased the attack surface by orders of magnitude.
In order to protect a mission critical system from supply chain
attacks, it is no longer enough to just secure the mission
critical system itself, but we have to secure the development,
production, authentication, distribution and updates of all the
underlying components in the mission critical system. Note,
contemporary software systems are large and sophisticated and
they often have complicated dependency on many third party
libraries (e.g., OpenSSL). Furthermore, certain widely used
open source software packages may not be actively maintained
by volunteers and certain widely used software packages are
closed source. Therefore, it is infeasible for any owner of any
mission critical system to enforce or compel each supplier
of each software component to have the same cybersecurity
scrutiny needed. This inevitably leaves certain supplier more
vulnerable than the rest.

Once the adversary has compromised some trusted but vul-
nerable supplier and has generated digitally signed malicious
updates, no existing cyber defense can prevent such insidious
supply chain attacks as there is no way for the customer’s
cyber defense system to tell if a digitally signed update from
a trusted vendor is malicious or not.

Therefore, supply chain attacks have forced us to abandon
the level of trust we use to have in those reputable and
supposedly trustworthy suppliers. The open question is how
much trust, if any, we should have in those supposedly
trustworthy suppliers.

B. Supply Chain Attack Detection
If we can not prevent supply chain attacks from happening,

we want to detect those supply chain attacks at customer’s
mission critical systems, hopefully in real-time.

Supply chain attacks often involve application specific ex-
ploits on one or more software components of the target
system. Detecting application specific exploits, however, are
challenging due to the need of the intimate knowledge of
the application. Given the enormous number and size of
applications (e.g., open source, closed source), it is simply
impossible for any cyber defense mechanism to have the
intimate knowledge of all applications. Furthermore, detecting
previously unknown application specific exploits is exceed-
ingly difficult due to its inherent dependency on the yet-to-
know vulnerabilities of the application. While an application
may function exactly as expected under normal conditions
with normal inputs, it could behave, with abnormal inputs,
in a way no one has ever imagined. For example, Bash shell,
which was first released in June 1989, has been used as the
default login shell for most Linux distributions and all MacOS
releases before Catalina. After 25 years of extensive use, Bash
had been found to have a family of security vulnerabilities
– Shellshock [14] that allow attackers to execute arbitrary
commands and gain unauthorized access to many Internet-
facing services (e.g., web servers) that use Bash to process the
incoming requests. Before the Shellshock vulnerability was
discovered in September 2014, no deployed cyber defense
mechanism had ever detected any exploit of the Shellshock
vulnerability.



3

Most existing intrusion detection (IDS) systems – including
U.S. government’s multi-billion dollar detection system, Ein-
stein, use signatures or behavior patterns of known attacks
to detect cyberattacks. Detecting known exploits of known
application specific vulnerabilities are also technically chal-
lenging as the adversaries could use polymorphism to disguise
their application specific exploits. According to the Symantec
Internet Security Threat Report Volume 24 [15], there were
669 millions new malware variants found in 2017 alone. That
means on average over 1.83 million new variants appeared
every day. Neither signature based nor machine learning based
cyber defense approaches could keep up with over 1.83 million
new malware variants per day! In fact, all of the currently
deployed intrusion detection systems – including the multi-
billion dollar Einstein detection system, failed to detect the
2020 SolarWinds supply chain attack [9].

Since contemporary mission critical systems are enormously
large (e.g., consists of millions of lines of code) and usually
have very sophisticated dependency on many third party
software packages provided by different suppliers, it is simply
impossible for any cyber defense to known the inner workings
of all the software components provided by all suppliers. To
address the technical challenges in detecting polymorphic and
application specific exploits, we need to develop novel detec-
tion capability that 1) is independent from various suppliers;
2) requires no signature or prior knowledge of the attack.

IV. AN INFORMATION FLOW BASED DETECTION OF
SUPPLY CHAIN ATTACKS

In this section, we describe a novel supply chain attack
detection approach, based on the inherent information flows in
supply chain attacks, that is independent from all the suppliers
and requires no signature or prior knowledge of the supply
chain attack.

A. Information Flows in Supply Chain Attacks

No matter what application specific exploit a supply chain
attack has used to compromise the final target, there is always
some information flow involved in the supply chain attack.
Besides the infiltration information flow that enabled the
attacker to compromise the target, almost all supply chain
attacks have some sort of data exfiltration that carries the
sensitive information the attacker wants to steal. As shown
in Figure 1, the attacker in a supply chain attack can com-
promise some data source and surreptitiously exfiltrate data
from the data source while legitimate users may access the
same data source at the same time. For example, the 2013
Target supply chain attack has exfiltrated the credit/debit card
information of 40 million Target’s customers from Target’s
POS devices. Furthermore, sophisticated supply chain attacks
could use command and control (C&C) channel to allow
remote attackers to explore and manipulate the compromised
mission critical targets. For example, the 2020 SolarWinds
supply chain attack connected to the command and control
(C&C) centers 12-14 days after being installed. Apparently the
data exfiltration and C&C traffic only exist when the supply
chain attack is going on. Such unique information flows form

Fig. 1. The Attack Information Flows During Supply Chain Attacks

the very foundation of our information flow based supply chain
attack detection.

Tracking the data exfiltration and C&C traffic is not trivial.
The 2013 Target data breach and the 2020 SolarWinds data
breach all have encrypted the stolen data before data exfiltra-
tion [4]. In addition, SolarWinds supply chain attack laundered
its C&C control traffic through a number of Amazon cloud
virtual machines as stepping stones before reaching its C&C
center. Therefore, one key to detect sophisticated supply chain
attacks is the capability to reliably identify and track those
suspicious, encrypted and laundered data exfiltration and C&C
traffic from the target.

B. Identifying and Tracking Attack Information Flows

As shown in Figure 1, there could be legitimate data
access while the supply chain attack is exfiltrating data and
laundering encrypted C&C traffic across a number stepping
stones. To effectively identify and track the encrypted and
laundered information flows of the supply chain attacks, we
need capabilities to
• distinguish any illegal data access from all legitimate data

accesses of specified data sources
• track encrypted traffic across stepping stones
We have the following observations from the reported

supply chain attacks
1) abnormal data exfiltration from mission critical data

sources to new destinations happened only when supply
chain attacks (e.g., 2013 Target breach, 2020 SolarWinds
breach) were going on.

2) abnormal C&C connections were established between
some internal nodes and external nodes only when so-
phisticated supply chain attacks (e.g., 2020 SolarWinds
breach) were going on.

To detect such abnormal data exfiltration and C&C traffic
at the enterprise egress point, we can collect normal traffic
patterns which do not contain the abnormal data exfiltration
and C&C traffic that only appear when some attack is going
on. Such a profile of normal traffic can be used as the baseline
in the traffic anomaly detection.

Assuming all the data exfiltration and C&C traffic in the
supply chain attacks are encrypted and laundered through
stepping stones, we have to use some traffic characteristics that
is invariant after encryption and laundering across stepping
stones to identify and track those attack information flows.



4

Fig. 2. Tagging Packet Flows via Encoding Unique Bit String into the Inter-
Packet Timing of Packet Flows

Fig. 3. Detecting and Tracking the Attack Information Flows During Supply
Chain Attacks

Given any packet flow p1, . . . , pn (n > 1), each packet
pi has its distinct arrival (or departure) time ti. Previous
research [16] has shown that the inter-packet timing of packet
flow remains relatively stable across many hops of routers
and intermediate stepping stones. In addition, encryption of
packets has negligible impact on the inter-packet timing.
Since all the routers and applications are designed to process
the packets or requests as soon as possible, they will keep
the timing correlation between the incoming traffic and the
outgoing traffic. Therefore, there exists mutual information in
the packet timing domain across all the routers and application
gateways.

We propose to use the proven inter-packet timing based
flow watermarking technologies [17], [18], [19], [20], [21],
[22] to uniquely tag all outgoing traffic from selected data
sources and mission critical systems. As shown in Figure 2,
we can transparently encode an arbitrary l-bit string w (as
a watermark) into the inter-packet timing of a sufficiently
long packet flow by slightly adjusting the timing of selected
packets. If the encoded bit string is unique and robust enough,
such bit encoding essentially tags the packet flow in the inter-
packet timing domain. Since the information encoding is in
the inter-packet timing which neither changes nor depends on
the packet content, it is applicable to any packet flow of any
protocol even if the packet flow is encrypted. By transparently
encoding unique bit string into the inter-packet timing of the
given packet flow, one can reliably identify and track the
tagged packet flow across stepping stones by checking if any
given flow contains the encoded bit string.

Figure 3 illustrates how we can detect and track the attack
information flows during the supply chain attack. One key
component is the flow tag encoder, which is a special router
that transparently encodes the given watermark into the inter-
packet timing of specified (potentially encrypted) packet flows
in real-time. We can deploy one such flow watermark encoder
in front of each protected data source or mission critical system

such that all the packet flows to or from the data source or
mission critical system will pass the watermark encoder. This
enables us to tag each outgoing packet flow from each of
the chosen data sources or mission critical systems with an
unique watermark. Since the inter-packet timing based flow
watermark encoder only slightly adjusts the timing of selected
packets without ever changing any content of any packet,
legitimate users can access the protected mission critical
systems or data sources as usual without any changes.

To protect a given mission critical data source, we prohibit
any direct data access from outside, and only allow legitimate
data access via specific route and access point. For example,
we can mandate that data access from mission critical server
X must be done via some access point Y , and we can place
separate flow tag encoders in front server X and access point
Y such that packet flow from/to X and Y will be uniquely
tagged unique bit string Xb and Yb respectively.

To keep track of legitimate outgoing traffic, the egress point
should maintain the following tuples indexed by the unique tag
or bit string: 〈tag, time, srcIP, dstIP, srcPort, dstPort, protocol〉.

When some supply chain attack is exfiltrating data from
a protected data source or laundering C&C traffic via some
protected node, those data exfiltration, C&C traffic will be
transparently tagged with unique bit string that identifies where
they are tagged. At the egress points (e.g., firewall), we can
check the inter-packet timing of each outgoing packet flows
for the tags that we have encoded to the outgoing packet flows
from all the protected data sources. For example, if the egress
point sees some outgoing traffic is tagged with bit string Xb

for outgoing traffic from mission critical server X , we have
very high confidence that the traffic tagged with Xb is indeed
from mission critical server X even if the traffic is encrypted
and laundered through stepping stones. Since legitimate access
of server X should be via access point Y whose traffic should
be tagged with Yb, we know for sure that the outgoing traffic
with tag Xb is illegal. This allows us to detect and stop the
encrypted data exfiltration, encrypted C&C communication
and the ongoing supply chain attack within a few minutes.

C. Security and Robustness Analysis

Our information flow based attack detection and tracking are
built upon transparent flow watermarking in the inter-packet
timing domain. To protect mission critical servers within an
enterprise network, we need to deploy one flow tag encoder,
as a special router, in front of each server to be protected,
and deploy one flow tag decoder at each egress point of
the network. The flow tag encoder and the flow tag decoder
are completely independent from the servers to be protected.
Therefore, nothing needs to be changed or installed in the
servers to be protected, and the flow tag encoder and decoder
still function as expected when the servers are somehow
compromised (e.g., via supply chain attack).

After we have encoded l > 0 bits string w into the inter-
packet timing of a packet flow, let w′ be the l bits decoded
from the tagged packet flow at the receiver side. We use
H(w,w′) to represent the Hamming distance between w and
w′ which measures number of mismatched bits caused by the



5

network distortion to the inter-packet timing of the packet flow.
Instead of requiring H(w,w′) = 0, we consider the packet
flow has tag w if the Hamming distance between the decoded
tag w′ and w H(w,w′) < h where 0 ≤ h < l is the Hamming
distance threshold. Let 0 < p < 1 be the probability that each
decoded bit matches the encoded bit, then the expected l bits
decoding true positive rate with Hamming distance threshold
h is

TPR(l, h, p) =
h∑

i=0

(
l
i

)
pl−i(1− p)i (1)

We use decode collision to denote the unlikely situation
that an untagged packet flow happens to have the l bits
decoded w′ such that H(w,w′) ≤ h. Assuming the l-bits w′

decoded from a random flow is uniformly distributed, then
the expected decode collision probability between a random
untagged packet flow and any particular l bits w is

FPR(l, h) =
h∑

i=0

(
l
i

)
(
1

2
)l (2)

Therefore, we can have very low collision probability
5.65 × 10−5 by using l = 32 bits while allowing h = 5
mismatched bits. Previous research [23] have shown that we
only need less than 60 seconds and a couple of hundred
packets to achieve virtually 100% decoding true positive rate.
Given the enormous amount of the data exfiltrated (e.g., tens
of millions of records) in supply chain attacks, our proposed
information flow based detection will have more than enough
packets to achieve both high true positive rate and exceedingly
low false positive rate at the same time.

V. DISCUSSION

Built upon novel combination of packet flow watermarking
and traffic anomaly detection, our proposed attack information
flow based detection has the following desirable features:

1) it does not depend on any attack signature, and it can
be effective against previously unknown supply chain
attacks.

2) it does not impact the normal access and use of the to be
protected servers.

3) it does not introduce any performance overhead nor any
change to the to be protected servers.

4) it works with any packet based protocol such as IPv4,
IPv6, HTTP, SSL, SSH.

5) it can be deployed incrementally and it can work seam-
lessly with existing IT infrastructure.

When the egress flow tag decoder has been trained properly
with normal traffic, the proposed detection system can reliably
detect novel supply chain attacks that involve previously
unseen data exfiltration and/or C&C traffic in near real-
time without detection false positive. On the other hand, the
proposed detection system may miss certain software supply
chain attacks such as Heartbleed.

We have not empirically validated the proposed detection
system due to lack of access to the exploit code of software
supply chain attacks.

VI. RELATED WORKS

To the best of our knowledge, there is no published work
on detecting software supply chain attacks.

Randomization based defense Many cyber defense ap-
proaches [24], [25], [26], [27], [28], [29], [30], [31] have been
proposed based on the idea of randomization. By randomizing
the run-time memory address of stack, heap etc., address space
layout randomization [24], [27], [28], [31] make it hard for
the attack code to access the correct address at run-time. The
Instruction set randomization [25], [26] makes it infeasible for
the injected attack code to execute as expected. System call
randomization [29] causes the attack code to use the wrong
system call by randomizing the system call number at run-
time.

System call based defense Many approaches have been
proposed to detect cyberattacks based on checking system call
sequence [32], [33], [34], [35] or tagged system call [36].

Control flow integrity (CFI) based defense Control flow
integrity (CFI) [37], [30], [38], [39], [40] aims to prevent, de-
tect control flow hijacking and code-reuse attacks by ensuring
that the run-time indirect control flow transfers can only reach
legitimate destinations in the control flow graph (CFG).

Unfortunately, software supply chain attack can defeat all
existing randomization based, system call based and CFI based
defenses by simply planting a backdoor trojan in the software
update.

A number of approaches (e.g., [41], [42], [18], [19], [20],
[21]) have been proposed to transparently encode bits into
the inter-packet timing of a given packet flow. Our proposed
attack information flow based detection uses such packet flow
watermarking approaches as a building block.

VII. CONCLUSIONS

In this work, we have examined the problem of supply
chain attacks and the technical challenges in detecting software
supply chain attacks. We show that by novel combination of
traffic anomaly detection and packet flow tagging techniques
it is indeed feasible to detect certain software supply chain
attacks in near real-time without any prior knowledge of the
attack.

Our analysis shows that the proposed attack information
flow based detection can be highly accurate with very low
false positive in production environment. It is an area of future
work to empirically validate the proposed detection with real
world supply chain attacks.

REFERENCES

[1] K. Thompson, “Reflections on Trusting Trust,” Communications of the
ACM, vol. 27, no. 8, Auguest 1984.

[2] B. Krebs, “Target Hackers Broke in Via HVAC Company,” Febru-
ary 2014, https://krebsonsecurity.com/2014/02/target-hackers-broke-in-
via-hvac-company/.

[3] I. Security, “Cost of a Data Breach Re-
port 2019,” 2019, https://www.all-about-
security.de/fileadmin/micropages/Fachartikel 28/2019 Cost of a Data
Breach Report final.pdf.

[4] “2020 United States federal government data breach,”
https://en.wikipedia.org/wiki/2020 United States federal government
data breach.



6

[5] L. Abrams, “SolarLeaks site claims to sell data
stolen in SolarWinds attacks,” January 2021,
https://www.bleepingcomputer.com/news/security/solarleaks-site-
claims-to-sell-data-stolen-in-solarwinds-attacks/.

[6] L. Tung, “Microsoft: Solarwinds attack took more than 1,000 engineers
to create.”

[7] B. D. Williams, “Revealed: Secret FBI Cyber Op To Clean Exchange
Servers,” April 2021, https://breakingdefense.com/2021/04/doj-reveals-
secret-fbi-op-to-clean-exchange-servers/.

[8] A. Press, “A ’Colossal’ Ransomware Attack Hits Hundreds
Of U.S. Companies, A Security Firm Says,” July 2021,
https://www.npr.org/2021/07/03/1012849198/ransomware-cyber-attack-
revil-attack-huntress-labs.

[9] C. Timberg and E. Nakashima, “The U.S. government spent billions on a
system for detecting hacks. The Russians outsmarted it,” February 2021,
https://www.seattletimes.com/nation-world/the-u-s-government-spent-
billions-on-a-system-for-detecting-hacks-the-russians-outsmarted-it/.

[10] L. Tung, “Supply chain attacks are getting worse, and you are not
ready for them,” August 2021, https://www.zdnet.com/article/supply-
chain-attacks-are-getting-worse-and-you-are-not-ready-for-them/.

[11] E. U. A. for Cybersecurity, “ENISA Threat Landscape For Supply Chain
Attacks,” July 2021, https://www.enisa.europa.eu/publications/threat-
landscape-for-supply-chain-attacks.

[12] FireEye, “Highly Evasive Attacker Leverages SolarWinds Supply
Chain to Compromise Multiple Global Victims With SUNBURST
Backdoor,” December 2020, https://www.fireeye.com/blog/threat-
research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-
compromises-with-sunburst-backdoor.html.

[13] R. Staff, “SolarWinds hack was ’largest and most so-
phisticated attack’ ever: Microsoft president,” February
2021, https://www.reuters.com/article/us-cyber-solarwinds-
microsoft/solarwinds-hack-was-largest-and-most-sophisticated-attack-
ever-microsoft-president-idUSKBN2AF03R.

[14] S. Chazelas, “GNU Bash CVE-2014-6271 Remote Code Execution Vul-
nerability,” September 2014, https://www.securityfocus.com/bid/70103.

[15] Symantec, “Internet Security Threat Report Volume 24,” February 2019,
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-
2019-en.pdf.

[16] X. Wang, D. S. Reeves, and S. F. Wu, “Inter-Packet Delay based Corre-
lation for Tracing Encrypted Connnections through Stepping Stones,” in
Proceedings of the 7th European Symposium on Research in Computer
Security (ESORICS 2002), ser. LNCS-2502. Springer-Verlag, October
2002, pp. 244–263.

[17] A. Iacovazzi and Y. Elovici, “Network Flow Watermarking: A Survey,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 512 –
530, First Quarter 2017.

[18] X. Wang, S. Chen, and S. Jajodia, “Tracking Anonymous Peer-to-Peer
VoIP Calls on the Internet,” in Proceedings of the 12th ACM Conference
on Computer and Communications Security (CCS 2005). Alexandra,
VA: ACM, November 2005, pp. 81–91.

[19] Y. J. Pyun, Y. H. Park, X. Wang, D. S. Reeves, and P. Ning, “Tracing
Traffic through Intermediate Hosts that Repacketize Flows,” in Proceed-
ings of the 26th Annual IEEE Conference on Computer Communications
(Infocom 2007), May 2007.

[20] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-Based Flow
Marking Technique for Invisible Traceback,” in Proceedings of the 2007
IEEE Symposium on Security and Privacy (S&P 2007). IEEE, May
2007.

[21] X. Wang, S. Chen, and S. Jajodia, “Network Flow Watermarking Attack
on Low-Latency Anonymous Communication Systems,” in Proceedings
of the 2007 IEEE Symposium on Security & Privacy (S&P 2007),
Oakland, CA, May 2007, pp. 116–130.

[22] Z. Ling, J. Luo, D. Xu, M. Yang, and X. Fu, “Novel and Practical
SDN-based Traceback Technique for Malicious Traffic over Anonymous
Networks,” in Proceedings of the 38th Annual IEEE Conference on
Computer Communications (Infocom 2019), May 2019.

[23] X. Wang, “On the Feasibility of Real-Time Cyber Attack Attribution
on the Internet,” in Proceedings of the 35th IEEE MILCOM, November
2016.

[24] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error
Exploits,” in Proceedings of the 12th USENIX Security Symposium,
Auguest 2003.

[25] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering Code-
Injection Attacks with Instruction-Set Randomization,” in Proceedings
of the 10th ACM Conference on Computer and Communications Security
(CCS 2003). ACM, October 2003, pp. 272–280.

[26] E. Barrantes, D. Ackley, S. Forrest, T. Palmer, D. Stefanovic, and
D. Zovi, “Randomized Instruction Set Emulation to Disrupt Binary
Code Injection Attacks,” in Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS 2003). ACM, October
2003, pp. 281–289.

[27] J. Xu, “Intrusion Prevention Using Control Data Randomization,” in Pro-
ceedings of the 2003 International Conference on Dependable Systems
and Networks (DSN 2003). IEEE, June 2003.

[28] Z. K. Jun Xu and R. K. Iyer, “Transparent Runtime Randomization
for Security,” in Proceedings of the 22nd Symposium on Reliable and
Distributed Systems (SRDS 2003). IEEE, October 2003.

[29] X. Jiang, H. J. Wang, D. Xu, and Y.-M. Wang, “RandSys: Thwarting
Code Injection Attacks with System Service Interface Randomization,”
in Proceedings of the 26th Symposium on Reliable and Distributed
Systems (SRDS 2007). IEEE, October 2007.

[30] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. A. Mccamant,
D. Song, and W. Zou, “Practical Control Flow Integrity & Random-
ization for Binary Executables,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy (S&P 2013). IEEE, May 2013.

[31] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz, “It’s a TRaP:
Table Randomization and Protection against Function-Reuse Attacks,”
in Proceedings of the 22nd ACM Conference on Computer and Com-
munications Security (CCS 2015). ACM, October 2015, pp. 243–255.

[32] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense
of Self for Unix Processes,” in Proceedings of the 1996 IEEE Symposium
on Security and Privacy (S&P 1996). IEEE, May 1996.

[33] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intrusions
Using System Calls: Alternative Data Models,” in Proceedings of the
1999 IEEE Symposium on Security and Privacy (S&P 1999). IEEE,
May 1999, pp. 133–145.

[34] R. Sekar, M. Bendre, and P. Bollineni, “A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors,” in Proceedings
of the 2001 IEEE Symposium on Security and Privacy (S&P 2001).
IEEE, May 2001.

[35] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly Detection Using Call Stack Information,” in Proceedings of
the 2003 IEEE Symposium on Security and Privacy (S&P 2003). IEEE,
May 2003.

[36] X. Wang and X. Jiang, “Artificial Malware Immunization based on
Dynamically Assigned Sense of Self,” in Proceedings of the 13th
Information Security Conference (ISC 2010), October 2010.

[37] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow In-
tegrity: Principles, Implementations, and Applications,” in Proceedings
of the 12th ACM Conference on Computer and Communications Security
(CCS 2005). ACM, November 2005, pp. 340–353.

[38] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,”
in Proceedings of the 22nd USENIX Security Symposium. USENIX,
August 2013.

[39] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque Control-Flow Integrity,” in Proceedings of the 22th Network
and Distributed System Security Symposium (NDSS 2015), February
2015.

[40] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary
Level,” in Proceedings of the 2016 IEEE Symposium on Security and
Privacy (S&P 2016). IEEE, May 2016.

[41] X. Wang and D. S. Reeves, “Robust Correlation of Encrypted Attack
Traffic through Stepping Stones by Manipulating of Interpackets De-
lays,” in Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS 2003). ACM, October 2003, pp. 20–
29.

[42] P. Peng, P. Ning, D. S. Reeves, and X. Wang, “Active Timing Based
Correlation of Perturbed Traffic Flow with Chaff,” in Proceedings of
the 2nd International Workshop on Security in Distributed Computing
Systems (SDCS-2005), June 2005.


