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Abstract— Inertial sensing is a technology that enables mo-
tion capture outside of well-defined studio environments. Yet,
there are several hurdles that have to be overcome in order to
achieve a high-quality user experience. Among them is enabling
robust wireless communication. Thanks to strict requirements
on throughput and far-field operation along with existing issues
of occlusion and client interference, packet-loss rates in wireless
inertial-sensing systems can amplify pose-tracking errors by
as much as 39%. In this paper, we develop a new type of
sequence-predictors based on long short-term memory neural
networks that can be used to significantly conceal packet losses
for inertial pose-tracking. To lower computational overheads,
we systematically exploit spatio-temporal correlations of data
and distribute sensor loads among multiple predictors. Through
experiments conducted with 3.5 hrs. of high-frequency inertial
motion-capture data, we demonstrate that our approach is able
to fully conceal packet losses at rates of up to 20%.

I. Introduction

Human pose-tracking, also known as motion capture, is a

process that requires continuous estimation of joint angles

in 3-dimensional space. Traditionally, this task has been

accomplished with the use of cameras that directly detect

and track limbs or reflective markers that are attached to

the body [1]. Unfortunately, these methods restrict subject

movement to within the camera’s field-of-view. Non-optical

techniques such as those based on inertial sensing provide us

with an alternative that has no such restrictions [2]. However,

to achieve complete mobility, inertial pose-tracking systems

need to be operated wirelessly [3].

Existing wireless inertial pose-tracking systems face many

challenges. An important one among them is data corruption
that occurs due to factors such as channel interference,

large operating distances and limb occlusions. Typically,

data corruptions manifest as packet losses in the network.

Fig. 1 shows the measured packet loss rate (PLR) for a WiFi

network at various throughput levels. In this test, we utilized

user datagram protocol (UDP) with single socket bindings

and a max. allowed stack buffer limit of 1365 Bytes. For

comparison, 18 IMUs within a wireless inertial pose-tracking

system, transmitting 4 B of single-precision measurements

via 9 channels each at 30 Hz, require a throughput of

∼150 kbps. At this rate, we see from the figure that data

quality degrades significantly when distances from the router

are greater than about 60 m; PLR steadily increases to 10%

at 90 m. In fact, with an increase in the client or sensor

density, these numbers can easily get worse.

At a system level, as PLRs increase, data fidelity suffers

leading to jitter in pose tracking. Furthermore, effective

Fig. 1 Measured PLR at different WiFi UDP throughput levels and distances
between sensors and the router. Basic inertial pose-tracking in interference-
free environments requires a throughput of 150 kbps. Consequently, relia-
bility of data in such a system suffers beyond 60 m of operating distance.

operating distances get restricted. In both cases, quality of

pose-analysis suffers making it unsuitable for applications

that require robust real-time tracking over long distances such

as monitoring everyday gait and on-field sports performance.

In this paper, we tackle the increase in PLRs by exploit-

ing the temporal relationships in sensor data from inertial

motion units (IMUs). Specifically, we develop machine-

learning models that learn to predict sequential dependencies

in IMU data and fill in missing packets at the receiver

enabling a smooth tracking performance. Following are the

key contributions that we make:

• For the first time, we propose a methodology to exploit

recurrent neural networks (RNNs) as sequence predic-

tors to conceal packet losses in wireless networks.

• We apply our methodology to the problem of inertial

pose tracking that comprises sensor data with natural

temporal dependencies suitable for RNN modeling.

• To lower computational costs of packet-loss conceal-

ment (PLC), we develop a technique for vector-RNN

processing based on clustered sensor channels.

• We demonstrate that our approach can fully conceal

PLRs up to 20%, with modest computational costs.

The rest of the paper is organized as follows. In Sec. II,

we present related work on PLC along with background on

existing PLR models and long short-term memory (LSTM)

networks, which are a specific type of RNN architecture. In

Sec. III, we present our proposed methodology of PLC with

different neural-network architectures including vectorized

learning with sub-clusters of sensor channels. In Sec. IV,

we describe our experimental framework and present results

along with justifications for different LSTM configurations

that we choose. Finally, we conclude in Sec. V.
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II. Background and RelatedWork

In this section, we provide an overview of existing methods

for PLC along with a mathematical background on LSTMs

and PLR models that are widely used in the literature.

A. Existing Methods to Conceal Packet Losses

The issue of packet losses in wireless networks is extensively

addressed in communication theory. Primarily, specific rout-

ing and medium-access protocols for sensor networks have

been developed based on analyses of packet-delivery perfor-

mance in dense indoor and outdoor wireless environments

[4]–[6]. Typically, these approaches achieve PLC within the

network-layer by efficient channel coding or re-transmission

of data. On the source-coding side, existing techniques rely

on dual-channel communication or compressed sensing [7]–

[9]. Our approach is closely related to these latter ones. In

contrast, however, we employ data-driven methods that treat

lost packets as samples within time-series signals. Thus, we

avoid communication overheads. Consequently, our proposed

techniques can also be applied when factors other than packet

losses degrade data quality, such as motion artifacts in free-

mode body sensor networks [3], [10].

B. Modeling Packet Loss Rates

PLR in a wireless network can be modeled via probabilistic

techniques. We specifically focus on UDP, which is desirable

for real-time performance in pose-tracking systems. For this

protocol, the Gilbert Model is a simple and effective PLR

model that is widely used in the literature [11]. It relies on

the fact that the probability of losing a contiguous sequence

of k packets decreases geometrically with increasing k [12].

It is modeled as a second-order Markov chain with a single

random variable X, where X = 1 and X = 0 represent loss

and no-loss of a packet, respectively. For this model, with

state probabilities shown in Fig. 2, the matrix of transition

probabilities can be expressed as follows:[
1 − p q

p 1 − q

] [
P(X=0)
P(X=1)

]
=

[
P(X=0)
P(X=1)

]
.

Thus, the conditional and unconditional probabilities of

packet loss are given by the following equations:

P(X = 1) =
p

p + q
and P(X = 1 | X = 1) = 1 − q,

respectively. Furthermore, since the probability of packet loss

only depends on the previous state, the probability of having

a loss episode of length k (i.e., Pk), is given by the following:

Pk = (1 − q)k−1p.

The average PLR is p/p+q. When q equals 1− p, this model

reduces to a Bernoulli model that is memory less and does

not fully characterize burst packet-loss behavior.

Fig. 2 Gilbert PLR model is based on a 2-stage Markov chain and captures
burst behavior. If p = 1−q, it reduces to the much simpler Bernoulli model.

Fig. 3 Unrolled LSTM network with n time steps or hidden units. Its internal
memory cell can be controlled via the input and forget gates.

C. State Prediction with LSTM Networks

LSTM networks comprise individual units that make use of

recurrent connections. Thus, the weighted activation of an

LSTM unit is fed back to itself with a delay, which provides

it with a memory (hidden value) of past activations allow-

ing the network to learn temporal dynamics in sequential

data. Fig. 3 shows an unrolled LSTM network. Each unit

comprises three simple gates or neurons: input, output and

forget. The output of the LSTM unit is computed as follows:

ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt +Whcht−1 + bc)

ht = ot ∗ tanh(ct) (1)

where at time instant t, the outputs of the memory cell and

the input, output and forget gates are denoted by ct, it, ot

and ft, respectively. Furthermore, xt and ht are the input and

outputs of the LSTM unit, respectively, while bc is a biasing

constant and Wic’s represent weights between the cell and

gate i. Next, we show how to exploit the temporal modeling

capacity of LSTMs by training them to predict future IMU

data in inertial pose tracking.

III. Proposed Approach to Conceal Packet Losses

In this section, we present details on transforming PLC into

a sequence-prediction problem. We also demonstrate how

to cluster correlated sensor channels to vectorize the PLC

computation process.

A. Data-driven LSTM Models for PLC

Once trained with labeled data, an LSTM network can

be used to predict 1-dimensional sequences. In order to

train it, we utilize the previous n − 1 data samples, i.e.,
x1, x2, . . . xn−1, and constrain the nth hidden state to be the

expected sequence output xn. With this constraint in place,

we minimize gradients over a large number of training

examples and back propagate errors to update the LSTM

network weights. Thus, we map k individual IMU channels to

separate LSTM networks. In this case, n is a hyper parameter

that we optimize to achieve the most accurate prediction for

all k channels. A summary of our technique is presented in

the upper half of the block diagram shown in Fig. 4. Once

trained, the network is able to utilize n− 1 previous samples

to predict the nth sample. Thus, if the nth sample is missing

because of a lost or corrupted packet, the LSTM fills it in

with an estimate of the sample and conceals this defect. In

order to maintain consistent internal state of the LSTM units,
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we need to continually operate all k networks using a sliding

window of n − 1 samples to separately predict xn’s for all

k channels. This is not the case if the network is stateless,

when we can simply utilize the instantaneous set of n − 1

previous samples to predict the nth sample.

B. Clustering Sensor Channels for Vectorized Prediction

The model proposed above requires k LSTMs to be trained

separately for k IMU channels. Thus, this approach does

not fully exploit the inter-relationships between IMU data

channels and introduces potential computational overheads

at training and inference time. In this section, we propose

a methodology to train LSTM networks that simultaneously

predict multiple input channels, naturally exploiting tempo-

ral relationships in IMU data. Thus, we implicitly enable

vectorized-inference utilizing subsets of k sensor channels at

a time. Our methodology lowers the number of overall LSTM

networks required and even speeds up evaluation on single-

core processors that are extremely resource constrained.

Unfortunately, experiments show that training one LSTM

network for all k channels does not achieve convergence.

Therefore, we propose to identify reasonable clusters of

sensor channels based on signal correlations.

Our clustering approach is illustrated at the bottom half of

the block diagram in Fig. 4 and Algorithm 1. Specifically,

since each IMU has 9 channels, we compute the sum of

channel-wise correlation coefficients for all s sensors in the

pose-tracking system. Thus, between any two sensors i and j,
we denote the total correlation coefficient value across all 9

channels by ci j, which lies in the range [0,9]. Subsequently,

we perform k-means clustering on these pair-wise sensor-

level total correlation values to identify m clusters. To make

group index assignments to individual sensors, we consider

the frequency of occurrence of each sensor in the m clusters,

and choose the cluster index that has the highest occurrence

of pair-wise total correlations from a particular sensor. Fi-

nally, we train LSTM networks per individual group indices

to predict all channels in the group together. Compared

to few other potential grouping heuristics, we empirically

verify that our approach achieves the best convergence during

training time. We posit that this behavior is due to the

high levels of correlation between sensor channels that are

exploited in individual groups. Next, we present results that

demonstrate the benefits of our approach.

IV. Experimental Results

In this section, we present details on the data, pose-tracking

algorithm and metrics used for evaluation. We demonstrate

that sequence prediction with LSTMs is able to significantly

conceal packet losses for wireless inertial pose tracking.

A. Evaluation Framework

An overview of our evaluation framework is shown in Fig. 5.

It comprises the following key components: (a) kinematics-

based algorithm for pose tracking, (b) data and packet-loss

injection, (c) LSTM sequence prediction and (d) network

Algorithm 1 Correlation-based LSTM Input Clustering

Input: xpq[n], p ∈ [1, s] sensors, q ∈ [1, 9], # clusters m
Output: LSTM sensor groups {g1, g2, . . . , gm}
1: initialize Correlation matrix C = {ci j}, i, j ∈ [1, s]
2: for (xiq, x jq) = 1 to sC2 do // Over all sensor pairs
3: ci j =

∑9
q=1 ρ(xiq, x jq) // Sum correlation coefficients

4: end for
5: Cluster centroids, σk ← k-means[ci j], k ∈ [1,m]

6: for p =1 to s do // Over all sensor indices
7: Group index of xpq ← cluster k where xpq appears

most frequently

8: end for
9: Group {gt} = set of sensors with group index t, t ∈ [1,m]

clustering architectures. Next, we present details on each of

these components.

Kinematics-based pose tracking. At the center of the

framework is an algorithm that we used to estimate the joint

angles. The algorithm is based on kinematic methods that

are well-known in the literature [3], [13], [14]. Essentially,

we rely on a homogeneous transformation of points in 3D

space. For instance, any point can be transformed from frame

X to frame Y via the rotation matrix RY
X . Suppose Bi, S i

and G represent coordinate frames associated with the body

segment i, corresponding sensor on the body segment i, and
the global reference (aligned with the Earth’s magnetic field)

at calibration time, respectively. Further suppose B′i and S ′
i

represent the body and sensor frames after arbitrary motion.

We can express any imaginary point P via a transformation

of coordinate systems between body segments i and j as

follows:

RG
S ′

i
RS ′

i
B′i

RB′i
B′j

P = RG
S ′

j
R

S ′
j

B′j
P (2)

By simplifying this expression with matrix inversion, we get:

RB′i
B′j
= RB′i

S ′
i
RG

S ′
i

−1
RG

S ′
j
R

B′j
S ′

j

−1
(3)

RG
S ′

i
and RG

S ′
j
are the outcomes of the IMU sensor-fusion

algorithm computed dynamically [15]. RB′i
S ′

i
and R

B′j
S ′

j
represent

displacement between sensors and body parts. They are

obtained during calibration and assumed to remain the same

through the course of motion. Thus, by measuring RG
S ′

i
and

RG
S ′

j
, we are able to compute the joint angle RB′i

B′j
between

body parts i and j.

Data and packet-loss injection. We leveraged the Mi-

crosoft Inertial Motion Capture (MIMC’17) Dataset, which

comprises synchronized recordings from multiple IMUs and

infrared (IR) sensors sampled at 30 Hz available as packets

delivered over a WiFi link that uses UDP [16]. The locations

of the sensors on the body are shown in Fig. 4. In this work,

we ignored the IR readings and considered only 38 IMUs that

covered 24 body segments. We processed the IMU sensor

data to estimate 12 joint angles required for pose tracking.

By fusing information from 2 calibrated Kinect sensors, the
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Fig. 4 Overview of the proposed approach. In the basic model, we utilize separate LSTM networks for PLC in individual sensor channels (top of figure).
To speed up evaluation with vectorized processing, we exploit sensor correlations and optimize the network configuration (bottom of figure).

Fig. 5 The proposed experimental framework comprises (a) kinematics-
based algorithm for pose tracking, (b) data and packet-loss injection, (c)
LSTM sequence prediction and (d) network clustering architectures.

MIMIC’17 dataset also provides us ground-truth joint-angle

information in the BioVision (BVH) format. As shown in

Fig. 5, we utilized this information to compute baseline

values for the errors in the joint-angle estimates produced

by the kinematics algorithm described above.

To obtain wireless inertial motion-tracking data that in-

cluded lost packets at different rates, we invoked the

Bernoulli and Gilbert models described in Sec. II-B. Thus,

we injected packet-loss errors in the clean IMU data provided

by MIMIC’17. For the unconcealed PLR case, we replaced

missing packets with the previously received packets. Pro-

cessing this data with the kinematics algorithm gave us the

degraded performance level for pose tracking.

LSTM sequence prediction. We cleaned up the data to

conceal packet losses with our state-prediction and clustering

algorithms developed in Python. We then processed it with

the same kinematics-based algorithm to get an updated

estimate of the the joint-angle information. We developed our

LSTM models in Theano with Keras APIs. We implemented

the proposed models on a PC with 16 GB DDR4 RAM, 3.6

GHz, 16 core 2x Intel Xeon CPUs, and an Nvidia Titan X

(Pascal) GPU with 12 GB DDR5 RAM and 3584 Cuda cores

running at 1.5 GHz.

Network configurations. We evaluated the efficacy of

PLC with our estimation algorithms based on 11 different

configurations. They are LSTMs predicting the following:

TABLE I Signal-level MAE vs. PLR rates and models.

������
PLR Model Bernoulli Gilbert

Accel. Gyro. Mag. Accel. Gyro. Mag.

5% 0.035 0.040 0.568 0.040 0.048 0.507

10% 0.086 0.099 1.216 0.094 0.101 1.264

20% 0.231 0.269 2.605 0.218 0.252 2.606

30% 0.411 0.480 3.872 0.345 0.392 3.816

TABLE II Mean pose-tracking errors vs. PLR rates and models.
������
Model PLR 5% 10% 20% 30% No PLR

Bernoulli 17.7◦ 17.8◦ 20.4◦ 23.3◦
18.1◦

Gilbert 17.4◦ 17.7◦ 21.3◦ 23.9◦

• 2-9 sensor groups using k-means clustering on corre-

lated channels described in Algorithm. 1.

• 14 sensor groups divided by different connected seg-

ments of the human body such as feet, arms, torso etc.
• 28 groups that further divide the above 14 based on lo-

cations on body segments (front, rear, inside or outside).

• 38 sensor groups, each containing only one IMU

B. Concealment Performance
For brevity, we present results that limit the Gilbert burst-

parameter q to 0.8. Thus, the loss-transition probability p
is controlled solely by the loss rate r and is computed as

follows: p = r ·q/(1− r). We also restrict evaluation to PLRs

of 5, 10, 20 and 30%. At inference time, lost packets are

predicted by the trained LSTM models that process different

sets of IMU data channels, depending on the clustering

mechanisms discussed above. We report results in the form

of two metrics: (a) mean-absolute error (MAE) between the

LSTM predicted and ground-truth raw IMU sensor data and

(b) end-to-end tracking error reported as the mean norm

of the estimation error in the 3-D Euclidean angle across

12 body joints when compared to the ground-truth optical

tracking system with 2-fused Kinect sensors.

Table I shows the best MAE values achieved for the two

PLR models at different rates and sensor types. As observed

from the table, our approach enables us to reconstruct IMU

data quite accurately. Table II shows the impact of this

prediction on the mean value of the end-to-end tracking error

with the use of the best LSTM configurations. We observe

that for PLRs under 10%, in the average case, our best
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(b) Gilbert PLR Model

Fig. 6 Our PLC approach reduces tracking errors to the levels of non-lossy data when PLRs are <10%. Mean tracking errors of all joint angles are plotted
as solid lines, while standard deviations are shown as dashed lines. The two horizontal lines indicate tracking performance using non-lossy data.

LSTM configurations marginally outperform non-lossy data,

potentially due to smoother prediction of the IMU values.
Fig. 6 shows the mean and variance of tracking er-

rors achieved at different clustering levels. The refer-

ence tracking-error achieved by the loss-free IMU data in

MIMC’17 is also shown as a solid horizontal line. From

the figure, we observe that our clustering approach allows

us to speed up LSTM processing because of vectorized

operations. For sequential single-threaded processors, the

speed up factors achieved due to vectorized processing are

inversely proportional to the number of LSTMs utilized.

This is because of explicitly parallel execution that is made

possible in Eq. (1) when xt and other associated parameters

can be processed as vectors. Furthermore, at 10% PLR,

the use of 2, 28 or 38 LSTMs could help recover similar

tracking accuracy as the non-lossy data for both PLR models.

In fact, by processing with just 2 LSTMs, we are able to

achieve a reasonable tracking accuracy, while the error starts

to increase from 3 groups onwards and plateaus around 6-

8 groups. At the peak value, tracking errors are amplified

by up to 39% compared to the baseline. This behavior

is consistent at PLRs below 20%. However, at 20% PLR,

careful configuration of the LSTM architecture becomes

necessary to lower tracking errors. However, at more than

30% PLR, we were not able to improve the tracking accuracy

significantly.
V. Conclusions

In emerging applications of wireless inertial pose tracking,

real-time jitter-free performance is crucial for a good user

experience. Loss of packets in a wireless network presents

a hurdle to achieving this objective. In this paper, we

explored the possibility of utilizing the sequence prediction

power of LSTM networks to conceal these packet losses.

We observed that in resource-constrained scenarios, where

these algorithms are expected to run, utilizing an LSTM

for individual IMU data channels is not scalable. Thus, we

proposed an approach to cluster sensor channels, enabling us

to run our packet-loss concealment framework in a vectorized
manner with substantially lower execution times even on

single-threaded, single core processors.

References

[1] M. Windolf, N. Götzen, and M. Morlock, “Systematic accuracy and
precision analysis of video motion capturing systems-exemplified on
the Vicon-460 system,” J. Biomechanics, vol. 41, no. 12, pp. 2776–
2780, Jan. 2008.

[2] D. Vlasic et. al., “Practical motion capture in everyday surroundings,”
in ACM Trans. Graphics, vol. 26, no. 3. ACM, Jul. 2007, p. 35.

[3] X. Xiao and S. Zarar, “Machine learning for placement-insensitive
inertial motion capture,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[4] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proc. Int. Conf. Embedded
Networked Sensor Systems, 2003, pp. 1–13.

[5] J. G. Kim and M. M. Krunz, “Bandwidth allocation in wireless
networks with guaranteed packet-loss performance,” IEEE/ACM Trans.
Networking (TON), vol. 8, no. 3, pp. 337–349, Feb. 2000.

[6] J. Tang and X. Zhang, “Quality-of-service driven power and rate adap-
tation over wireless links,” IEEE Trans. Wireless Communications,
vol. 6, no. 8, 2007.

[7] C. Chigan and V. Oberoi, “Providing qos in ubiquitous telemedicine
networks,” in Int. Conf. Pervasive Computing and Communications
Wkshp. IEEE, 2006, pp. 5–pp.

[8] H. Garudadri and P. K. Baheti, “Packet loss mitigation for biomedical
signals in healthcare telemetry,” in Int. Conf. Engineering in Medicine
and Biology Society, 2009, pp. 2450–2453.

[9] P. K. Baheti and H. Garudadri, “Heart rate and blood pressure
estimation from compressively sensed photoplethysmograph,” in Proc.
Int. Conf. Body Area Networks, 2009, p. 13.

[10] S. Mohammed and I. Tashev, “Unsupervised deep representation learn-
ing to remove motion artifacts in free-mode body sensor networks,”
in Int. Conf. Body Sensor Networks, May 2017, pp. 183–188.

[11] G. Haßlinger and O. Hohlfeld, “The gilbert-elliott model for packet
loss in real time services on the internet,” in Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB), 2008
14th GI/ITG Conference-. VDE, 2008, pp. 1–15.

[12] V. Markovski, F. Xue, and L. Trajković, “Simulation and analysis of
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