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T he Benchmark Autonomous 
Robot Navigation (BARN) 
Challenge took place at the 2022 
IEEE International Conference  

on Robotics and Automation (ICRA), 
in Philadelphia, PA, USA. The aim of 
the challenge was to evaluate state-of-
the-art autonomous ground navigation 
systems for moving robots through 
highly constrained environments in a 
safe and efficient manner. Specifically, 
the task was to navigate a standardized 
differential drive ground robot from a 
predefined start location to a goal 
location as quickly as possible without 
colliding with any obstacles, both in 
simulation and in the real world. 
Five teams from all over the world 
participated in the qualifying simu
lation competition, three of which were 
invited to compete with one another 
at a set of physical obstacle courses 
at the conference center in Philadelphia. 
The competition results suggest that 
autonomous ground navigation in 
highly constrained spaces, despite 
seeming simple for experienced ro
boticists, is actually far from being 
a  solved problem. In this article, 
we discuss the challenge, the ap
proaches used by the top three winning 
teams, and lessons learned to direct 
future research.

BARN Challenge Overview
Designing autonomous robot naviga-
tion systems has been a topic of interest 
to the robotics community for decades. 

Indeed, there currently exist many such 
systems that allow robots to move from 
one point to another in a collision-free 
manner [e.g., open source implementa-
tions in Robot Operating System (ROS) 
that have extensions to different vehicle 
types], which may create the perception 
that autonomous ground navigation is a 
solved problem. This perception may be 
reinforced by the fact that many mobile 
robot researchers have moved on to 
orthogonal navigation problems 
beyond the traditional metric (geomet-
ric) formulation and that focus only on 
path optimality and obstacle avoidance. 
These orthogonal problems include, 
among others, learning navigation sys-
tems in a data-driven manner, navigat-
ing in off-road and social contexts, and 
multirobot navigation.

However, autonomous mobile robots 
still struggle in many ostensibly simple 
scenarios, especially during real-world 
deployment. For example, even when 
the problem is simply formulated as tra-
ditional metric navigation so that the 
only requirement is to avoid obstacles 
on the way to the goal, robots still often 
get stuck and collide with obstacles 
when trying to navigate in naturally 
cluttered daily households; in con-
strained outdoor structures, including 
narrow walkways and ramps; and in 
congested social spaces, such as class-
rooms, offices, and cafeterias. In such 
scenarios, extensive engineering effort is 
typically required to deploy existing 
approaches, and this requirement pres-
ents a challenge for large-scale unsuper-
vised real-world robot deployment. 
Overcoming this challenge requires sys-

tems that can both successfully and 
efficiently navigate a wide variety of en
vironments with confidence.

The BARN Challenge was a compe-
tition at ICRA 2022, in Philadelphia, 
that aimed to evaluate the capability of 
state-of-the-art navigation systems to 
solve the previously mentioned chal-
lenge, especially in highly constrained 
environments where robots need to 
squeeze between obstacles to navigate 
to the goal. To compete in the BARN 
Challenge, each participating team 
needed to develop an entire software 
stack for navigation for a standardized 
and provided mobile robot. In particu-
lar, the competition provided a Clear-
path Jackal with a 2D 270º field-of-view 
Hokuyo lidar for perception and a dif-
ferential drive system with 2-m/s maxi-
mum speed for actuation. The aim of 
each team was to develop the navigation 
software stack needed to autonomously 
drive the robot from a given starting 
location through a dense obstacle field 
to a given goal and to accomplish this 
task without any collisions with obsta-
cles and any human interventions.

The team whose system could best 
accomplish this task within the least 
amount of time would win the competi-
tion. The BARN Challenge had two 
phases: a qualifying phase evaluated in 
simulation and a final phase evaluated 
in a set of physical obstacle courses. The 
qualifying phase took place before the 
ICRA 2022 conference, using the 
BARN data set, which is composed of 
300 obstacle courses in Gazebo simula-
tion and randomly generated by cellular 
automata. The top three teams from the 
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simulation phase were then invited to 
compete in three different physical 
obstacle courses set up by the organizers 
at ICRA 2022, in the Philadelphia Con-
vention Center. In this article, we report 
on the simulation qualifier and physical 
finals of the BARN Challenge at ICRA 
2022, present the approaches used by 
the top three teams, and discuss lessons 
learned from the challenge that point 
out future research directions to solve 
the problem of autonomous ground 
navigation in highly constrained spaces.

Simulation Qualifier
The BARN Challenge started on 29 
March, two months before the ICRA 
2022 conference, with a standardized 
simulation qualifier. The qualifier used 
the BARN data set, which consists of 
300 5 × 5-m obstacle environments ran-
domly generated by cellular automata 
(see examples in Figure 1), each with a 
predefined start and goal. These obsta-
cle environments range from relatively 
open spaces, where the robot barely 
needs to turn, to highly dense fields, 
where the robot needs to squeeze 
between obstacles with minimal clear-
ance. The BARN environments are 
open to the public and were intended to 
be used by the participating teams to 
develop their navigation stack. Another 
50 unseen environments, which are not 
available to the public, were generated 
to evaluate the teams’ systems. A ran-
dom BARN environment generator was 
also provided to teams so that they 
could generate their own unseen test 
environments (https://github.com/
dperille/jackal-map-creation). 

In addition to the 300 BARN environ-
ments, six baseline approaches were also 
provided for the participants’ reference, 
ranging from classical sampling-based 
and optimization-based navigation sys-
tems to end-to-end machine learning 
methods and hybrid approaches. All 
baselines were implementations of differ-
ent local planners used in conjunction 
with Dijkstra’s search as the global plan-
ner in the ROS move_base navigation 
stack. To facilitate participation, a training 
pipeline capable of running the standard-
ized Jackal robot in the Gazebo simulator 
with ROS Melodic (in Ubuntu 18.04), 
with the option of being containerized in 
Docker and Singularity containers for fast 
and standardized setup and evaluation, 
was also provided (https://github.com/
Daffan/ros_jackal).

Rules
Each participating team was required to 
submit its developed navigation system 
as a (collection of) launchable ROS 
node(s). The challenge utilized a stan-
dardized evaluation pipeline (https://
github.com/Daffan/nav-competition 
-icra2022) to run each team’s navigation 
system and compute a standardized 
performance metric that considered the 
navigation success rate (collisions and 
not reaching the goal counted as fail-
ure), actual traversal time, and environ-
ment difficulty (measured by the 
optimal traversal time). Specifically, the 
score s for navigating each environment 
i was computed as

( , , )s 1 clip AT 4OT 8OT
OT

i i
i i i

isuccess #=

where the indicator function 1success  
evaluates to one if the robot reaches 
the navigation goal without any colli-
sions and evaluates to zero otherwise. 
Here, AT denotes the actual traversal 
time, while OT denotes the optimal 
traversal time as an indicator of the 
environment difficulty and measured 
by the shortest traversal time, assum-
ing the robot always travels at its maxi-
mum speed (2 m/s):

.OT Maximal Speed
Path Length

i
i

=

The path length is provided by the 
BARN data set, based on Dijkstra’s 
search from the given start to goal. 
The clip function clips AT within 4OT 
and 8OT to assure that navigating 
extremely quickly or slowly in easy or 
difficult environments, respectively, 
will not disproportionally scale the 
score. The overall score of each team is 
the score averaged over all 50 unseen 
test BARN environments, with 10 tri-
als in each environment. Higher 
scores indicate better navigation per-
formance. The six baseline scores were 
between 0.1627 and 0.2334. The maxi-
mum possible score based on our met-
ric was 0.25.

Results
The simulation qualifier started on 29 
March and lasted through 22 May. In 
total, five teams from all over the 
world submitted their navigation sys-
tems. The performance of each sub-
mission was evaluated by a standard 
evaluation pipeline, and the results 
are shown in Table 1. All methods 

(a) (b) (c) (d)

Figure 1. Four example BARN environments in the Gazebo simulator (ordered by the ascending relative difficulty level): (a) World 0, 
(b) World 99, (c) World 199, and (d) World 299.

https://github.com/dperille/jackal-map-creation
https://github.com/dperille/jackal-map-creation
https://github.com/Daffan/ros_jackal
https://github.com/Daffan/ros_jackal
https://github.com/Daffan/nav-competition-icra2022
https://github.com/Daffan/nav-competition-icra2022
https://github.com/Daffan/nav-competition-icra2022
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outperformed the baseline dynamic 
window approach (DWA), with both a 
2- and 0.5-m/s maximum speed, the 
latter of which is the default local 
planner for the Jackal robot. However, 
only one approach (from Temple Uni-
versity) outperformed all baselines. 
The top three teams from the simula-
tion qualifier, i.e., Temple Robotics 
and Artif icial Intelligence Lab 
(TRAIL), from Temple University; 
Autonomous Mobile Robotics Labora-
tory (AMRL), from the University of 

Texas at Austin (UT Austin); and 
Autonomous Mobile Robots (AMR) 
Lab, from the University of Virginia 
(UVA), were invited to the physical 
finals at ICRA 2022.

Physical Finals
The physical finals took place at ICRA 
2022, in the Philadelphia Convention 
Center, on 25 and 26 May. Two physical 
Jackal robots with the same sensors and 
actuators were provided by the compe-
tition sponsor, Clearpath Robotics.

Rules
Physical obstacle courses were set up 
using approximately 200 cardboard 
boxes in the convention center (Figure 2). 
Because the goal of the challenge was to 
test a navigation system’s ability to per-
form local planning, all three physical 
obstacle courses had an obvious passage 
that connected the start and goal loca-
tions (i.e., the robot should not have 
been be confused by global planing at 
all), but the overall obstacle clearance 
when traversing this passage was de
signed to be very constrained, e.g., a few 
centimeters around the robot.

While it was the organizers’ original 
intention to run exactly the same navi-
gation systems submitted by the three 
top teams and use the same scoring 
metric in the simulation qualifiers in 
the physical finals, these systems suf-
fered from (surprisingly) poor naviga-
tion performance in the real world (not 
even being able to finish one single trial 
without any collisions). Therefore, the 
organizers decided to change the rules 
by giving each team 30 min before com-
peting in each of the three physical 
obstacle courses to fine-tune their navi-
gation systems. After all three teams 
had this chance to set up for a particular 
obstacle course, the actual physical 
finals started as a 30-min timed session 
for each team. In each 30-min session, a 
team tested its navigation system in the 
obstacle course and notified the orga-
nizers when it was ready to time a com-
petition trial. Each team had the 
opportunity to run five timed trials 
(after notifying the organizers). The 
fastest three out of the five timed trials 
were counted, and the team that had the 
most successful trials (reaching the goal 
without any collisions) was the winner. 
In the case of a tie, the team with the 
fastest average traversal time would be 
declared the winner.

Results
The physical finals took place on 25 and 
26 May (see the final award ceremony 
in Figure 3). The three teams’ naviga-
tion performance is provided in Table 2. 
Since all navigation systems navigated at 
roughly the same speed, the final results 
were determined solely by the success 

Figure 2. One of the three physical obstacle courses during the finals.

Table 1. The simulation results.
Rank Team/Method (University) Score

1 Temple Robotics and Artificial Intelligence Lab  
(Temple University)

0.2415

2 LfLH (baseline) 0.2334

3 Autonomous Mobile Robotics Laboratory (University of  
Texas at Austin)

0.231

4 Autonomous Mobile Robots (University of Virginia) 0.22

5 E band (baseline) 0.2053

6 End to end (baseline) 0.2042

7 APPLR-DWA (baseline) 0.1979

8 Yiyuiii (Nanjing University) 0.1969

9 NavBot (Indian Institute of Science) 0.1733

10 Fast (2.0 m/s) DWA (baseline) 0.1709

11 Default (0.5 m/s) DWA (baseline) 0.1627

DWA: dynamic window approach; LfLH: Learning from Learned Hallucination; APPLR: Adaptive 
Planner Parameter Learning.
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rate of the best three out of five timed 
trials for each team. Surprisingly, the 
best system in simulation, by Temple 
University, exhibited the lowest success 
rate, while UT Austin’s system enjoyed 
the highest rate of success.

Top Three Teams and 
Approaches
In this section, we report the approaches 
used by the three winning teams.

UT Austin
To enable robust, repeatable, and safe 
navigation in the constrained spaces 
frequently found in BARN, the UT 
Austin team, AMRL (https://amrl.cs.
utexas.edu/), utilized state-of-the-art 
classical approaches to handle localiza-
tion, planning, and control along with 
an automated pipeline to visualize and 
debug continuous integration. To plan 
feasible paths to reach the goal location 
while avoiding obstacles, a medium-
horizon kinematic planner from ROS 
move_base was used, combined with 
a discrete path rollout greedy planner 
for local kinodynamic planning from 
AMRL’s graph navigation stack. This 
two-stage hierarchical planning gener-
ated safe motion plans for the robot to 
make progress toward the goal while 
reactively avoiding obstacles along its 
path by using lidar scans.

Additionally, since the environment 
contained tight spaces that were chal-
lenging to navigate through, it was 
observed that accurate motion estima-

tion of the robot was crucial to deploy-
ing a planning-based navigation 
controller in an unmapped environ-
ment. When executing sharp turns in 
constrained environments, poor esti-
mates of the robot’s motion negatively 
interfered with costmap updates in 
move_base and often prevented the 
midlevel planner from discovering any 
feasible path to the goal.

Toward addressing this problem, 
episodic non-Markov localization 
(EnML) was utilized, which fuses the 
lidar range scans with wheel odometry 
through non-Markov Bayesian updates. 
Combining EnML with two-stage hier-
archical planning proved to be useful in 
safely handling constrained spaces. 
Additionally, the UT Austin team devel-
oped custom automated tools to gener-
ate visualizations for debugging that 
helped identify failure cases easily, per-
form manual hyperparameter tuning, 
and accelerate bug fixes during the 
competition.

While classical approaches helped 
solve a majority of the environments in 
the BARN challenge, significant chal-
lenges still remain for navigation in 
extremely constrained spaces. For exam-
ple, the two-stage hierarchical planning 
module does not explore unobserved 
regions of the environment before com-
mitting to a kinematically feasible path. 
This sometimes leads to suboptimal 
paths causing a longer time to be taken 
to reach the goal. We posit that a learn-
able midlevel planner with the ability to 

actively explore the environment appro-
priately to plan the optimal path may be 
a promising future direction of research 
to improve autonomous navigation in 
constrained spaces.

UVA
To quickly and robustly navigate 
through the unknown cluttered BARN 
challenge environments, the UVA team, 
AMR (https://www.bezzorobotics.
com/), developed a mapless “follow-the-
gap” planning scheme that 1) detects 
open gaps for the robot to follow to 
reach a final goal and 2) plans local 
goals to reach those open gaps without 
colliding with intermediate obstacles. 
The framework expands upon the UVA 
AMR lab’s previous work. Figure 4(a) 
illustrates the framework, displaying the 
laser scan point cloud of a world from 
the BARN data set along with the 
detected intermediate gaps , ,g g1 2  and 

;g3  vehicle position ;x Rr
2!  and final 

goal position .x R2!)

Figure 4(b) describes the local plan-
ner, which provides course corrections 

Figure 3. (From left) The competition sponsor (Clearpath Robotics), competition organizers, and Temple, UVA, and UT Austin teams.

Table 2. The physical results.

Rank
Team/Method 
(University)

Success/Total 
Trials

1 AMRL (UT 
Austin)

8/9

2 AMR (UVA) 4/9

3 TRAIL (Temple 
University)

2/9

https://amrl.cs.utexas.edu
https://amrl.cs.utexas.edu
https://www.bezzorobotics.com
https://www.bezzorobotics.com
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for the robot to avoid obstacles while 
reaching a selected gap goal. The 
approach takes advantage of the fact 
that gaps start and end at discontinuities 
in the laser scan and leverages this prin-
ciple to find intermediate gap goals for 
navigation. Let ,p p Ri i 1

2!+  be adja-
cent points in the laser scan and R 
denote the maximum sensing range of 
the lidar. The first discontinuity, 
referred to as type 1, occurs when the 
distance between the adjacent readings 
is larger than the circumscribed diame-
ter dr  of the robot: .p p di i r1 2 2- +  
The second discontinuity, type 2, occurs 
when one of the two readings is 
outside the lidar’s sensing range: 

.p x R p x Ri r i r2 1 25$ $- -+  If 
,p x p xi r i r1 2 22- -+  the discon-

tinuity is referred to as rising; otherwise, 
it is falling. In the following, we describe 
how to leverage these discontinuities to 
identify gaps.

The first step in gap detection is to 
perform a forward pass from p0  to 
pn 1-  in the laser point cloud scan 
for rising type 1 and type 2 discon-
tinuities. Let pi  denote the location 
of the first rising discontinuity and 
L { , , }.i n1 1f= + -+  This point be
comes the beginning of the gap. To 
determine the end, we find the point p j  
closest to pi  such that L .j ! +  That is,

	 .argminp p p
L

j
j

i j 2= -
! +

� (1)

The process continues, starting from 
.p j 1+  Once the forward pass is com-

plete, a mirrored backward pass from 

pn 1-  to p0  is done to find gaps via fall-
ing discontinuities. At each detected 
gap, defined as ( , ),g a bi i i=  a tuple of 
the start and end points is added to a 
quadtree T ,g  which keeps track of 
where all previously identified and vis-
ited gaps are located. If any gap already 
exists in the tree, it is ignored.

Once Tg  is updated, a gap Tg g!)  
is selected to be the intermediate goal if 
it is determined that the final goal x)  is 
not admissible. In this context, admissi-
bility is determined by checking 
whether a given goal is navigable; that 
is, from the laser scan data, a path is 
known to exist from the robot position 
to the goal. The check is done by using 
a similar algorithm, as discussed by 
Minguez and Montano, which, given 
any start point xa  and endpoint ,xb  
ensures that no inflated obstacles block 
the robot along the line connecting the 
two points.

The process to select the gap goal 
from Tg  when x)  is inadmissible is 
outlined in Algorithm 1. At each itera-
tion, the algorithm finds the closest gap 
g)  to the final goal .x)  If g)  is inadmis-
sible from the robot’s current position, 
properties of quadtree queries are uti-
lized to find all gaps TG g3l  that must 
be passed as the robot drives from xr  to 

.g)  The algorithm then iteratively finds 
the closest admissible gap g G! l to the 
robot that is also admissible to ,g)  
meaning that the robot knows that a 
feasible path from xr  to g and from g to 
g)  exists. If no g satisfies this constraint 
for the given ,g)  the process repeats, 

with g)  as the next-closest gap to ,x)  
and terminates once an admissible gap 
is found. For clarity, Figure 4(a) gives 
an example of the goal selection pro-
cess. The final goal x)  is not admissible, 
nor is the closest gap to it, .g1  However, 
xr  to g2  is admissible as well as g2  to 

.g1  Thus, g2  is selected as the interme-
diate goal, and the selection process 
repeats once the robot reaches .g2

Even though the selected gap goal is 
admissible, a direct path to it may not 
be feasible given the configuration of 
the obstacles within an environment. 
For example, a robot navigating directly 
to g in Figure 4(b) will collide with the 
obstacles shown by the laser scan data. 
To prevent such issues from arising, a 
local planner is utilized that replans the 
mobile robot’s trajectory at every time 
step if collision is imminent. The direct 
path to the goal is formulated as a 
region D, which accounts for the rela-
tive heading to the goal, ,gi  and the 
diameter dr  of the robot. The region D  
is checked against the laser scan points 
for any obstacles. Let p represent all 
obstacle coordinates within region D. If 
no obstacles are in D, that is, ,p 4=  
the robot is sent directly to the gap goal, 
g. If there are multiple obstacles within 
D,  the one closest to the robot is 
selected. Let do  represent the distance 
to the closest obstacle and oi  represent 
the direction of the obstacle with 
respect to the robot’s heading. The new 
desired heading is then computed by 
accounting for the offset between the 

x∗ x∗

g1

g

g2

g3

xr

do

do
θo

θg

θdes

D

(a) (b)

Figure 4. Examples of the UVA team’s (a) detected gaps in a simulated BARN 
environment and (b) local planner obstacle avoidance.

Algorithm 1: Find Gap Goal 
(UVA Team)

  1: � Input: quadtree ,Tg  robot position  
  ,xr  and final goal x)

  2:  Output: gap goal g)

  3: � while Tg 4=Y  & ( , )x g!isAdmissible r
)   

  do
  4:       argming x gTg 2g! -) ) )

!)

  5:       { }\T T gg g! )

  6:    �  # Returns children in descending 
order of dist. to xr

  7:       ( , , )TG g xgetChildren r g! )l
  8:      for g G! l do
  9:    �  if ( , )x gisAdmissible r  & 

( , )g gisAdmissible )  then
10:      g g=)

11:      end if
12:      end for
13:  end while
14:  return g)
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goal and obstacle to the gap goal, 
( ),g g odesi i i i= + -  and the local goal 

is placed at a distance of do  in this 
desired direction [shown in teal in 
Figure 4(b)].

The inputs to the robot are angular 
and linear velocities and are determined 
using proportional controllers:

	
,min k

v k v 1

max

max
max

t r

v

des~ i i ~

a
~

~

= -

= -

^
c
^ h

m
h

* � (2)

where ,kt  ,kv  and a  are constant pro-
portional gains, ri  is the current head-
ing of the robot, and max~  and vmax  are 
the maximum angular and linear veloc-
ities, respectively.

Temple University
The team at Temple (https://sites.
temple.edu/trail/) used a deep rein-
forcement learning (DRL)-based con-
trol policy, called DRL-velocity 
obstacles (VO), originally designed for 
safe and efficient navigation through 
crowded dynamic environments. The 
system architecture of the VO) control 
policy, provided in Figure 5, is divided 
into two modules: preprocessing and 
the DRL network.

Preprocessing Module
Instead of directly feeding the raw sensor 
data into deep neural networks like other 
works, the DRL-VO control policy uti-
lizes preprocessed data as the network 
input. There are three types of inputs that 
capture different aspects of the scene:
1)	�Pedestrians: To track pedestrians, the 

raw red–green–blue image data and 
point cloud data from a ZED camera 
are fed into the You Only Look Once 
v3 object detector to get pedestrian 
detections. These detections are 
passed into a multiple hypothesis 
tracker to estimate the number of 
pedestrians and their kinematics (i.e., 
position and velocity). These pedes-
trian kinematics are encoded into two 
80 × 80 occupancy grid-style maps.

2)	�Scene geometry: To track the geome-
try, the past 10 scans (0.5 s) of lidar 
data are collected. Each lidar scan is 
downsampled using a combination of 
minimum pooling and average pool-
ing, and these downsampled lidar 
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data are then reshaped and stacked to 
create an 80 × 80 lidar map.

3)	�Goal location: To inform the robot of 
where to go, the final goal point and 
its corresponding nominal path are 
fed into the pure pursuit algorithm to 
extract the subgoal point, which is 
fed into the DRL-VO network.

This novel preprocessed data represen-
tation is one key idea of the DRL-VO 
control policy, allowing it to bridge the 
simulated-to-real gap and generalize to 
new scenarios better than other end-to-
end policies.

DRL Network Module
The DRL-VO control policy uses an 
early fusion network architecture to 
combine the pedestrian and lidar data 
at the input layer to obtain high-level 
abstract feature maps. This early 
fusion architecture facilitates the 
design of small networks with fewer 
parameters than late fusion works, 
which is the key to deploying them on 
resource-constrained robots. These 
high-level feature maps are combined 
with the subgoal point and fed into the 
actor and critic networks to generate 
suitable control inputs and a state 
value, respectively.

Training
To ensure that the DRL-VO policy leads 
the robot to navigate safely and effi-
ciently, the team at Temple developed a 
new multiobjective reward function 
that rewards travel toward the goal, 
avoiding collisions with static objects, 
having a smooth path, and actively 
avoiding future collisions with pedestri-
ans. This final term, which utilizes the 
concept of velocity obstacles, is key to 
the success of the DRL-VO control pol-
icy. With this reward function, the 
DRL-VO policy is trained via the proxi-
mal policy optimization algorithm in a 
3D lobby Gazebo simulation environ-
ment with 34 moving pedestrians, using 
a Turtlebot2 robot with a ZED camera 
and a 2D Hokuyo lidar.

Deployment
The Temple team directly deployed the 
DRL-VO policy trained on a Turtlebot2 in 
the BARN Challenge without any model 

fine-tuning. To achieve this, the team had 
to account for three key differences:
1)	�Unknown map: During develop-

ment, the DRL-VO policy used a 
known occupancy grid map of the 
static environment for localization, 
which was not available in the 
BARN challenge. To account for 
this, the localization module 
(amcl) was removed from the soft-
ware stack and replaced with a laser 
odometry module.

2)	�Static environment: The DRL-VO 
policy was designed to function in 
dynamic environments. To account 
for the fact that the environments in 
the BARN Challenge were all static 
and highly constrained, the pedes-
trian map was set to all zeros.

3)	�Different robot model: The DRL-VO 
policy was trained on a Turtlebot2, 
which has a different maximum speed 
and footprint compared to the Jackal 
platform. In the BARN Challenge, the 
maximum speed of the robot was 
modified based on the robot’s proxim-
ity to obstacles. This led to the robot 
moving slowly (0.5 m/s, the same 
speed as the Turtlebot2) when near 
obstacles and quickly (up to 2 m/s, the 
maximum speed of the Jackal) when 
in an open area.

Discussions
Based on each team’s approach and the 
navigation performance observed dur-
ing the competition, we now discuss les-
sons learned from the BARN Challenge 
and point out promising future research 
directions to push the boundaries of 
efficient mobile robot navigation in 
highly constrained spaces.

Generalizability of Learning-
Based Systems
One surprising discrepancy between 
the simulation qualifier and the physical 
finals is the contrasting performance of 
the DRL-VO approach by Temple Uni-
versity, which outperformed all baselines 
and other participants in simulation but 
suffers from frequent collisions with 
obstacles in the real world. Despite the 
fact that the organizers modified the 
rules during the physical finals to allow 
the teams to make last-minute modifica-

tions to their navigation systems, DRL-
VO still did not perform well in all three 
physical obstacle courses. The TRAIL 
team believes this was due to two types 
of gaps between the simulator and the 
real world: 1) the real-world environ-
ments were all highly constrained, 
whereas the simulator environments 
contained both constrained and uncon-
strained environments and 2) the DRL-
VO policy was learned on a Turtlebot2 
model (which has a smaller physical 
footprint than a Jackal). Most of the col-
lisions during the hardware tests were 
light grazes on the side, so a robot with a 
smaller size may have remained colli-
sion-free.

The stark performance contrast 
between simulation and the real world 
suggests a generalizability gap for the 
reinforcement learning approach. It 
was not practical for the team to retrain 
a new system on site during the compe-
tition, given the impractically massive 
amount of training data required for 
reinforcement learning. How to 
address this generalizability gap and 
make a navigation policy trained in 
simulation generalizable to the real 
world and different robot/sensor con-
figurations remains to be investigated, 
even for such a simple static obstacle 
avoidance problem.

Another potential way to address 
such inevitable generalizability gaps is 
to seek help from a secondary classical 
planner that identifies out-of-distribu-
tion scenarios in the real world and 
recovers from them through rule-based 
heuristics. In fact, for the last two physi-
cal courses, the Temple team tried to 
implement just such a “recovery plan-
ner” as a backup for DRL-VO: when 
a potential collision is detected (i.e., 
the robot faces an obstacle that is too 
close), the robot rotates in place to head 
toward an empty space in an attempt to 
better match the real-world distribution 
to that in the simulation during train-
ing. Although such a recovery planner 
did help in some scenarios, it was diffi-
cult for it to cover every difficult sce-
nario and navigate through the entire 
obstacle course.

Indeed, the Temple team spent time 
during the 30-min timed sessions to 
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fine-tune the parameters of the recovery 
planner but found it difficult to find a 
single set of parameters to recover the 
robot from all out-of-distribution sce-
narios while not accidentally driving 
the robot into such scenarios through-
out the entire course. On one hand, 
the simple nature of the recovery plan-
ner designed on site during the com-
petition contributed to the failure. On 
the other hand, tuning the parameters 
of a planner to cover as many scenar-
ios as possible remains a difficult 
problem and will be discussed further 
in the following.

Tunability of Classical Systems
Similar to Temple’s rule-based recovery 
planner, the UT Austin team’s entire 
navigation system relies on classical 
methods: EnML localization, a medium-
horizon kinematic planner, and a local 
rollout-based kinodynamic planner. 
Inevitably, these classical approaches 
have numerous tuning parameters, 
which need to be correctly tuned to 
cover as many scenarios as possible. A 
natural disadvantage of relying on a 
single set of parameters to cover all 
different difficult scenarios in the 
BARN Challenge (e.g., dense obstacle 
fields, narrow curving hallways, and 
relatively open spaces) is the inevitable 
tradeoff, or compromise, to sacrifice 
performance in some scenarios to suc-
ceed in others and to decrease speed 
for better safety.

Indeed, the UT Austin team’s strat-
egy in the physical finals was to spend 
the first 20 min in the 30-min timed 
session to fine-tune the system parame-
ters until a good set of parameters that 
allowed successful navigation through 
the entire obstacle course was found, 
then finish three successful “safety tri-
als” first and, finally, retune the system 
to enable faster and more aggressive 
but riskier navigation behaviors to 
reduce the average traversal time. 
Although most such “speed trials” 
failed, luckily for the UT Austin team, 
other teams’ inability to safely finish 
three collision-free trials to the goal 
made it the winner of the BARN Chal-
lenge but only by having a higher suc-
cess rate (not faster navigation).

Two orthogonal future research 
directions can potentially help with the 
tunability of navigation systems: 1) 
developing planners free of tunable 
parameters on site during deploy-
ment, such as end-to-end learning 
approaches, but, as mentioned pre-
viously, with significantly better 
simulation-to-real transfer and gener-
alizability and 2) enabling more intelli-
gent parameter tuning of classical 
systems, rather than laborious manual 
tuning, for example, through automatic 
tuning and even dynamic parameter 
policies learned from teleoperated 
demonstration, corrective interven-
tions, evaluative feedback, and rein-
forcement learning.

Getting “Unstuck”
Although most of the failed trials dur-
ing the physical finals were due to col-
lisions with obstacles, there were also 
many trials that did not succeed 
because the robot got stuck in some 
densely populated obstacle areas. In 
those places, the robot kept repeating 
the same behaviors multiple times, 
e.g., detecting imminent collisions 
with obstacles, rotating in place, back-
ing up, resuming navigation, detecting 
the same imminent collision again, 
and so on. Such behavior sometimes 
led to a collision with an obstacle and 
sometimes got the robot stuck forever, 
although it might also have succeeded 
on rare occasions. All three teams 
experienced such behaviors, with the 
UT Austin and UVA teams being able 
to fix them by tuning parameters and 
the Temple team changing the thresh-
old between DRL-VO and the recov-
ery planner.

Similarly, in real-world autonomous 
robot navigation, how to get “unstuck” 
safely remains a common and chal-
lenging problem. No matter how intel-
ligent an autonomous mobile robot is, 
it may still make mistakes in the real 
world, e.g., when facing scenarios out 
of the training distribution, corner 
cases not considered by the system 
developer, and situations where the 
current parameter set is not appropri-
ate. It is very likely that the robot will 
repeat the same mistake over and over, 

e.g., getting stuck at the same place, 
which needs to be avoided. Future 
research should investigate ways to 
identify such “stuck” situations, bal-
ance the tradeoff between exploitation 
and exploration (i.e., when to keep 
trying the previous way versus when 
to try out new ways to get unstuck), 
utilize previous successful exploratory 
experiences in future similar scenarios 
to not get stuck again, and leverage 
offline computation to correct such 
failure cases in the future.

Tradeoff Between Safety  
and Speed
While the BARN Challenge was origi-
nally designed to test existing naviga-
tion systems’ speed of maneuvering 
through highly constrained obstacle 
environments, given the safety con-
straint of being collision-free, it ended 
up being a competition about safety 
alone. The UT Austin team won the 
competition simply by safely navigating 
eight out of nine physical trials, not by 
doing so with the fastest speed. All the 
teams except the UT Austin team, after 
it figured out an effective set of parame-
ters for each physical obstacle course, 
struggled with simply reaching the goal 
without any collision. The challenge 
organizers also deployed the widely 
used DWA planner in the ROS move_
base navigation stack in the physical 
obstacle courses, only to find out that, 
despite being relatively safe compared to 
the participating teams’ methods, it 
struggled with many narrow spaces and 
got stuck in those places very often. 
Such a fact shows that the current 
autonomous mobile robot navigation 
capability still lags further behind than 
one may expect.

Latency Compensation  
for High Speed
Only the UT Austin team attempted 
to pursue higher-speed navigation 
(>0.5 m/s), doing so after an appropri-
ate parameter set was found for the 
particular physical course and three 
successful “safety trials” had been 
achieved. However, most “speed trials” 
ended in collision. One contributing 
factor to such failure was improper 
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latency compensation for various high 
speeds. The UT Austin team was the 
only team that explicitly considered 
latency compensation in its AMRL stack, 
through a latency parameter. During 
high-speed maneuvers, the robot inevi-
tably needs to aggressively change its 
navigation speed to swerve around 
obstacles and accelerate in open spaces. 
System latency caused by sensing, pro-
cessing, computation, communication, 
and actuation will likely invalidate pre-
viously feasible plans. While simply 
tuning the latency parameter value can 
help to certain extent, a more intelligent 
and adaptive way to calculate and com-
pensate system latency is necessary for 
the robot to take full advantage of its 
computing power before executing 
aggressive maneuvers.

Navigation Is More  
Than Planning
To plan agile navigation maneuvers 
through highly constrained obstacle 
environments, the robot first needs to 
accurately perceive its configuration 
with respect to the obstacles. Inaccurate 
localization and odometry during fast 
maneuvers with significant angular 
velocity usually produce significant 
drift, causing previously valid plans to 
become infeasible. While all three 
teams’ local planners rely on raw per-
ception to minimize such an adverse 
effect, e.g., by using high-frequency 
laser scans and directly planning with 
respect to these raw features, their 
global planner usually depends on the 
results of localization and odometry 
techniques. For example, the Temple 
team used Dijkstra’s global planner in 
move_base. An erroneous localiza-
tion will cause an erroneous global plan, 
which, in turn, will affect the quality of 
the local plan.

Such an adverse effect will diminish 
when the navigation speed is low 
because localization techniques may 
recover from drift over time. During 
high-speed navigation, however, the 
planner needs to quickly plan actions 
regardless of whether the drift has been 
fixed or not. As mentioned previously, 
latency will start to play a role, as well, 
because a good latency compensation 

technique will depend on an accurate 
localization and odometry model of the 
robot, i.e., being able to predict where 
the robot will be based on where the 
robot is and what action will be exe-
cuted. Techniques for better odometry, 
localization, and kinodynamic models 
during high-speed navigation will be 
necessary to allow mobile robots to 
move both fast and accurately at the 
same time.

Conclusions
The results of the BARN Challenge at 
ICRA 2022 suggest that, contrary to 
the perception of many in the field, 
autonomous metric ground robot nav-
igation cannot yet be considered a 
solved problem. Indeed, even the com-
petition organizers initially assumed 
that obstacle avoidance alone was too 
simple a goal and therefore empha-
sized navigation speed before the phys-
ical competition. However, each of the 
finalist teams experienced difficulty 
performing collision-free navigation, 
and this ultimately led the organizers 
to modify the competition rules to 
focus more on collision avoidance. 
This result suggests that state-of-the-
art navigation systems still suffer from 
suboptimal performance potentially 
due to many aspects of the full naviga-
tion system (as discussed in the “Dis-
cussions” section). Therefore, while it 
is worthwhile to extend navigation 
research in directions orthogonal to 
metric navigation (e.g., purely vision-
based, off-road, and social navigation), 
the community should not overlook 
the problems that still remain in this 
space, especially when robots are 
expected to be extensively and reliably 
deployed in the real world.
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