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Abstract. Cobalt Strike is a stealthy and powerful command and con-
trol (C&C) framework that has been widely used in many recent mas-
sive data breach attacks (e.g., the SolarWinds attack in 2020) and ran-
somware attacks. While detecting Cobalt Strike C&C network tra�c is
crucial to the protection our mission critical systems from many sophis-
ticated cyberattacks, no existing intrusion detection systems have been
shown to be able to reliably detect real world Cobalt Strike C&C tra�c
from encrypted tra�c.
In this paper, we propose a machine learning based approach to detect
stealthy Cobalt Strike C&C tra�c. Based on the analysis of real world
Cobalt Strike tra�c, we have developed an approach using �ow-level
features that capture the inherent characteristics of Cobalt Strike C&C
tra�c. We have validated our machine learning based detection with
�ve machine learning algorithms and evaluated them with Cobalt Strike
tra�c from real world cyberattacks. Our empirical results demonstrate
that our random forest model can detect close to 50% of real world Cobalt
Strike C&C traces in encrypted tra�c with a 1.4% false positive rate.

Keywords: Cobalt Strike C&C · Intrusion Detection · Machine Learn-
ing

1 Introduction

As our society is increasingly dependent on digital technologies, cyberattacks
have become a more serious threat to mission critical systems and infrastruc-
tures. For example, recent massive data breach attacks [1] on various business
organizations and government agencies (e.g., Target, JP Morgan Chase, OPM,
Anthem Inc., Equifax) have impacted tens or hundreds of millions of people.
Now cybercriminals can launch sophisticated attacks and compromise mission
critical systems via the Internet from virtually anywhere in the world. By us-
ing covert command & control (C&C) channels, cybercriminals can stealthily
control the compromised systems from thousands of miles away and ex�ltrate
sensitive data for months. This type of sophisticated cyberattacks are called
advanced persistent threats (APT) and they have caused prohibitive �nancial
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losses to many businesses in recent times. According to the 2019 Cost of a Data
Breach Report [2], the average damage cost of a data breach of 50 million records
is $388 million. Speci�cally, the 2017 Equifax data breach has costed Equifax
nearly $1.4 billion as of May 2019 [3]. Cybersecurity Ventures predicted that the
annual global cybercrime damage would grow from $3 trillion in 2015 to $10.5
trillion by 2025 [4].

Cobalt Strike has been widely used in recent sophisticated cyberattacks [5,
6] due to its ability to establish stealthy C&C channels between the victim
system and the attacker. According to Cisco Talos Incident Response (CTIR)
Quarterly Report [7], ransomware has been the dominating threat in 2020, and
66% of all ransomware attacks in summer 2020 used Cobalt Strike. The 2020
SolarWinds supply chain attack [8] delivered a customized Cobalt Strike pay-
load to 18,000 Orion customers that included many Fortune 500 organizations
(e.g., Microsoft, Cisco) and various US government agencies (e.g., DoD, DHS,
DOJ). Cobalt Strike stealthy in-memory persistence and C&C channels enabled
the SolarWinds attack to surreptitiously explore, identify and ex�ltrate highly
sensitive information from some of the most secured information systems with-
out being detected for over nine months. Speci�cally, the SolarWinds attacker
gained access to and ex�ltrated the emails of the highest-ranking o�cials in the
Treasure Department [9] and stole gigabytes of source code of Microsoft, Cisco,
SolarWinds and FireEye [10].

Detecting Cobalt Strike C&C channel is crucial to the protection of our
mission critical cyber systems and infrastructures from many sophisticated cy-
berattacks. However, Cobalt Strike C&C is very stealthy and hard to detect.
Speci�cally, Cobalt Strike C&C tra�c is fully encrypted and can mimic legiti-
mate network tra�c using communication protocols such as HTTPS, which will
defeat any content based detection. An independent study sponsored by IBM
Security [2] shows that it took average 206 days to detect a data breach in
2019. DHS CISA spokesperson Sara Sendek acknowledged that none of deployed
intrusion detection or prevention systems (IDS/IPS) � including the U.S. gov-
ernment's multi-billion dollar detection system, Einstein, was able to detect the
2020 SolarWinds breach [11]. In other words, no existing IDS/IPS was able to de-
tect the stealthy Cobalt Strike C&C activities involved in the 2020 SolarWinds
attack. To the best of our knowledge, there is no published result on reliable
detection of real world stealthy Cobalt Strike C&C activities from encrypted
tra�c.

In this paper, we explore a new direction in detecting stealthy Cobalt Strike
C&C activities from encrypted tra�c. Instead of using the packet �ow content
information, we build our machine learning based detection upon the packet tim-
ing and �ow duration information that are not changed by encryption. Based
on analysis of real world Cobalt Strike C&C traces, we have generated machine
learning features that capture the inherent �ow level characteristics of encrypted
Cobalt Strike C&C tra�c. We have empirically validated our machine learning
based detection with �ve popular machine learning models and real world en-
crypted Cobalt Strike C&C tra�c mixed with normal tra�c. Our empirical
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results demonstrate that our our random forest model can detect close to 50%
of real world Cobalt Strike C&C traces in encrypted tra�c with a 1.4% false
positive rate. Our naïve Bayes model achieves over 84% detection true positive
rate with 13% false positive rate.

The rest of the paper is structured as follows: section 2 describes and an-
alyze the characteristics of the Cobalt Strike framework and its C&C tra�c.
Section 3 details the threat model, �ow-based features, machine learning models
and metrics used in the generation of the model. Section 4 presents the exper-
imental results using real world Cobalt Strike C&C tra�c. Section 5 reviews
related works. Finally, section 6 concludes the paper with potential future work
directions.

2 Analysis of Cobalt Strike C&C

2.1 Cobalt Strike

Cobalt Strike is a powerful and stealthy command and control (C&C) frame-
work that was originally developed by Raphael Smudge as a penetration testing
tool in 2012 [12]. Cobalt Strike allows attackers to 1) perform target reconnais-
sance by identifying known vulnerabilities in software versions; 2) create trojans
and malicious website clones that enable drive-by attacks; 3) deploy and inject
malicious agents called Beacons into vulnerable targets; 4) perform tasks in the
systems infected with a Beacon, such as log keystrokes, take screenshots, execute
commands, download additional malware or inject a Beacon in other processes;
and 5) disguise its C&C tra�c using encryption and mimic normal network traf-
�c using communication protocols such as HTTP, HTTPS or DNS to surpass
cybersecurity defenses. Due to its post-exploitation and stealthy C&C features,
Cobalt Strike has been widely used in sophisticated cyberattacks.

Cobalt Strike has two main components: the team server and the client. The
team server is the C&C server that interacts with a victim that has been infected
with a Beacon, and it also accepts client connections. The client is the system
used by the attacker to interact with the team server to send commands to the
Beacons. Cobalt Strike Beacon is the malware payload used by Cobalt Strike to
create a backdoor on a victim system that connects to the team server and can be
divided into two parts: the payload stage, and the payload stager. The payload
stager is a smaller program that is used to download the payload stage on to a
system, inject it into memory, and pass the execution to it. The payload stage is
the actual backdoor that runs in memory and can establish a connection to the
C&C server through di�erent channels. Cobalt Strike contains many additional
components [6], which allow it to be con�gured to bypass defense systems:

1. Listeners: the listeners de�ne how the Beacon connects to the team server,
such as the IP address of the C&C server, the ports and the protocol used.
Cobalt Strike supports a great variety of protocols: HTTP, HTTPS and DNS
are the most popular ones, while also supporting SMB, raw TCP, foreign
listeners (using Metasploit's Meterpeter) and external C&C listeners.
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2. Arsenal Kit: these kits allow additional customization into Cobalt Strike
capabilities to evade antivirus products. Some of the most popular kits are:

� Artifact kit: allows attackers to modify the template for all Cobalt Strike
executables, DLLs and shellcode.

� Elevate kit: allows attackers to include third-party privilege escalation
scripts with Cobalt Strike Beacon.

� Mimikatz kit: allows attackers to use and update the Mimikatz installa-
tion included with Cobalt Strike.

3. Malleable C&C pro�les: part of the Arsenal Kit, it allows the attacker to
customize the communications between the Beacon and the team server as
well as the Beacon in-memory characteristics, determine how it does process
injection, and in�uence post-exploitation jobs.

The Malleable C&C pro�le´s ability to customize the network tra�c that the
Beacon generates and receives, such as the interval between each Beacon call-
back to the team server, the URI of the HTTP/S requests, inserting additional
data to masquerade the actual data payload size and more, is the main char-
acteristic that makes Cobalt Strike such a powerful tool for penetration testers
and malicious agents alike. It allows the attacker to blend the C&C tra�c with
the normal tra�c, bypassing security defenses such as network �rewalls and
intrusion detection systems.

Cobalt Strike has become one of the favorite tools for attackers of all skill
levels, from script kiddies to state-sponsored attackers, being used among other
malware such as QBot or Emotet and phishing attacks or being actively used
for all the phases of the attack lifecycle. Cobalt Strike has also been identi�ed
not only in ransomware attacks, but also part of the famous SolarWinds supply
chain attack in 2020 and cyberespionage campaigns targeting the Ukrainian
population.

2.2 Cobalt Strike C&C communications

This paper focuses on the detection of the two most popular application level
protocols used by attackers for Cobalt Strike C&C communications: HTTP and
HTTPS. Per the Cobalt Strike documentation, a typical Cobalt Strike C&C
HTTP/S transaction between an infected host and the C&C server proceeds as
follows:

� First, the TCP connection is established via the TCP three-way handshake
(SYN, SYN/ACK, ACK).

� If the HTTPS protocol is used, the TLS handshake is performed (Client
Hello, Server Hello, Server Key Exchange, Client Key Exchange, Finished)
to establish the HTTPS session.

� Then, the exchange of data takes place between the victim and the team
server.

� Finally, the HTTPS session and TCP connection are closed.
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The Beacon performs callbacks to the C&C server periodically to retrieve
tasks to execute, sending the information of the infected system in a GET request
after the connection has been established. The server responds to the request
with the tasks, if any have been instructed by the attacker. The Beacon then
executes the tasks and initiates another connection to send the output back to
the C&C server using a POST request. The server then responds with data that
is discarded by the Beacon. The packet payload is encoded and encrypted to
complicate the analysis of its contents by security systems. Cobalt Strike uses
this process to simulate a legitimate HTTP/S exchange between a client and a
server.

Figure 1 shows several HTTPS transactions between a Beacon-infected host
and a team server from a packet capture using the network protocol analyzer
tool Wireshark. In the image, it is possible to observe that, after establishing
the HTTPS session through the TLS Handshake, the victim and the C&C server
exchange �Application Data� packets which are used to transmit the tasks that
are to be executed to the Beacon or send the results from those tasks back to
the C&C server. Once the data has been exchanged, the C&C server closes the
HTTPS session using an �Encrypted Alert� packet. Each connection between
the victim and the team server requires the client to open a new HTTPS session
with the server.

Fig. 1. Packet capture from HTTPS Beacon transaction

Comparing the previous �gure with Figure 2, which shows a packet cap-
ture of legitimate HTTPS tra�c when accessing a web pages such as Facebook
(www.facebook.com), we can observe some notable di�erences between legiti-
mate tra�c and Beacon tra�c.

First, the Beacon does not use the same TCP connection to contact the
C&C server more than once. This event occurs for both the HTTP and HTTPS
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Fig. 2. Captured HTTPS Packets from Normal Tra�c

Beacons, but it can be more clearly observed in the case of the HTTPS Beacon:
the C&C server sends an �Encrypted Alert� packet indicating that the HTTPS
session is closed, and consequently also closes the TCP connection shortly after
that packet is sent. Therefore, as we can also observe in Figure 1, the Beacon
opens a TCP connection for every call to the C&C server and closes it after
retrieving the required tasks or sending the information back.

Thus, we can be certain that, unless more than one Beacon is used to infect a
system and the Beacons are communicating with the same server simultaneously,
it is not possible to observe the case of two consecutive TCP connections being
made from the victim to the server without the previous one being closed, which
is a common occurrence in legitimate tra�c to have multiple TCP connections
simultaneously between the client and the server.

Furthermore, the duration of a TCP connection between a legitimate client
and a server tends to be longer than a Beacon connection. In a Beacon trans-
action only a few packets are exchanged, especially when the transaction is the
Beacon receiving the tasks. The ex�ltration of data from the infected system
can also be used to detect the Beacon tra�c, since the legitimate tra�c rarely
requires the client to send great quantities of data to the server.

2.3 Malleable C&C pro�les

Cobalt Strike introduces the use of Malleable C&C pro�les to customize the
network indicators of the C&C tra�c between the Beacon and the team server
as an evasion measure, as they can be used to disguise the Beacon tra�c to
look like other malware or blend-in with legitimate tra�c, making it di�cult to
detect. The Malleable C&C pro�les are loaded onto the team server and modify
the in-memory characteristics of the Beacon, how to transform and store the
data in a transaction and post-exploitation functions.

The Malleable C&C pro�le is structured into several sections which are used
to con�gure the global Beacon behavior or speci�c behavior depending on the
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communication protocol used. The global con�guration includes the sleeptime

which is the Beacon callback interval, the data jitter which is a random length
string up to the chosen value (in bytes) that is appended to the server value and
the useragent which sets the User-Agent string used in the HTTP requests iden-
tifying the application, operating system, vendor and version of the requesting
computer program.

The Malleable C&C pro�le can also be used to con�gure the HTTP headers,
the SSL certi�cate used in the HTTPS sessions, the URI of the HTTP requests,
the HTTP verb used in the transactions and the modi�cations performed to the
payload of the packets sent from the server and the Beacon, including appended
data and encoding.

Our analysis of the HTTP/S Cobalt Strike tra�c and the Malleable C&C
pro�les has identi�ed several network indicators that can be used to detect the
Cobalt Strike C&C tra�c: 1) the Beacon sleeps for an interval of time after not
receiving tasks or after sending the output to the server; 2) most of the sessions
have a short duration and few data packets are exchanged; 3) in most cases the
victim sends more data to the C&C server than the opposite, especially when it
is ex�ltrating information about the victim.

3 A Machine Learning Based Detection

3.1 Threat Model

Our objective is to build a machine learning based detection system that can
identify and detect stealthy Cobalt Strike C&C activity from encrypted network
tra�c in near real-time. We assume the following:

� The system has already been infected with a Cobalt Strike Beacon and that
the initial infection has not been detected by IDS/IPS.

� The Cobalt Strike Beacon initiates the communications with the C&C server
after completing the download of the Beacon payload.

� The attackers use encryption and customized Cobalt Strike Malleable C&C
pro�les to mimic legitimate tra�c and evade detection. Consequently, the
C&C packets exchanged do not have any �xed pattern.

3.2 Flow Based Features

In order to detect Cobalt Strike C&C tra�c amongst legitimate tra�c, we have
used the tra�c analysis software Zeek [13] to extract the network indicators of
the individual �ows or connections. Zeek produces a record for each connection
that has occurred with a system in the log �le conn.log in real-time, but it can
also be used to analyze packet captures and output the connections within. While
a connection is usually associated with the TCP protocol, Zeek can also track
stateless protocols like UDP. The �ow-related features that have been selected
from the Zeek output are the following:
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� id.orig_h: string. IP address of the host that initiated the connection.
� id.orig_p: integer. Port used by the host that initiated the connection.
� id.resp.h: string. IP address of the host that received the connection.
� id.resp.p: integer. Port used by the host that received the connection.
� proto: string. Transport layer protocol of the connection (TCP, UDP, ICMP).
� service: string. Identi�cation of an application protocol sent over the con-
nection (DNS, HTTP, HTTPS. . . ).

� duration: double. Total duration of the connection.
� orig_bytes: integer. Payload bytes that the originator of the connection
sent.

� resp_bytes: integer. Payload bytes that the responder sent.
� conn_state: string. State of the connection, some typical values include
SHR (responder sent SYN ACK followed by SYN) and S0 (connection at-
tempt seen).

� history: string. Records the state history of connections as a string of letters.
� orig_pkts: integer. Number of packets that the originator sent during the
connection.

� orig_ip_bytes: integer. Number of IP level bytes that the originator sent
during the connection.

� resp_pkts: integer. Number of packets that the responder sent during the
connection.

� resp_ip_bytes: integer. Number of IP level bytes that the responder sent
during the connection.

Features such as the IP addresses and ports of the sender and the receiver
of the connection will be used to identify the connections, but cannot be used
in the detection process. Other features such as the protocol, duration of the
connection, packets and bytes exchanged will be used by the machine learning
model to make the predictions on the tra�c, based on the analysis of the Cobalt
Strike C&C tra�c.

3.3 Machine Learning Models

In order to select the machine learning algorithms that will be used to develop the
model, it will be necessary to assess which algorithms best tackle the problem
at hand. Since the goal of the model is to make predictions on the network
tra�c to determine if a system has been infected with a Cobalt Strike Beacon,
we can identify it as a binary classi�cation problem. However, since a system
being infected with Cobalt Strike is considered an abnormal event due to its rare
occurrence probability, it can also be identi�ed as an anomaly detection problem,
even if the Beacon tra�c features do not di�er signi�cantly from the legitimate
tra�c, as its purpose it to disguise itself as such. The training dataset records will
be labeled, thus both supervised and unsupervised anomaly detection analysis
can be performed. However, as we will observe, the unsupervised model will
obtain worse results due to the similarity in feature values that the Beacon and
the legitimate tra�c have.
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The following machine learning algorithms will be evaluated to generate the
model: random forest, arti�cial neural network, support vector machine and
naïve Bayes for the supervised model, and K-Means clustering algorithm for the
unsupervised model.

3.4 Evaluation Metrics

A variety of metrics will be used to objectively evaluate the di�erent machine
learning algorithms that will be used to generate the model that will make
predictions on network tra�c to discover if a system has been infected with a
Cobalt Strike Beacon.

A confusion matrix is a table commonly used to describe the performance of a
machine learning model when performing classi�cation tasks over a test dataset
whose labels (or classes) are known. It does so by establishing a relationship
between the real label of a record and the predicted label of the same record,
thus graphically exposing the number of records that have been correctly and
incorrectly classi�ed.

Independently of the number of labels in the dataset, the confusion matrix
outputs four values for each label. For a speci�c label, the number of true posi-
tives (TP) is the number of records corresponding to that label that have been
correctly classi�ed as such. The number of false negatives (FN) is the number of
records corresponding to the label that have been misclassi�ed as belonging to
other labels. The number of false positives (FP) indicates the number of records
belonging to di�erent labels that have been misclassi�ed as belonging to the
chosen label. Last, the number of true negatives (TN) is the number of records
that have been correctly classi�ed as belonging to other labels. In the case of
our paper, the positive label will refer to the Beacon tra�c, while the legitimate
tra�c will be labeled as negative.

Using the output of the confusion matrix, it is possible to calculate the fol-
lowing metrics to evaluate the machine learning algorithms:

� Accuracy: Ratio between the number of correct predictions and the to-
tal number of predictions made. It is the best indicator of the algorithm's
performance only if the dataset has the same number of records for each
class.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

� Precision: The precision is the ratio between the number of correct pre-
dictions for a class and the total number of predictions of said class. The
weighted precision is used to evaluate the model for all classes, calculating a
weighted average depending on the probability of occurrence of each class.

Precision =
TP

TP + FP
(2)

� Recall or True Positive Rate (TPR): Proportion of positive records
correctly classi�ed as such compared to the total number of positive records.
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It can be considered a percentage. Similarly to the precision, we will consider
the weighted recall for all the labels.

TPR =
TP

TP + FN
(3)

� False Positive Rate (FPR): Proportion of negative records incorrectly
classi�ed as positive records, with respect to all negative records. It can be
considered a percentage.

FPR =
FP

FP + TN
(4)

� F1 score: Measures the performance of a model by considering both its
precision as well as its robustness. To do so, it uses the Precision and Recall
values.

F1 = 2 · Precision ·Recall

Precision+Recall
(5)

When evaluating the model certain evaluation metrics will have more impor-
tance than others. That will be the case of the true positive rate or TPR, which
will indicate the model's ability to correctly detect the Beacon tra�c. The false
positive rate or FPR will be used to evaluate the adequacy of the model to be
deployed in a real environment, as most of the network tra�c that an intrusion
detection system analyzes is legitimate, a low rate of false alarms is required for
its deployment. For example, if a detection system is deployed in a real environ-
ment that will potentially see hundreds of thousands to millions of connections,
a high false positive rate will cause disruptions in the legitimate activity of the
users of the network, as tens of thousands of legitimate connections will be de-
tected as malicious. Finally, the F1 score will provide overall information about
the model's accuracy and robustness.

4 Empirical Validation

4.1 Dataset Acquisition

The machine learning based detection requires a training dataset to develop the
machine learning model and a testing dataset to evaluate the performance of the
model. Both datasets contain legitimate tra�c and Cobalt Strike C&C tra�c,
so that the model is developed and evaluated using tra�c that is closely related
with the tra�c that would be found in a real life environment.

The legitimate tra�c has been obtained from the popular cybersecurity
dataset CICIDS17 [14] of the Canadian Institute of Cybersecurity and the public
CTU-Normal-20 dataset [15] of the Stratosphere Research Laboratory. For the
training dataset, we have generated and collected 31 Cobalt Strike C&C packet
captures (PCAP) in our lab environment using di�erent Malleable C&C pro�les
that emulate advanced penetration threats (APT), crimeware, normal tra�c, or
generated using randomizers such as [16]. The use of di�erent Malleable C&C
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pro�les and commands reduces the possibility of over�tting the model to a spe-
ci�c pro�le, thus enabling the machine learning models to perform better in
the presence of previously unseen real world Cobalt Strike tra�c. The testing
dataset, on the other hand, has been generated using 25 captured traces of real
world cyberattacks that include Cobalt Strike C&C tra�c from malware-tra�c-
analysis.net [17]. All the Cobalt Strike tra�c in these traces has been manually
labeled by cybersecurity teams, which enables us to measure the performance of
our machine learning based detection.

Each record and its features in the dataset corresponds to an individual �ow
or connection in the network, which has been extracted from the acquired tra�c
using the network analysis tool Zeek. Each record has been labeled using an
additional feature, label, which will take two values: 1 if the record corresponds
to Cobalt Strike Beacon tra�c, and 0 if the record corresponds to other types of
tra�c (legitimate or unknown, this is due to some of the test captures containing
malicious tra�c generated from other malware).

Table 1. Dataset Content

Cobalt Strike (HTTP) Cobalt Strike (HTTPS) Legitimate HTTPS

Training dataset 5,500 records 4,000 records 391,500 records

Testing dataset 450 records 3,150 records 10,800 records

Table 1 shows the resulting record distribution of the datasets for each of
the labels. Given that Cobalt Strike C&C tra�c is very rare in real world, we
deliberately build the training dataset with signi�cantly more legitimate tra�c
records than Beacon tra�c records. Such a training dataset not only enable the
machine learning model to detect Cobalt Strike activities in real world scenarios,
but also helps reduce potential detection false positives generated by the model.
The percentage of Beacon records, which is around 2% of all the records in
the training dataset, is a lower than average percentage for most cybersecurity
datasets, but it is enough for most models to be able to detect the Beacon tra�c
generated using di�erent Malleable C&C pro�les and also correctly identify the
legitimate tra�c producing a low rate of false alarms.

4.2 Flow Based Machine Learning Detection

First, we selected the features from the raw dataset that will be used in the
detection of the network tra�c. Each record belonging to the dataset has 14
features out of which four of those features (src_ip, src_p, dst_ip and dst_p)
will only be used for identi�cation purposes. The IP addresses and ports used
in the connection communications will not be used to detect the Beacon tra�c,
as they are network indicators that can easily be changed by the attacker, thus
evading the detection system.

Since the machine learning model will focus on the detection of HTTP/S
Beacons, which use the TCP protocol in the transport layer, the proto and
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service features will be key in the identi�cation of the Beacon tra�c. The state
of the connection feature, conn_state, will not be selected because it will not
help in the identi�cation of the Beacon tra�c, since it only identi�es if the
connection has correctly �nished or not and most if not all the records in the
dataset have the same value for the connection. On the contrary, the duration
of the connection will not be used in the detection of the Beacon tra�c because
it can vary due to external factors such as network latency and packet drops
regardless of the type of tra�c.

The history feature, extracted by Zeek, records the �history� of the transac-
tions in the connection such as the type of packets that were transmitted, the
order in which the packets were sent, and who send the packets by using letters.
Therefore, based on the analysis of the Beacon tra�c performed in previous
sections, we can assume that the history feature will have similar values for the
connections made by the Beacon tra�c, as it always follows the same general
schema of communications. The selection of the rest of the features (orig_bytes,
resp_bytes, orig_pkts, orig_ip_bytes, resp_pkts, resp_ip_bytes) will be done
alongside the evaluation of the model, depending on how they a�ect the perfor-
mance of the model.

Since several features selected contain categorical data � proto, service and
history more precisely � it will be necessary to perform feature encoding to
transform their values to numerical data. To do so, we transformed the features'
values from string to integer by assigning an integer value to each distinct string
value according to the frequency of appearance of the value and generating an
additional feature with �_index� in the name. If a string value appears for the
�rst time in the testing dataset, it will be assigned the same value as the least
frequent value.

The hyperparameter tuning phase has been performed using the results from
the machine learning model evaluation for their respective algorithms. However,
all the tested values for the tuning phase will not be explained, since most
experiments regarding the hyperparameter tuning phase give the reader little
information, as they consist in manual changes to the hyperparameter values
which improve the performance of the models by less than 1% on most occasions.

The random forest model has been generated using proto_index, service_index,
history_index, orig_bytes, resp_bytes, orig_pkts, orig_ip_bytes and resp_pkts

as input features, and the hyperparameters values of a maximum depth of 15 and
30 trees created. As we can observe, the random forest model achieves a mod-
erately good detection rate (around 50%) and a low false alarm rate of 1.4%.
On the other hand, the neural network model achieves poor detection results
with a 3% detection rate but a low false alarm rate of 0.3%. The neural network
model has been built using a four-layer structure, using two hidden layers with 18
nodes each, taking the 9 selected features as inputs (proto_index, service_index,
history_index, orig_bytes, resp_bytes, orig_pkts, orig_ip_bytes, resp_pkts and
resp_ip_bytes) and utilizes the L-BFGS solver.

The naïve Bayes model and the linear support vector machine achieve higher
detection rate than the random forest, at the expense of the false positive
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Fig. 3. Comparison of the performance of the machine learning models

rate. The naïve Bayes model takes proto_index, service_index, history_index,
orig_bytes and orig_pkts as input features and using a multinomial model.
While obtaining a high true positive rate at 84%, it does not serve a real in-
trusion detection system due to having a 13% false positive rate. Similarly, the
linear support vector uses three input features proto_index, service_index, his-
tory_index and an aggregation depth of 4 achieving a 100% detection rate but
misclassifying 56% of the legitimate tra�c. Finally, the unsupervised clustering
machine learning model K-means attempts to group the Beacon and legitimate
tra�c in two separate clusters using the same input features as the linear sup-
port vector machine model, but ultimately fails to do so, obtaining a 0.4% true
positive rate and a 12% false negative rate.

Fig. 4. Confusion Matrix of the Random Forest Model
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As shown in Figure 3, the random forest and naïve Bayes models perform
better than the rest of the models if we consider the F1 score, which considers
both the precision and the recall of the models. While the naïve Bayes model
achieves a higher F1 score of 86.6% because it detects the Beacon tra�c with
more accuracy, its high false alarm rate (13%) does not allow its deployment in a
real environment that will see a really high percentage of legitimate connections.
The random forest model, while having a lower F1 score of 82.4% and having
more di�culty detecting Beacon tra�c, makes for a better intrusion detection
system due to having a false positive rate of 1.4%, as it will produce ten times
less false alarms than the naïve Bayes model.

Figure 4 shows the confusion matrix of the random forest model when tested
against real tra�c from Cobalt Strike attacks that include HTTP and HTTPS
Beacon tra�c, normal tra�c, and malicious tra�c from other malware sources.
Since the focus of this work is to detect Cobalt Strike C&C tra�c, the malicious
tra�c from other sources has been labeled as legitimate.

5 Related Works

Machine learning techniques (e.g., decision trees, neural network) have a long
history of being used in constructing Intrusion Detection Systems (IDS) [18�
23]. Recent machine learning based IDS approaches have been shown to have
good accuracy and acceptable e�ciency in detecting/classifying attacks in the
public datasets (e.g., UNSW-NB15, CICIDS17). Yet, machine learning based ap-
proaches have achieved far less success in real world intrusion detection than in
other areas such as speech recognition. R. Sommer et al. [24] examined the fun-
damental di�erences between the network intrusion detection problem and those
problems where machine learning regularly �nds much more success, and argued
that it is signi�cantly harder to apply machine learning techniques e�ectively in
intrusion detection.

Most proposed machine learning based IDS approaches have focused on de-
tecting known exploits rather than stealthy C&C activities from encrypted traf-
�c. Gardiner et al. [25] examined evasion techniques against machine learning
based detection, and pointed out that many existing machine learning based
C&C detection approaches are vulnerable to evasion.

Despite Cobalt Strike C&C has been used in almost all massive breaches [5],
there are very few published results on how to detect Cobalt Strike C&C tra�c.
Navarrete et al. from Palo Alto performed an extensive analysis on the Cobalt
Strike C&C tra�c encoding [26] and encryption [27] of the payload as well as the
Malleable C&C pro�les [28], and explained why such versatility makes Cobalt
Strike C&C di�cult to detect.

B. Vennyk [5] suggested using beaconing characteristics to detect Cobalt
Strike C&C communication without any empirical validation result. In addition,
it did not consider the data jitter and the sleep jitter that the attackers can
con�gure to signi�cantly change the beaconing pattern.
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N. Kanzig et al. [29] proposed a machine learning based approach to iden-
tify C&C channels using features extracted by CICFlowMeter. While they have
shown that their random forest classi�er can detect their lab generated Cobalt
Strike C&C tra�c, their work does not demonstrate if their classi�er can detect
any real world Cobalt Strike C&C tra�c captured from real world attacks. In
addition, they have not considered the data jitter that can be introduced into
the server responses which would impact the packet �ow features.

Van der Eijk et al. [30] proposed a threshold based approach detect Cobalt
Strike C&C tra�c. The proposed method was able to detect the Cobalt Strike
C&C tra�c generated with a few Malleable pro�les in their lab environment.

In summary, all previous machine learning based Cobalt Strike C&C detec-
tion approaches used lab generated Cobalt Strike tra�c with very few Malleable
pro�les, and none of them have been validated with real world Cobalt Strike
C&C tra�c. In contrast, our machine learning based detection has been trained
with 31 di�erent Malleable pro�les of Cobalt Strike C&C and validated with
Cobalt Strike C&C tra�c captured from real world cyberattacks.

6 Conclusions

Given the wide spread use of Cobalt Strike C&C in recent massive data breach
attacks and ransomware attacks, it is critically important to be able to detect
the stealthy Cobalt Strike C&C tra�c in order to e�ectively mitigate the these
stealthy and damaging cyberattacks.

In this paper, we propose using �ow based features to detect Cobalt Strike
Beacon C&C tra�c, and evaluate �ve machine learning algorithms to develop
a model that can detect the Beacon tra�c. To the best of our knowledge, our
machine learning based detection is the �rst to be validated using Cobalt Strike
C&C tra�c captured from real world cyberattacks. Our experimental results
show that it is feasible to detect real world, previously unseen Cobalt Strike
C&C tra�c with a reasonable true positive rate and low false alarm rate at the
same time.

For future work, we plan to look for more e�ective machine features for
detecting stealthy Cobalt Strike C&C tra�c, and investigate how to improve
the detection true positive rate and reduce the false positive rate at the same
time by combining di�erent machine learning models.
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