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Abstract—In the past few years, massive data breach attacks
on large organizations (e.g., Anthem Inc., Equifax) have com-
promised sensitive data of tens or even hundreds of millions of
people. The 2017 Equifax data breach attack has compromised
sensitive data of 148 million people and has costed Equifax $1.4
billion as of May 2019. Unfortunately the average time to detect,
contain a data breach was 206 days and 73 days respectively in
2019. There is a pressing need to develop practical and deployable
capability to detect and block previously unseen, application
specific cyberattacks on vulnerable binary applications in real-
time.

In this paper, we present AppImmu, a practical cyber defense
system that can detect and block previously unknown cyber-
attacks on vulnerable binary applications in real-time with no
false positive. Given a potentially vulnerable ELF binary appli-
cation , AppImmu can transparently and statically immunize
it into an immunized version via binary rewriting. At run-
time, AppImmu uses kernel level immunization based anomaly
detection techniques to detect and block previously unknown
cyberattacks on immunized binary applications without any prior
knowledge of the attacks. We have successfully immunized real
world large binary applications such as Apache Java execution
environment, bash shell, Snort in Linux and have successfully
detected and blocked real world data breach attacks (e.g., Apache
Strut exploit used in 2017 Equifax data breach attack, Shellshock
exploit) in true real-time. Our benchmark experiments show that
AppImmu incurs less than 6% run-time overhead in overall
system performance, 2.1% run-time overhead for applications
under typical workload.

Index Terms—Intrusion Detection and Prevention, Application
Immunization, Real-Time Attack Detection.

I. INTRODUCTION

In the past few years, we have witnessed a number of
massive data breach attacks [1] on various businesses and
organizations (e.g., Target, OPM, JP Morgan Chase, Anthem
Inc., Equifax) that have impacted tens or even hundreds of
millions of people. Specifically, the 2015 Office of Personnel
Management data breach has compromised not only personal
data (e.g., SSN) of 21.5 million former and current government
employees and contractors but also 5.6 million fingerprints[2].
The 2017 Equifax data breach attack has compromised sensi-
tive data (e.g., SSN) of 148 million people. These massive data
breach attacks resulted not only massive identity theft but also
prohibitive loss to the business. According to the 2019 Cost
of a Data Breach Report[3], the average cost of massive data
breach of 50 million records is $388 million. Specifically, the
cost of the 2017 Equifax data breach has reached $1.4 billion
as of May 2019 [4].

Unfortunately, existing cyber defense mechanisms (e.g.,
firewall, authentication, IDS (intrusion detection system), IPS
(intrusion prevention system), anti-malware) and procedures
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have been shown to be ineffective in protecting mission critical
systems and sensitive data from increasingly sophisticated
cyberatacks. Specifically, currently deployed cyber defense
lacks the real-time detection and blocking capability against
previously unknown, application specific cyberattacks on vul-
nerably binary applications. Such a deficiency in cyber defense
allowed perpetrators to not only infiltrate and compromise
mission critical systems, but also keep secret control of the
compromised system and exfiltrate critical information for
months before being detected and stopped. An independent
study sponsored by IBM Security[3] shows that the average
time to detect a data breach was 206 days and the average
time to contain a data breach was 73 days in 2019.

Real-time detection and blocking of sophisticated cyberat-
tacks are technically challenging as many cyberattacks exploit
application specific vulnerabilities in applications. For exam-
ple, the 2017 Equifax massive data breach attack exploited
the Apache Struts vulnerability CVE-2017-5638 [5], [6] inside
the Jakarta Multipart parser. It is impossible for any cyber
defense system to have the application specific knowledge
of all applications. Furthermore, the perpetrators could use
polymorphism to disguise their application specific exploits.
According to the Symantec Internet Security Threat Report
Volume 24 [7], there were 669 millions new malware variants
found in 2017 alone. That means on average over 1.83 million
new variants appeared every day. Neither signature based nor
machine learning based cyber defense approaches can keep up
with over one million new malware variants per day!

In this paper, we present AppImmu, a practical cyber de-
fense system that can detect and block previously unknown
cyberattacks in real-time without any prior knowledge of
the cyberattacks. Unlike existing cyber defense systems, Ap-
pImmu is built upon a novel combination of static binary
instrumentation and run-time kernel level anomaly detection
technique. The AppImmu immunization tool can transparently
“immunize” potentially vulnerable binary applications such
that the AppImmu run-time infrastructure can detect and block
many previously unknown, otherwise working exploits on the
immunized applications in real-time. Specifically, AppImmu
uses dynamically generated, secret mark to tag all invocations
of certain type of critical actions (e.g., system call) of the
immunized binary applications at run-time. Consequently, all
the critical actions invoked by the immunized code are tagged
with the correct mark, any critical action invoked without the
correct mark is illegal in that it must be from some attack
rather than the properly immunized binary application. This
enables AppImmu to effectively and efficiently detect and
block attacker’s illegal invocations of the critical actions with
no false positive.

We have successfully immunized real world binary appli-
cations (e.g., the Apache Java execution environment, Bash



2

shell), and have empirically validated AppImmu’s effective-
ness with real world exploits (e.g., CVE-2014-6271, CVE-
2017-5638, CVE-2019-17558). AppImmu is able to detect and
block those real world exploits on the immunized binary appli-
cation in real time. To the best of our knowledge, AppImmu
is the first cyber defense system that can detect and block
the CVE-2017-5638 Apache Struts exploit used in the 2017
Equifax massive data breach attack in true real-time without
using any prior knowledge of the exploit. Our benchmark
evaluation shows that AppImmu incurs less than 2.1% run-
time overhead to applications under typical workload .

In this paper, we make the following contributions:
• A generic immunization framework for binary ap-

plications. We have developed and implemented the
AppImmu tool that can transparently immunize ELF
binary executables while keeping the original semantics
of the binary applications. Our AppImmu immunization
tool can automatically immunize proprietary ELF binary
applications that have no symbol information.

• An efficient and effective kernel level anomaly de-
tection and blocking capability. We have developed
and implemented the kernel level AppImmu infrastructure
that works closely with the immunized binary applica-
tions at run-time. By using dynamically generated random
mark, AppImmu is able to detect and block previously
unknown cyberattacks on immunized binary applications
in real-time with no false positive.

• Empirically validated protection of wide range of vul-
nerable binary applications. Our empirical evaluation
with real world exploits has confirmed that AppImmu
is able to protect real world applications (e.g., Bash
shell, Snort, Apache server) from previously unknown
cyberattacks with no more than 6% run-time overhead.

The rest of this paper is organized as follows. Section
II provides functional overview of AppImmu. Section III
describes how binary software can be transparently immu-
nized. Section IV evaluates the effectiveness and efficiency of
AppImmu. Section V describes related work. Finally, section
VI concludes the paper.

II. FUNCTIONAL OVERVIEW

A. Threat Model and Assumptions

We assume the to-be-protected binary software: 1) is not
self modifying and contains no deliberate obfuscation; 2) can
be either open source or commercial off-the-shelf (COTS)
binaries with symbol information stripped; 3) may have known
or unknown security vulnerabilities. We assume the target
system has a clean start in that all the binary applications,
libraries and the underlying operating system are benign in that
they contain neither malware nor planted backdoor initially.
Specifically, the operating system kernel in the target system
is assumed trustworthy when it boots up.

When the adversary exploits the vulnerable binary appli-
cation, he can inject and execute arbitrary code, read/write
arbitrary content from/to those memory locations allowed by
the vulnerable binary application and the underlying operating
system.

These assumptions are reasonable as any mission critical
system will be scrutinized to make sure only trusted software
will be installed and any granted access will follow the
principle of least privilege. Insider threat (e.g., the adversary
has been granted privileged access to the target system at the
beginning) and supply chain attack are beyond the scope of
this work.

B. AppImmu Overview

The primary objective of AppImmu is to protect poten-
tially vulnerable binary applications from various cyberatacks
without any prior knowledge of the exploits. Specifically,
AppImmu is designed to detect and block cyberattacks on
“immunized” binary applications in real-time with virtually
no false positive.

Traditional intrusion detection and anti-malware systems are
not effective against previously unknown attacks (e.g., zero
day attacks) due to their dependency on the incomplete knowl-
edge (e.g., signature) of attacks. In order to detect previously
unknown attacks, we build AppImmu upon novel anomaly
detection techniques. Specifically, we “immunize” the given
binary software such that every invocation of certain critical
action (e.g., system call) by the given software binary will
be tagged with some unique, dynamically generated random
mark at run-time. Since no attacker knows the dynamically
generated random mark, no attacker can invoke the critical
action (e.g., system call) with the correct mark. This enables
AppImmu to effectively and efficiently detect attacker’s illegal
invocation of the critical action by checking if the critical
action has the correct mark at run-time.

If each run-time invocation of the critical action by the
immunized software binary has been properly tagged with
the correct random mark, then any run-time critical action
without the correct mark must be invoked by something else
(i.e., malware) rather than the immunized software binary. In
other words, whenever AppImmu sees the immunized software
binary invokes any critical action without the correct mark at
run-time, there must be some attack. Therefore, AppImmu can
detect previously unknown attacks on the immunized software
binary with no false positive.

AppImmu system consists of two collaborating components:
1) AppImmu software immunization tool; and 2) AppImmu
run-time infrastructure as shown in Figure 1 and Figure
2 respectively. The AppImmu software immunization tool
transparently immunizes a given (potentially vulnerable) soft-
ware binary into an immunized and semantically equivalent
software binary offline. Any software binary just needs to be
immunized once before it can be protected at run-time, and
the updated version of software binary needs to be immunized
again. The AppImmu software immunization tool is designed
to immunize both binary executables and binary libraries.

The AppImmu run-time infrastructure provides run-time
protection to the immunized software running upon it by
1) generating a random mark for each process/thread of
the immunized software; 2) tagging each invocation of the
chosen type of critical actions of each process/thread of the
immunized software with the random mark; 3) checking each
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Fig. 1. AppImmu Software Immunization Tool

Fig. 2. AppImmu Run-time Infrastructure

invocation of each type of the chosen critical actions of
immunized software for the correct mark. Since a random
mark is dynamically generated for each process/thread at run-
time, the same application will have a different run-time mark
each time it is executed. This makes it very difficult for the
adversary to learn the exact value of the random mark.

III. IMMUNIZING SOFTWARE BINARIES

In this section, we describe the design and implementation
of AppImmu software immunization tool for ELF binaries
that include both ELF executables and ELF libraries, and we
process ELF executable and ELF shared library separately.

A. Instrumenting ELF Executable

Since an ELF binary may have code and data that are ex-
pected to be at specific locations, we want to keep the existing
ELF code and data at their original locations as much as
possible. Specifically, we choose to place our instrumentation
code in a new text section we create, and we only instrument
the callsites and the start of the called functions. By keeping
functions at their original locations, we avoid complications
caused by indirect function calls (e.g., call *%eax) where
the address of the called function is determined at run-time.

Given a Linux ELF executable, AppImmu software immu-
nization tool transparently injects instrumentation code to the
ELF executable such that every system call invoked from the
instrumented ELF binary will be tagged with a dynamically
generated random mark. Specifically, before the immunized
ELF executable starts to run, the AppImmu infrastructure in
the Linux kernel generates a random mark X and places it in
a specific location of the running stack of the newly created
process. Once the immunized ELF executable has obtained the
dynamically generated mark X , it passes the random mark
X to every function it calls, and each called function further

Fig. 3. Coordinated Update of c_mark and cover by Function Caller and
Called Function

passes mark X to every function it calls. When the system
call invoking function inside the run-time library is called, it
tags the system call invocation with the passed mark X .

Instead of using run-time stack, we choose to use TLS
(thread local storage) to pass the random mark X from the
caller to the called function. Specifically, we use three TLS
variables: rand, cover and c_mark to pass the random
mark X from the function caller to the called function where
rand is a random number generated at run-time, cover is the
random cover derived from rand and c_mark is the covered
mark: cover ⊕X . Using such three TLS variables enables us
to transparently pass the random mark X to called functions
without interfering existing function parameter passing in both
32-bit and 64-bit Linux environments. Since every thread has
its own TLS, passing the random mark via TLS will support
multiple threading.

1) Passing Random Mark X from the Function Caller to the
Called Function: When the instrumented ELF binary starts to
execute, it first obtains the random mark X from some specific
stack location and overwrites that specific stack location with
zero, then generates a random number r and initializes cover
← r; c_mark← r⊕X; rand← r. Therefore, X = c_mark
⊕ cover when the instrumented ELF binary starts to run.
This is the invariant we want to keep for every legitimate
function call. Such a invariant is achieved by coordinating the
function caller and the called function to update c_mark and
cover separately. Figure 3 shows the coordinated update of
c_mark and cover by the function caller and the called
function. Specifically, the function caller 1) generates some
random number r and updates c_mark with c_mark ⊕r;
and 2) saves r to rand to be used by the called function.
The called function 1) reads rand and updates cover with
cover ⊕ rand; then 2) overwrites rand with some random
value so that no one else will be able to get the original value
of cover. After c_mark and cover have been updated by
the function caller and the called function respectively, the
invariant X = c_mark ⊕ cover holds. Eventually the system
call invoking functions inside the run-time library can obtain
the hidden random mark X via c_mark ⊕ cover, and it
can tag the system call invocation by using the unused part of
%rax or %eax.

Letting the function caller and the called function to update
c_mark and cover respectively creates some desirable bond
between the instrumented caller and the instrumented callee.
In case some attack code calls some instrumented function
without updating c_mark and rand as expected, the instru-
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mented callee will update cover with some random value in
rand. This will make c_mark ⊕ cover 6= X . Similarly, if
the instrumented function somehow calls uninstrumented code
(e.g., attack code) which does not update cover as expected,
it will make c_mark ⊕ cover 6= X . Both cases will eventu-
ally result some system call or other critical action tagged with
the wrong mark, which will be immediately detected by the
AppImmu infrastructure. Therefore, our random mark passing
scheme makes it difficult for the attacker to reuse instrumented
code or execute attack code.

2) Immunizing ELF Binary Executable: Give an ELF bi-
nary executable, AppImmu software immunization tool first
uses the compiler-agnostic function detection method [8] to
identify the function callsites (i.e., location of legitimate
function call instruction) and the starting address of functions.
It then instruments the given ELF binary as illustrated by Table
I.

AppImmu software immunization tool replaces the 5-
byte instruction call bar at callsite i inside function
foo with the 5-byte unconditional jump instruction jmp
foo_callStub. The call stub function foo_callStub
will jump back to the next instruction at postcall i inside
function foo after updating rand and c_mark. In addition,
AppImmu software immunization tool replaces the first few
instructions of function bar with a 5-byte unconditional jump
instruction jmp bar_startStub. The function start stub
bar_startStub will 1) update cover with rand and
overwrite rand with some random value; 2) execute the
first few instructions that were at the beginning of function
bar whose space was taken by the 5-byte jump instruc-
tion jmp bar_startStub; and 3) jump back to location
poststart_bar.

Note, Table I only shows the handling of the most common
cases of function calls in ELF binary. Instrumentation of
short function calls (e.g., call %eax) requires moving extra
instructions adjacent to the callsite to foo_callStub in
order to make room for the 5-byte unconditional jump at
callsite_i.

IV. EMPIRICAL EVALUATIONS

We have empirically evaluated AppImmu with real world
applications, real world exploits and three popular benchmark
suites on one old machine with a quad-core 2.3 GHz Intel
Core i7 CPU, 4GB RAM running 32-bit kernel 2.6.32.20 and
one new machine with a quad-core 1.7 ∼ 4.4 GHz Intel Core
i5-10310U CPU, 16GB RAM running 64-bit kernel 5.10.

A. Attack Detection and Prevention

To evaluate the effectiveness of AppImmu in detecting and
blocking previously unknown attacks, we have chosen the
following real world exploits on some of the most popular
applications:

1) Exploit of the CVE-2017-5638 vulnerability in Apache
Struts – an open source web application framework for
developing Java EE web applications. This is the exact
exploit used in the 2017 Equifax massive data breach that
has compromised sensitive data of 148 million people and

TABLE I
INSTRUMENTING FUNCTION CALLS AND CALLED FUNCTIONS

Original Binary Code
foo: bar:
. . . push %rbp
callsite i: call bar mov %rsp, %rbp
postcall i: bar insns
. . . poststart bar:

. . .
Instrumented Binary Code

foo: bar:
. . . jmp bar startStub
callsite i: jmp foo callStub poststart bar:
postcall i: . . .
. . .

Injected Instrumentation Code
foo callStub: bar startStub:

rand ← random number cover ← cover ⊕ rand
c mark ← c mark ⊕ rand rand ← random number
call bar push %rbp
jmp postcall i mov %rsp, %rbp

bar insns
jmp poststart bar

has costed Equifax $1.4 billion as of May 2019. Accord-
ing to CISA’s Top 10 Routinely Exploited Vulnerabilities
[9], the Apache Struts vulnerability (CVE-2017-5638) is
the third most exploited vulnerability during 2016–2019.

2) Exploit of the Shellshock (CVE-2014-6271) vulnerability
in Apache server with CGI using Bash shell. Bash is the
most popular shell in Linux and other Unix-like operating
systems.

3) Exploit of Snort 2.6.1 DCE/RPC Preprocessor Remote
Buffer Overflow that allows remote attackers to gain
remote shell. Snort is the top free network intrusion
detection system (NIDS) according to [10].

In our experiments, we have immunized the Java 8 execution
environment which itself is an ELF executable, the Bash shell
and the Snort executable. Note, even though the applications
used in the experiments are open source, we treat them as
binary applications and have stripped the symbol information
from the ELF executables before we immunize the binary
executables. AppImmu infrastructure is able to detect and
block each of the above four exploits against corresponding
immunized applications in real-time

To the best of our knowledge, there is no publicly known
existing method that can detect the exploit of the Apache Struts
vulnerability CVE-2017-5638 in real-time. Our AppImmu
infrastructure can not only detect but also block the Apache
Struts CVE-2017-5638 exploit in true real-time. In addition,
it can automatically identify the TCP network flow used by
the attacker. Such network flow actually points to the machine
used by the attacker to gain the reverse shell!

We have experimented with an advanced exploit of the
Apache Struts vulnerability CVE-2017-5638 that gives at-
tacker a remoted shell at the machine of specified IP address.
Figure 4(a) shows the reverse shell at machine of IP address
172.16.173.187. It also shows the result of command “ps
–aef—grep tomcat” in the established reverse shell. Process
5353 is the reverse shell launched by the exploit, process
5355 executes command “ps –aef” and process 5356 executes



5

(a) Reverse Shell Established by the CVE-2017-5638 Exploit (b) Real-Time Detection of the CVE-2017-5638 Exploit with Attack Flow Information

Fig. 4. Real-Time Detection of Exploit of Apache Struts CVE-2017-5638 Vulnerability

commands “grep tomcat”.
Figure 4(b) shows the real-time detection of the exploit

of Apache Struts CVE-2017-5638 vulnerability. The 3 left
AppImmu message boxes show that AppImmu infrastruture
has identified not only those offending processes 5353, 5355
and 5356 that triggered illegal (untagged) system call, but
also the TCP network flow used by the reverse shell. It
clearly shows that the attacker used machine of IP address
172.16.173.187 to gain the remote shell. All such attack
information have been collected the same time when the attack
has been detected in real-time.

During the experiments with these real world exploits
(CVE-2006-5276, CVE-2014-6271, CVE-2017-5638, CVE-
2019-17558), AppImmu has never used any prior knowledge
of these exploits to detect and block them in real-time. We
expect AppImmu to be able to detect and block many other
real world exploits – including previously unknown exploits
in real-time.

B. Runtime Performance Overheads

To measure run-time performance overhead of AppImmu,
we have used the original 64-bit kernel 5.10, the original
GNU libraries 2.17. To measure the run-time performance
overhead of AppImmu over the whole operating system, we
have used the instrumented kernels loaded with the AppImmu
infrastructure, and instrumented GNU library with AppImmu
run-time checking all turned on.

To understand how applications would perform in the Ap-
pImmu environment under typical workload, we have used
the latest SPEC CPU 2017 macro benchmarks to measure the
performance overhead of the 64-bit AppImmu infrastructure
with kernel 5.10. Table II shows the SPEC CPU 2017 bench-
mark measurements of 4 copies and 2 iterations. The lowest
overhead is -4.1667% and the highest overhead is 6.0606%.
The overall SPEC CPU 2017 integer rate overhead is 2.0548%.
This indicates that the AppImmu infrastructure incurs very low
run-time performance overhead for applications under typical
real world workload.

TABLE II
APPIMMU RUN-TIME OVERHEAD BY SPEC CPU 2017 BENCHMARKS

SPEC CPU 2017 AppImmu Baseline Overhead
500.perlbench r 17.0 17.80 4.4944%
502.gcc r 17.0 17.0 0.0000%
505.mcf r 12.70 12.40 -2.4194%
520.omnetpp r 7.10 7.00 -1.4286%
523.xalancbmk r 10.30 10.40 0.9615%
525.x264 r 32.40 34.40 5.8140%
531.deepsjeng r 15.00 14.00 -4.1667%
541.leela r 12.40 13.20 6.0606%
548.exchange2 r 24.00 25.10 4.3825%
557.xz r 9.43 9.61 1.8730%
SPECrate 2017 int 14.30 14.60 2.0548%

C. Security Analysis

The security of AppImmu is based on the secrecy of the
random mark dynamically generated at run-time. To increase
the randomness of their locations in TLS, we can divide
the multi-byte TLS variables c_mark, rand, cover into
multiple parts of single byte and randomly allocating the single
byte parts in TLS storage of n ≥ 20 bytes. The attacker can not
obtain the random mark unless he has figured out the exact
location of each byte of those three TLS variables and has
read them in the exact order. Since allocating 12 bytes from
n ≥ 20 bytes TLS storage has n!

(n−12)! ≥
20!
8! > 6× 1013 per-

mutations, the chance for the attacker to happen to figure out
the values of c_mark, rand, cover from the unknown
locations within the 20 bytes TLS storage is exceedingly low
(≈ 1.7× 10−14).

By using dynamically generated random mark to tag every
legitimate invocation of critical actions, AppImmu is able to
detect and block previously unknown cyberattacks in real-time
with no false positive. Since the random mark is unknown to
the adversary, the initiator of sophisticated code reuse attacks
such as ROP [11], JOP [12], COOP [13] and Control Jujutsu
[14] can not provide the correct mark when reusing the code.
This allows AppImmu to detect these code reuse attacks in
real-time.

However, AppImmu may miss detecting certain cyberat-
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tacks that do not trigger illegal critical actions. For example,
AppImmu will not automatically detect the Heartbleed exploit
on the vulnerable OpenSSL library even if the vulnerable
OpenSSL library is immunized by AppImmu. In addition,
AppImmu is not effective against supply chain attack such
as the 2020 SolarWinds hack [15].

V. RELATED WORKS

Randomization based defense The idea of randomiza-
tion has been widely used in many proposed cyber defense
approaches [16], [17], [18], [19], [20], [21], [22], [23]. By
randomizing the memory address of important run-time en-
tities (e.g., stack, heap, pointer), address space randomiza-
tion [16], [19], [20], [23] would cause the attack code to
access the wrong address at run-time. Similarly, Instruction
set randomization [17], [18] causes the attack code to use
the wrong instructions at run-time. System call randomization
[21] randomizes the system call number such that the attack
code would use the wrong system calls at run-time. Existing
randomization based defense approaches 1) tend to make
debugging and diagnostic tasks more difficult as acknowledged
by [21]; 2) would always crash the exploited applications; 3)
can not detect or block exploits (e.g., CVE-2017-5638) on
interpreted (e.g., Java) applications such as Apache Struts. In
contrast, AppImmu does not impact debugging and diagnos-
tics, and it can be configured to allow the exploited application
to continue to run so that we can observe the actions of the
exploit. In addition, AppImmu can detect and block exploit on
interpreted Java applications.

System call based defense Forrest et al. [24] first applied
the idea of immunology to building anomaly detection capabil-
ity based on short sequence of system calls. A number of fol-
lowup works [25], [26], [27] have improved the effectiveness
of the system call sequence based anomaly detection. Instead
of using sequence of system calls, Wang et al. [28] used system
call tagging to eliminate run-time training required by previous
system call sequence based anomaly detection systems [24],
[25], [26], [27]. However, their approach requires the access
of source code and it can not immunize binary applications.
Sysfilter [29] limits the set of system calls an application can
legitimately invoke at run-time thus it prevents attacks from
invoking any system call outside the automatically constructed
set of legitimate and application dependent system calls.

Binary instrumentation and rewriting
Since we only want to immunize our binary application

statically, AppImmu does not use dynamical binary instrumen-
tation/rewriting techniques [30], [31]. Static binary instrumen-
tation [32], [33], [34], [35] and binary rewriting [36], [37],
[38] statically instrument a given binary with desired security
functionality at the binary code level. AppImmu combines
its static binary instrumentation/rewriting with its kernel level
anomaly detection in order to immunize and protect interpreted
binary applications.

Control flow integrity (CFI) Control flow integrity (CFI)
[39], [22], [40], [41], [42], [43], [44] seeks to prevent, detect
control flow hijacking and code-reuse attacks by ensuring
the indirect control flow transfers can only reach legitimate
destinations in the control flow graph (CFG) at run-time.

Under the condition of fully-precise static CFI – the most
restrictive stateless CFI policy, control-flow bending [45] has
illustrated the fundamental challenges in using CFI to protect
stripped binary executables from exploits. It shows that real
world applications could be compromised by exploits without
leaving CFG. For example, the Apache Struts exploit (CVE-
2017-5638) used in the 2017 Equifax data brech attack does
not violate any CFI of the Apache Struts while it tricks
the flawed Jakarta Multipart parser to interpret the crafted
HTTP message content as an Object Graph Navigation Library
(OGNL) expression to launch arbitrary external program (e.g.,
shell /bin/sh). To the best of our knowledge, no existing cyber
defense mechanism has been shown to be able to detect and
block the Apache Struts CVE-2017-5638 exploit in real-time.

Unlike existing CFI based cyber defense, AppImmu does
not try to ensure every indirect control flow transfer is le-
gitimate, but focuses on detecting and blocking illegal crit-
ical actions (e.g., system call, program launching) based on
checking if critical actions have the correct secret mark.
This not only makes AppImm more lightweight, but also
enables AppImmu to catch illegal control flow transfer at the
interpreted language level, and those unintended but legitimate
control flow transfers that are allowed by the program bug
(e.g., CVE-2017-5638).

VI. CONCLUSIONS

In this paper, we have presented the AppImmu cyber
defense system that can transparently immunize and protect
many binary applications, and have demonstrated that (1) it
is feasible to detect and block previously unknown cyberat-
tacks in real-time with no false positive; and (2) transparent
immunization is a promising and practical approach to protect
vulnerable real world binary applications.

Based on a novel combination of binary rewriting and
anomaly detection techniques, AppImmu can transparently
immunize and protect real world binary applications from
real world exploits. Our experiments show that AppImmu can
effectively detect and block the Shellshock (CVE-2014-6271)
exploit and the Apache Struts (CVE-2017-5638) exploit used
in the 2017 Equifax massive data breach attack in real-time.
At run-time, AppImmu imposes less than 2.1% performance
overhead to applications under typical workload.
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