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a b s t r a c t 

Mobile robots are being increasingly deployed in fields where human intervention is deemed risky. However, in doing so, one of the prime concern is to prevent 

complete battery depletion which may in turn lead to immobilization of the robot during the mission. Thus, we need to carefully manage the energy available to 

explore as much of the unknown environment as feasible whilst guaranteeing a safe return journey to home base. For this, we need to identify the key components that 

draw energy and quantify their individual energy requirements. However, this problem is difficult due to the fact that most of the robots have different motion models, 

and the energy consumption usually also varies from mission to mission. It is desirable to have a generic framework that takes into account different locomotion 

models and possible mission profiles. This paper presents a methodology to unify the energy consumption models for various robotic platforms thereby allowing us to 

estimate operational range in both offline and online fashions. The existing models consider a given mission profile and try to estimate its energy requirements whilst 

our model considers the energy as a given resource constraint and tries to optimize the mission to be accomplished within these constraints. The proposed unified 

energy consumption framework is verified by field experiments for micro UGV and multi-rotor UAV test-beds operating under myriad of environmental conditions. 

The online model estimates operational range with an average accuracy (measured with respect to true range across multiple field trials) of 93.87% while the offline 

model attains 82.97%. 
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. Introduction 

Most of the commercially available robots and other experimental
latforms widely used for field experiments are powered by a portable
attery. Thus, the capacity of the battery affects the overall mission du-
ation and performance. Most of the times, the robots are used in DDD
Dangerous, Dirty, and Dull) environments [25] . This applies to most
inds of mobile robot platforms, including Unmanned Ground Vehicle
UGV), Unmanned Aerial Vehicle (UAV), and Unmanned Marine Vehicle
UMV) as shown in Fig. 1 . In such scenarios, if the robot battery is com-
letely depleted, then, the robot will be stranded and must be retrieved
ither by a human operator thereby increasing life risk or by another
obot which increases the project cost. To prevent such scenarios, it is
ecessary to carefully estimate the energy requirements of a mission
nd plan the journey such that the exploration is informative 2 and the
obot always returns to base station. In order to do so, it is necessary
o exhaustively study the energy breakdown of various components of a
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obile robot and to quantify them such that energy consumption can be
ptimized to allow the robots to explore larger proportions of the fields.

Currently, the researchers have proposed either human-controlled
trategies, whereby, based on the current battery levels, the human de-
ides when to terminate the mission [28] or a more autonomous ex-
ension [7] where the robot can autonomously return to base station to
echarge. However, when we deal with DDD environments, recharging
r replenishing of power sources is usually deemed infeasible due to time
ritical nature of the missions. Thus, we need mission planning strate-
ies which can optimize the robot trajectories to simultaneously ensure
afe return to base and accrue as much information about the unknown
nvironment as feasible, whilst operating on a single discharge cycle. 

This paper serves as an extension of our preliminary findings [32] .
n our prior work, we focused on autonomous ground robots operating
n approximately smooth terrains with constant change of gradient but
ow we extend and generalize our previous model to various robotic
latforms operating in natural environmental conditions. Before we do
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Fig. 1. Scenario. Given the nature of the robot. (a) shows a unmanned ground vehicle being utilized to detected land mines in Lebanon (Mine detector robot 

tested in lebanon field. https://www.youtube.com/watch?v = q78X71nzUZM ; 2011); (b) shows an unmanned aerial vehicle being used for forest fire monitoring 

(Thermalcapture in forest fire management. http://thermalcapture.com/thermalcapture-in-forest-fire-management/ ; 2018); (c) shows an unmanned marine vehicle 

that can be used to monitor marine life and pollution (Unmanned marine vehicle. https://tinyurl.com/y785nk4k ; 2017). It should be able to estimate its maximal 

operational range within which the exploration must be completed including the return trip to base. 

Fig. 2. Framework versus model. Illustrating the difference between the terms “framework ” and “model ”. The term “framework ” refers to the overall architecture 

which houses 2 sub-modules for categorizing energy distribution from battery and models for transforming energy into attainable operational range. On a high level, 

this architecture is common to all kinds of robots with the difference only in locomotion models which appears in low level of the online/offline modules and hence 

the notion of unification is captured. 
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o, we distinguish between the terms “framework ” and “model ” aided
y Fig. 2 . In light of this setting, the generalized framework is no longer
estricted by the assumption of wheeled ground locomotion, but is now
ble to account for different locomotion principles from other regimes
nd is equally applicable to commercially available or custom built
obots. As case studies, we provide detailed explanation as to how our
ramework can be applied to micro-UGVs and multi-rotor UAVs. To this
nd, we propose an offline variant which relies on expertise of the opera-
or to set an appropriate prior and also an online model which determines
he model parameters based on real-time operation data. Under this set-
ing, we intend on addressing the following research question: Given the

ynamics model, minimal prior information about operational environment

nd battery characteristics, how accurately can we estimate the maximal

perational range to avoid complete immobilization amidst the mission? 

The rest of the paper is organized as follows: We begin by summariz-
ng some of the state-of-art works related to our work in Section 2 and
ighlight their limitations which serve as a motivation for our frame-
ork. We then explain our proposed framework in Section 3 which is
acked by empirical validation shown in Section 4 . We conclude this
ork in Section 5 and propose some future extensions to our proposed

ramework. All notations have been summarized in Table 1 for the ease
f the readers. 
174 
. Related works 

The body of work regarding a general robotic energy model is rel-
tively small. Most of the works are purely focused on quantifying /
inimizing the energy used only for robot’s locomotion and the range

stimation is mostly based on real-time energy requirements or learning
echniques. In [9] , the researchers were concerned about assessing the
nergy usage of a mobile robot where the robot itself was considered as
 “black box ”. This is not always desirable since the robotic components’
nergy consumption is of importance as well. Also, pre-defined trajec-
ories were considered to estimate the velocity profile. This is useful to
est the model for agile motion as the robot maneuvers along straight
tretches and executes turning. But this neither takes into account the
mpact from variable velocity nor does a robot follow fixed trajectories
n real missions. The authors in [29] aimed at predicting the expected
ission energy required while a mission is being executed and proposed
achine learning techniques for online update of these estimates based

n real-time data gathered. Learning techniques may be useful in prac-
ice, but the “black box ” methodology of neural networks or similar
achine learning models provides limited understanding of energy dis-

ribution. Since most robots only use one shared battery for all on-board
nergy consuming components, we need to understand the energy dis-

https://www.youtube.com/watch?v=q78X71nzUZM
http://thermalcapture.com/thermalcapture-in-forest-fire-management/
https://tinyurl.com/y785nk4k
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Table 1 

Nomenclature. 

Symbol Description 

m R Mass of robot 

𝑔 = 9 . 8 Gravitational acceleration ( m / s 2 ) 

C rr Ground (Rolling) resistance 

C D Zero drag coefficient 

k Power/data rate coefficient 

𝑘 𝐸𝑛𝑣 Flight adjustment coefficient 

k Terr Terrain variation coefficient 

k r Propeller constant relating T with 𝜔 

𝜌 = 1 . 2041 Density of air kg / m 

3 [1] 

A true area over which drag force is acting ( m 

2 ) 

𝜃 terrain elevation (degrees) 

d travel distance (m) 

d Max Max distance (m) 

𝜂 Energy loss (%) 

Γ = 0 . 27 Figure of Merit for UAV propellers [1] 
r ΩMan Net maneuvering efficiency of robot r (%) 

𝑣 Forward velocity of robot (m/s) 

𝜔 Angular velocity of robot (rad/s) 

𝑣 𝑂𝑝𝑡 Optimal velocity which allows the robot to attain 𝑑 Max 
k 1 , k 2 Positive battery decay coefficients 

P Man Power used by maneuvering branch (W) 

P Anc Power used by ancillary branch (W) 

s 0 , s 1 Positive sensing coefficients (W) 

P C Power needed for computation & wireless communication (W) 

T Thrust (N) 

𝜏D Drag torque (N-m) 

N R Number of rotors 

r p Radius of propellers (m) 

𝐷 
Δ
= 100 ×

( 
𝑇 𝑀 − 𝑇 𝐴 

𝑇 𝑀 

) 
Duty Cycle (% Driving Time) during which maneuvering energy is non-zero 

E Energy available from the battery source (J) 

ME Energy available for maneuvering functions (J) 

AE Energy available for ancillary functions (J) 

𝑀𝑎𝑛𝑒𝑢𝑣𝑒𝑟𝑖𝑛𝑔 Tasks involved in navigation like steering, height adjustment etc. 

Ancillary Tasks involving wireless communication, sensor data acquisition, on-board processing etc. 

𝐸 Reduced energy available from battery (J) 

E O Rated energy available from battery (J) 

T M Mission Time 

T A Total stopping time for ancillary functions ⨀[0∶ 𝑒𝑛𝑑] Value of the quantity 
⨀

from 𝑡 = 0 until end of mission ⨀[ 𝑡 ∶ 𝑒𝑛𝑑] Value of the quantity 
⨀

from 𝑡 = 𝑡 until end of mission ⨀[0∶ 𝑡 ] Value of the quantity 
⨀

from 𝑡 = 0 to 𝑡 = 𝑡 
[̂∗] Estimated quantity ∗ 

[∗] Average quantity ∗ 
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ribution in different component so that we know how much energy is
sed to move the robot. Energy considerations also motivate research
n multi-robot coordination. Due to energy constraint, it is always de-
irable to allocate tasks to robots, which are, if reachable, the closest to
he task [19] . However, this also requires an accurate estimate of the
chievable range for each individual agent. 

Besides those mentioned above, most researchers assume that a robot
eeps moving incessantly at a constant velocity, i.e. , the robot does not
eed to stop and process data, but in reality robot might need to oc-
asionally stop to process and send the data. Also, given the resource
onstraints (fixed battery capacity, limited travel time, limited payload
apacity, etc. ) of a robot, it is also essential to consider resource con-
trained path planning such that the total path length is bounded. In
oing so, we not only respect the resource constraints which are pre-
ented inherently while using robots but also ensure that the robot re-
erves sufficient resources to avoid strangulation. 

For exploration mission, the consumed energy could be logically
lassified into two categories: locomotion and ancillary energy. The for-
er is used to propel the robot into unknown areas. This energy is mostly
echanical and is consumed by physically moving the robot and over-

oming the resistance from the environment, such as change of eleva-
ion, friction from contact, wind drag, etc. The latter is the energy used
o replace human presence, such as sensing and communication with
eers/base. The current literature focuses more on the impact from the
175 
rst category, locomotion energy, and thus, could be categorized easily
y the type of locomotion model. 

.1. Unmanned Ground Vehicle (UGV) 

Unmanned Ground Vehicle (UGV) is the most widely used robotic
latform for unknown terrain exploration. Different from other types
f platforms, UGV’s terramechanics model was well established since
he 50 ′s [5] . Other works include range estimation for Electrical Vehi-
les (EV) based on a simplified power train model [8,15] . In the robotics
eld, UGVs’ energy are inspected mainly in terms of motion energy [23] .

n [9,29] , researchers study the necessary energy and remaining battery
ife based on real-time performance data. Energy consumption mini-
ization techniques have been focusing on trajectory and path planning

16,20,22,37] and high level scheduling [35] . 

.2. Unmanned Aerial Vehicle (UAV) 

Unlike UGVs, energy related research on Unmanned Aerial Vehicles
UAVs) have started to inspect the flight dynamics and aerodynamics
odel. [34] looks into energy consumption and range estimation for

mall fixed wing vehicles based on an aerodynamics model. With the
apid development of rotor-craft, researchers start to inspect the energy
elated issues in terms of those vertical take-off and landing (VTOL)
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Fig. 3. Energy distribution model for unification framework. Any type of robot, 

whether a micro UGV, quadrotor UAV, or AUV, uses portable battery packs 

which are utilized for essentially two functions: Firstly, maneuvering like propul- 

sion, hovering, navigation, etc. and secondly , ancillary functions like wireless com- 

munication, sensing, on-board processing etc. 
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e  
latforms. Compared to the well developed terramechanics model, the
ynamics for UAVs are still being actively inspected. [4] investigates the
ffect of different number of rotors on energy consumption of mini UAV.
sing an alternative energy source, such as solar energy [18] , is another
irection of robot design. High level energy consumption strategies are
nspected by [10] , but as compared to UGV’s, there is a vast scope of
esearch in this domain. 

.3. Unmanned Marine Vehicle (UMV) 

Unmanned Marine Vehicle (UMV) includes Unmanned Surface Ve-
icle (USV) and Autonomous Underwater Vehicle (AUV). There is some
ork on energy harvesting with USVs [21,33] . However, the purpose
f using USV is mainly for energy harvesting, not for exploration. En-
rgy related researches are still looking at effective alternative energy
ources [3,27,36] , including seawater-breathing based on the reaction
f powdered aluminum [24] and solar panel [6] . However, some other
esearchers like Phillips et al. [26] are developing analytical models for
educing optimal cruising speeds of AUV’s. 

.4. Limitations of existing works 

Most of the aforementioned works either consider the mission pro-
le to be known a priori and then try to estimate/ optimize the energy
equirements based on locomotion models only. As opposed to this, it is
ather natural to consider the energy itself to be fixed and known a priori
iven the battery characteristics which serves as the resource constraint,
hen the robots set out to explore the environment. Thus, we should

olve the inverse problem where the energy constraint is known and the
ath length must be optimized within these constraints. Furthermore,
he existing models are made specific to the robot under consideration
nd to the best of our knowledge, there exists almost no framework
eneric enough to estimate the operational range of any mobile robot
perating on a single discharge cycle. This forms the foundation of our
roposed model which considers the locomotion model along with the
ncillary functions. Both these consumers draw power from the same
ource and hence must be accounted for. While doing so, the proposed
odel is made generic so as to accommodate any robot while retaining

he same form. 

. Proposed unified framework 

In this section, we explain the novel contributions of this work. So
ar, standalone researches have looked into development of analytical
odels for mission energy consumption and duration of specific robotic
latforms. Their main focus was to estimate the endurance and energy
equirements for robots. Some models were offline whilst others were
nline built upon real-time operation data. However, one major limita-
ion of these models was that none of them could estimate the maximal
perational range of the robot given some a priori known information
bout the execution of the mission. Furthermore, premeditated trajecto-
ies were considered which are not feasible for real-world applications.

Thus, we aim at unifying all such models into one global framework
or estimating operational range of a variety of robots. For this, we re-
uire the battery characteristics be known which may be additionally
upported by a priori mission information, if available. While doing so,
e account for variable environmental factors along with the require-
ents to stop and process the data which in turn affects the maximum

ttainable range whilst avoiding any premeditated trajectories making
ur model more pragmatic. 

.1. Energy distribution model for diverse robots 

The energy distribution model of our proposed unified framework
s shown in Fig. 3 : Irrespective of the nature of the robot, the energy
vailable from the battery is always utilized for two kinds of processes
176 
iz., maneuvering which we refer to as propulsive energy ( PE ) and ancillary

unctions which is referred to as ancillary energy ( AE ). In an ideal situa-
ion, the net energy from battery ( E ), propulsive energy ( PE ) and ancillary
nergy ( AE ) are related as: 

 = 𝐴𝐸 + 𝑃 𝐸 (1) 

In reality, owing to several types of losses of capacity, the total en-
rgy of the battery is not available as it is. In our prior work, we iden-
ified 4 kinds of losses associated with maneuvering and ancillary func-
ion modules that, in turn, will affect the maximum attainable range of
 mobile robot. They are: battery charge storage loss ( 𝜂1 ), drive motor
oss ( 𝜂2 ), mechanical losses owing to internal friction ( 𝜂3 ) and ancil-
ary losses ( 𝜂4 ). So, the overall system efficiency of a robot ( r ) can be
ummarized as 𝑟 Ω ∶= Π4 

𝑖 =1 ¬𝜂𝑖 , where ¬ operator represents the comple-
ent of corresponding losses. The maneuvering efficiency is given by

 Ω𝑀𝑎𝑛 ∶= Π3 
𝑖 =2 ¬𝜂𝑖 and the ancillary efficiency is given by r ΩAnc ≔¬𝜂4 .

ere, we have used the zeroth order polynomial i.e., the first order ap-
roximation of the efficiency of the system to estimate its lower bound.
owever, if we used a more complex model (higher order polynomial)

hat perhaps also accounts for mechanical degradation, changes in cur-
ent demands owing to variable motor loads, elevation changes and op-
rational velocity modulations etc., better estimates can be obtained.
n even higher complexity model could also track the changes in these
arameters in real-time which can be used to account for system effi-
iencies in an online fashion and maintain tighter bounds. Having said
his, the challenge still remains to identify such models and quantify
heir parameters. For the scope of this work, we retained only the first
rder approximation and will investigate the complex counterparts in
uture works. 

As for the propulsive energy , any robot ( r ) carrying out a mission ( m )
n an environment of choice experiences 4 kinds of forces: 

1. Constant resistive force F ( r , m ) as a function of robot ( r ) and the
mission ( m ): e.g., the force acting on a robot when it is traversing in
a straight line under the influence of a constant magnetic field. 

2. Environment dependent force F ( x , r , m ) which is dependent on the
current position x : e.g., changing gravitational potential along with
changing frictional force because of change in coefficient of friction.

3. Time dependent resistive force F ( t , r , m ) which is a function of cur-
rent time t : e.g., unforeseeable disturbances (strong wind gusts etc. ).

4. Instantaneous operational velocity dependent resistive force
𝐹 ( 𝑣, 𝑟, 𝑚 ) which varies with instantaneous velocity 𝑣 : e.g., aerody-
namics and gyro effect. 

Thus, the net propulsive energy (PE) is given in terms of mechanical

nergy (ME) from longitudinal dynamics model and the net mechanical
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fficiency ( r ΩMan ) as: 

 𝐸 = 

𝑀𝐸 

𝑟 Ω𝑀𝑎𝑛 
, 

= 

∫
𝑃𝑎𝑡ℎ 

𝐹 𝑁𝑒𝑡 𝑑𝑥 

𝑟 Ω𝑀𝑎𝑛 
, 

= 

∫
𝑃𝑎𝑡ℎ 

{ 𝐹 ( 𝑟, 𝑚 ) + 𝐹 ( 𝑥, 𝑟, 𝑚 ) + 𝐹 ( 𝑡, 𝑟, 𝑚 ) + 𝐹 ( 𝑣, 𝑟, 𝑚 )} 𝑑𝑥 

𝑟 Ω𝑀𝑎𝑛 

(2) 

Since a robot may occasionally need to stop and process the data,
e define a term duty cycle ( D ) which is the proportion of net mission

ime that the robot was actually mobile. Then, the duration ( t ) can be
xpressed as a function of position ( x ), velocity ( 𝑣 ) , mission ( m ) and duty
ycle 3 ( D ) as: 

 = 𝑔( 𝑥, 𝑣, 𝐷, 𝑚 ) (3) 

n example of the function g ( · ) represented by Eq. (3) can be the follow-
ng. Consider a robot moving with velocity 𝑣 = 10 𝑚 ∕ 𝑠 and a duty cycle of
 = 0 . 5 . Let the mission ( m ) be to traverse 10 m in a straight line. Then,

or moving from 𝑥 1 = 0 to 𝑥 2 = 10 𝑚, the duration, 𝑡 = 

( 𝑥 2 − 𝑥 1 ) 
( 𝑣𝐷) 

. During

he mission ( m ), we assume that the robot traverses at an instantaneous
elocity ( 𝑣 ) and a fixed duty cycle ( D ). Thus, 

 𝐸 = 

∫
𝑃𝑎𝑡ℎ 

{ 𝐹 ( 𝑟, 𝑚 ) + 𝐹 ( 𝑥, 𝑟, 𝑚 ) + 𝐹 ( 𝑔( 𝑥, 𝑣, 𝐷, 𝑚 ) , 𝑟, 𝑚 ) + 𝐹 ( 𝑣, 𝑟, 𝑚 )} 𝑑𝑥 

Ω
, 

= 

{ 𝐹 ( 𝑟, 𝑚 ) + 𝐹 ( 𝑣, 𝑟, 𝑚 )} 𝑑 
𝑟 Ω𝑀𝑎𝑛 

+ 

𝑑 ∫
𝑃𝑎𝑡ℎ 

{ 𝐹 ( 𝑥, 𝑟, 𝑚 ) + 𝐹 ( 𝑥, 𝑣, 𝐷, 𝑟, 𝑚 )} 𝑑𝑥 

𝑑 𝑟 Ω𝑀𝑎𝑛 

(4) 

Moreover, we know that ancillary energy ( AE ) is given by: 

𝐸 = 

𝑃 𝐴𝑛𝑐 𝑑 

𝑣 𝐴𝑣𝑔 𝐷 

, (5) 

here 

 𝐴𝑛𝑐 = { 𝑠 0 + 𝑠 1 𝑓 𝑠 } 
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑃 𝑆𝑒𝑛𝑠𝑒 

+ { 𝑃 𝐶𝑜𝑚𝑝 + 𝑃 𝐶𝑜𝑚𝑚 } 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑃 𝑐 

= { 𝑠 0 + 𝑠 1 𝑓 𝑠 } + { 𝑃 𝐶𝑜𝑚𝑝 + 𝑘 × |𝐷𝑎𝑡𝑎 | × 𝑓 𝐶𝑜𝑚𝑚 } 
= { 𝑠 0 + 𝑠 1 𝑓 𝑠 } + { 𝑃 𝐶𝑜𝑚𝑝 + 𝑘 × 𝑅 } 

(6) 

s an enhancement for the ancillary power consumption model over our
rior work, here, the communication power is related with both the size
f the data i.e., | Data |, and the frequency ( f Comm 

) at which the communi-
ation takes place. These two terms could be unified into data rate ( R ),
.e., the amount of data sent in unit time. The communication power
s then proportional to the data rate with a constant power/data rate
oefficient k ( c.f. [17] ). Arguably, the computation power is also a func-
ion of the task allocated to the robot, quantifying which, is beyond the
cope of our current work. As for the power consumed by sensors given
y P Sense , it can be modeled as a function of the sampling frequency f s .
he scalars s 0 , s 1 refer to the static power consumption and operational
ower consumption coefficient respectively. 

So, the operational range for any robot can be given in terms of
esidual energy supplied by battery ( ̃𝐸 ) as: 

 = 

𝐸̃ 

{ 𝐹 ( 𝑟, 𝑚 ) + 𝐹 ( 𝑣, 𝑟, 𝑚 )} 
𝑟 Ω𝑀𝑎𝑛 

+ 

∫
𝑃𝑎𝑡ℎ 

{ 𝐹 ( 𝑥, 𝑟, 𝑚 ) + 𝐹 ( 𝑥 
𝑣𝐷 

, 𝑟, 𝑚 )} 𝑑𝑥 

𝑑 𝑟 Ω𝑀𝑎𝑛 
+ 

𝑃 𝐴𝑛𝑐 
𝑣 𝐴𝑣𝑔 𝐷 

(7) 

Here, r ΩMan is the net maneuvering efficiency of the robot, i.e.,

he percentage of energy used to do actual mechanical work from
he maneuvering branch. From Eq. (7) , it is evident that in order
3 Duty cycle ( D ) refers to the proportion of the mission duration during which 

he robot was actually moving. For additional details, please refer to Table 1 . 

177 
o estimate the operational range, we need to approximate the term

∫
𝑎𝑡ℎ 

{ 𝐹 ( 𝑥, 𝑟, 𝑚 ) + 𝐹 ( 𝑥 
𝑣𝐷 

, 𝑟, 𝑚 )} 𝑑𝑥 

𝑑 𝑟 Ω𝑀𝑎𝑛 
and the operational range estimate

ould be as good as the approximation. 

.2. Range estimation models for diverse robots 

In order to approximate Eq. (7) , we propose two different approaches
iz., 1.) Offline estimation which is a one-shot prediction model wherein
e conjecture at the beginning of the mission itself and predictions are
ot corrected based on the new data acquired, and 2.) Online estima-
ion whereby we recursively update our estimation using all available
perational data. In the conventional setting, offline estimates are gen-
rated once all the data is made available, while the online estimates are
imited to the data currently available. As opposed to this setting, the
ffline model being referred to here relies on defining the required pa-
ameter values a priori and retaining the estimates. The online model on
he other hand recursively updates the estimates as more data is made
vailable. Furthermore, for each approach we propose particular models
or UGVs and multi-rotor UAVs. 

.2.1. Approach 1: Offline operational range estimation for diverse mobile 

obot platforms 

We first present an Offline model to estimate the operational range
pplicable to diverse range of unmanned platforms, with the assump-
ion of a priori knowledge of the mission characteristics required for
stimation over the entire mission: e.g., average terrain elevation and
ts variance from the mean value in case of UGVs and average wind
ompensation angle in case of UAVs. 

.2.1.1. UGV operating in uneven terrain. In our previous work, we con-
idered our operational environment to be a smooth terrain with a con-
tant elevation. However, in this work, we further enhance our model by
xtending it to uneven terrains with variable elevation making it better
uited to real world scenarios. 

Any natural terrain can be modeled using three features: 1.) flats:

mooth surfaces with negligible gradient, 2.) slopes: smooth surfaces
ith appreciable gradient and 3.) rubble: uneven rough surfaces with no
articular gradient characteristics. The operational terrain may have an
verage slope ( 𝛾) with respect to which the operational range d should
e calculated. In Fig. 4 , the dashed line represents the actual terrain
hich must be traversed where QP represents the actual d . QR is the
orizontal reference with respect to which the instantaneous road ele-
ation is calculated. 

1. Considering flat terrains exclusively, the only resistive force acting
on the robot is the (rolling) friction between the wheels and the
ground. This is defined as: 

𝐹 𝐹 𝑙𝑎𝑡𝑠 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹 𝑜𝑟𝑐𝑒 × 𝐶( 𝑥 ) 𝑟𝑟 (8) 

where, C ( x ) refers to the coefficient of rolling resistance. 
rr 
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4 The term flight adjustments takes into account all adjustments the UAV needs 

to make in order to maintain its course in presence of external disturbance or 

otherwise. 
2. Accounting for slopes , the net force acting will be friction along with
the weight component along the motion of the robot. These forces
are a function of the robot location x and the instantaneous terrain
elevation at x given by 𝜃( x ). 

𝐹 𝑆𝑙𝑜𝑝𝑒𝑠 = 𝐹 𝐹 𝑙𝑎𝑡𝑠 + 𝑚 𝑅 𝑔 sin ( 𝛾 + 𝜃( 𝑥 )) , 
= 𝐶( 𝑥 ) 𝑟𝑟 𝑚 𝑅 𝑔 cos ( 𝛾 + 𝜃( 𝑥 )) + 𝑚 𝑅 𝑔 sin ( 𝛾 + 𝜃( 𝑥 )) (9)

3. Finally, considering rubble , in our force model, excess forces ( F Rubble )
acting due to presence of rubble need to be accounted for. Let k ( x ) Terr 

be the terrain coefficient which depends on size, shape, density and
resistance offered by the rubble. Then, the net forces ( F Net ) acting on
the robot can be given by: 

𝐹 𝑁𝑒𝑡 = 𝐹 𝑆𝑙𝑜𝑝𝑒𝑠 + 𝐹 𝑅𝑢𝑏𝑏𝑙𝑒 , 

∶= 𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 ( 𝐹 𝑆𝑙𝑜𝑝𝑒𝑠 ) 
(10)

Thus, the net maneuvering force ( UGV F ( x ) Man ) for any UGV on an
neven natural terrain is given by: 

𝐺𝑉 𝐹 𝑀𝑎𝑛 = 𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 𝑚 𝑅 𝑔 [ 𝐶( 𝑥 ) 𝑟𝑟 cos ( 𝛾 + 𝜃( 𝑥 )) + sin ( 𝛾 + 𝜃( 𝑥 ))] (11)

In order to estimate the achievable range d , we first define the total
nergy model in a real world setting as a sum of Ancillary Energy (AE)
nd Traversal Energy (TE): 

𝐸̃ = 𝐴𝐸 + 𝑇 𝐸 , 

= { 𝐴𝑛𝑐𝑖𝑙 𝑙 𝑎𝑟𝑦 𝑃 𝑜𝑤𝑒𝑟 × 𝑡𝑖𝑚𝑒 } + 

∫
𝑃𝑎𝑡ℎ 

𝑈𝐺𝑉 𝐹 ( 𝑥 ) 𝑀𝑎𝑛 𝑑𝑥 

𝑈𝐺𝑉 Ω𝑀𝑎𝑛 

, 

= 𝑃 𝐴𝑛𝑐 ×
𝑑 

𝑣 𝐴𝑣𝑔 cos ( 𝜃𝐴𝑣𝑔 ) 𝐷 

+ 

∫
𝑃𝑎𝑡ℎ 

𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 𝑚 𝑅 𝑔 [ 𝐶( 𝑥 ) 𝑟𝑟 co

𝑈𝐺

= 𝑃 𝐴𝑛𝑐 ×
𝑑 

𝑣 𝐴𝑣𝑔 cos ( 𝜃𝐴𝑣𝑔 ) 𝐷 

+ 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑚 𝑅 𝑔 

𝑈𝐺𝑉 Ω𝑀𝑎𝑛 

×
∫

𝑃𝑎𝑡ℎ 
𝑘 ( 𝑥 ) 𝑇 𝑒𝑟

= 𝑑 ×
⎧ ⎪ ⎨ ⎪ ⎩ 

𝑃 𝐴𝑛𝑐 
𝑣 𝐴𝑣𝑔 cos ( 𝜃𝐴𝑣𝑔 ) 𝐷 

+ 

𝑚 𝑅 𝑔 
𝑈𝐺𝑉 Ω𝑀𝑎𝑛 

×
∫

𝑃𝑎𝑡ℎ 
𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 [ 𝐶

Here, d refers to distance covered by the robot. The maximum at-
ainable distance, d Max (operational range) is a function of the optimal
elocity 𝑣 𝑂𝑝𝑡 . Cruising at speeds higher/lower than 𝑣 𝑂𝑝𝑡 would result in
perational ranges lesser than d Max . So, Eq. (12) can now be written as:

𝑑 𝑀𝑎𝑥 = 

𝐸̃ 

𝑃 𝐴𝑛𝑐 
𝑣 𝑂𝑝𝑡 cos ( 𝜃𝐴𝑣𝑔 ) 𝐷 

+ 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑚 𝑅 𝑔 

𝑈𝐺𝑉 Ω𝑀𝑎𝑛 

×
∫

𝑃𝑎𝑡ℎ 
𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 [ 𝐶

From Eq. (13) , we infer that the factor { 𝑚 𝑅 𝑔 
𝑈𝐺𝑉 Ω𝑀𝑎𝑛 

×
∫

𝑃𝑎𝑡ℎ 
𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 [ 𝐶 ( 𝑥 ) 𝑟𝑟 cos ( 𝛾+ 𝜃( 𝑥 ))+ sin ( 𝛾+ 𝜃( 𝑥 ))] 𝑑𝑥 

𝑑 𝑀𝑎𝑥 
} gives us the average resistive

orce which acts on the robot on the path QP as shown in Fig. 4 . Thus,
eplacing this factor by the expected average resistive force, we can
educe the 𝑑 Max and our estimation will be as good as the estimation
f the expected average resistive force. As the operational efficiency
f the actuators varies with operational speed, 𝑣 𝑂𝑝𝑡 is the velocity at
hich the net losses of ancillary and maneuvering energy are minimal.
lso, as 𝑣 𝑂𝑝𝑡 is a complex function of robot/actuators, exact trajectory

raversed or path taken and the mission characteristics, no further com-
ents or profiling of 𝑣 𝑂𝑝𝑡 is possible in the scope of current work. In

ealistic scenarios, the offline model needs the values of k ( x ) Terr , C ( x ) rr 
o be defined for each x to find average expected resistive force. Or
quivalently, we can eliminate the integral over the path by replacing
t with average expected resistive force which can be done by replacing
 ( x ) Terr , C ( x ) rr , 𝜃( x ) by their averages 𝑘̄ 𝑇 𝑒𝑟𝑟 , 𝐶̄ 𝑟𝑟 , ̄𝜃, respectively. These
alues for the offline model can be estimated using any of the following
ethods: 1.) Using the data and experience acquired over the previous
178 
 𝜃( 𝑥 )) + sin ( 𝛾 + 𝜃( 𝑥 ))] 𝑑𝑥 

𝑎𝑛 

, 

 ) 𝑟𝑟 cos ( 𝛾 + 𝜃( 𝑥 )) + sin ( 𝛾 + 𝜃( 𝑥 ))] 𝑑𝑥 × 𝑑 

𝑑 

⎫ ⎪ ⎬ ⎪ ⎭ , 
 

cos ( 𝛾 + 𝜃( 𝑥 )) + sin ( 𝛾 + 𝜃( 𝑥 ))] 𝑑𝑥 

𝑑 

⎫ ⎪ ⎬ ⎪ ⎭ . 

(12) 

os ( 𝛾 + 𝜃( 𝑥 )) + sin ( 𝛾 + 𝜃( 𝑥 ))] 𝑑𝑥 

𝑑 𝑀𝑎𝑥 

⎫ ⎪ ⎬ ⎪ ⎭ 
. (13)

issions; 2.) carrying out a trial mission and then using the acquired
nformation as prior knowledge for the actual mission; 3.) using the
xpertise of the operators (system/environment experts) to provide
ealistic/good estimates. For this work, we have utilized the approach
.) mentioned above. 

.2.1.2. Multi-rotor UAV operating in presence of external disturbances.

lbeit the energy distribution for a UAV is quite similar to that of a
GV as mentioned previously, slight differences still exist. One of the
ifferences is that during the mission, a UGV may have phases of negligi-
le maneuvering energy requirements whilst a UAV continuously needs
o hover and maintain flight stability. As opposed to [12] , we not only
onsider the hovering and aerial drag losses but also account for flight
djustments required due to unpredictable environmental factors (like
trong wind gusts, etc. ). 

Analogous to the UGVs, the energy for hovering, drag losses and
ight adjustments in UAVs are comparable to energy requirements of
otion over flats, slopes and rubble respectively. This is owing to the

act that, in case of hovering, the UAV experiences a constant envi-
onment dependent force required to stay aloft. Similarly, to maintain
otion for a UGV, it must constantly overcome the resistive frictional

orces. Identical analogues can also be drawn for remaining cases. 

1. For hovering , we refer to works of [2] . For a UAV with N R propellers
each of radius r p with a figure of merit Γ and rotor thrust 𝑇 𝐻𝑜𝑣𝑒𝑟 in an

atmosphere of density 𝜌, the hovering power ( 𝑃 𝐻𝑜𝑣𝑒𝑟 ) can be defined
as: 

𝑃 𝐻𝑜𝑣𝑒𝑟 = 

(
𝑇 𝐻𝑜𝑣𝑒𝑟 

) 3 
2 

Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

, 

= 

(
𝑚 𝑅 𝑔 

) 3 
2 

Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

(14) 

2. Also accounting for flight adjustments 4 , the instantaneous power
( P ( t ) fa ) is given by: 

𝑃 ( 𝑡 ) 𝑓𝑎 = 

[
𝑇 ( 𝑡 ) 𝑓𝑎 

] 3 
2 

Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

(15) 
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T Terr  
where the instantaneous thrust with flight adjustments ( T ( t ) fa ) is de-
fined as: 

𝑇 ( 𝑡 ) 𝑓𝑎 ∶= 𝑇 𝐻𝑜𝑣𝑒𝑟 + 𝑇 ( 𝑡 ) 𝐴𝑑 𝑗 𝑢𝑠𝑡 , 
𝑇 ( 𝑡 ) 𝐴𝑑 𝑗 𝑢𝑠𝑡 = 𝑓 ( 𝑡 ) 𝑇 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑙 𝑒𝑟 

(16) 

In Eq. (16) , T fa ( t ) refers to the net thrust required for hovering with
adjustments. This is defined in terms of hovering thrust ( 𝑇 𝐻𝑜𝑣𝑒𝑟 ) and
adjustment thrust ( T Adjust ( t )). The term T Controller refers to the thrust
required to follow the acceleration profile generated by the chosen
flight controller ( e.g. , PID controller or Neural Networks, etc. ) and f ( t )
is a time dependent constant of proportionality. In order to general-
ize our model and remove the dependence on any particular flight
controller, we choose to model T Adjust as a time dependent function
of 𝑇 𝐻𝑜𝑣𝑒𝑟 as: 

𝑇 ( 𝑡 ) 𝐴𝑑 𝑗 𝑢𝑠𝑡 ∶= 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑇 𝐻𝑜𝑣𝑒𝑟 . (17) 

Here, 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 is the constant of proportionality. Thus, 

𝑇 ( 𝑡 ) 𝑓𝑎 = 𝑇 𝐻𝑜𝑣𝑒𝑟 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑇 𝐻𝑜𝑣𝑒𝑟 , 

= 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔 . 
(18) 

𝑃 ( 𝑡 ) 𝑓𝑎 = 

[
𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔 

] 3 
2 

Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

(19) 

So, the average power for flight adjustments over the entire time of
flight ( TOF ) is given by: 

𝑃 𝑓𝑎 ∶= 

∫
𝑇𝑂𝐹 

[
{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 

] 3 
2 

𝑇 𝑂𝐹 Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

(20) 

3. Finally, we incorporate drag losses acting on rotor blades. The drag
force ( F D ) on N R propellers, with drag coefficient C D , cross-section
area A and velocity 𝑣 is estimated from fluid mechanics as: 

𝐹 𝐷 = 

𝑁 𝑅 𝜌𝐶 𝐷 𝐴𝑣 
2 

2 
, 

= 

𝑁 𝑅 𝜌𝐶 𝐷 𝐴 ( 𝑟 𝑝 𝜔 ) 2 

2 
. 

(21) 

where, r p is the propeller radius and 𝜔 is its angular velocity. The
drag torque ( 𝜏D ) is given by: 

𝜏𝐷 = ∫
𝑟 𝑝 
0 𝐹 𝐷 𝑑𝑟 , 

= 

𝑁 𝑅 𝜌𝐶 𝐷 𝐴𝑟 
3 
𝑝 𝜔 

2 

6 

(22) 

Since the power required to overcome the drag losses is given by 𝜏D 𝜔

and we know that drag thrust 𝑇 ( 𝑡 ) 𝑓𝑎 (= 𝑁 𝑅 𝑘 𝑟 𝜔 

2 ) for the propeller
constant k r , we can define the instantaneous power for drag losses
( P D ( t )) as: 

𝑃 𝐷 ( 𝑡 ) = 

𝜌𝐶 𝐷 𝐴𝑟 
3 
𝑝 [ 𝑇 ( 𝑡 ) 𝑓𝑎 ] 

3 
2 

6 𝑘 𝑟 
√
𝑁 𝑅 

(23) 

Substituting Eqs. (18) into (23) , we get: 

𝑃 𝐷 = 

𝜌𝐶 𝐷 𝐴𝑟 
3 
𝑝 [ ∫
𝑇𝑂𝐹 

{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝑒𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 ] 
3 
2 

6 𝑘 𝑟 
√
𝑁 𝑅 𝑇 𝑂𝐹 

(24) 

The net energy required for navigation of a UAV is now given based
n Eq. (12) as: 

̃
 = 𝐴𝐸 + 𝑇 𝐸 , 

= 𝐴𝑛𝑐𝑖𝑙 𝑙 𝑎𝑟𝑦 𝑃 𝑜𝑤𝑒𝑟 × 𝑇 𝑂𝐹 + 
[ 𝑃 𝐷 + 𝑃 𝑓𝑎 ] 𝑇 𝑂𝐹 

𝑈𝐴𝑉 Ω𝑀𝑎𝑛 

, 

= 𝑃 𝐴𝑛𝑐 × 𝑇 𝑂𝐹 

+ 

[ 
𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 [ ∫
𝑇𝑂𝐹 

{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 ] 
3 
2 

6 𝑘 𝑟 𝑇 𝑂𝐹 
√
𝑁 𝑅 

+ 
∫𝑇𝑂𝐹 

[
{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 

] 3 
2 

𝑇 𝑂𝐹 Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

] 

𝑈𝐴𝑉 Ω
, 
𝑀𝑎𝑛 

179 
= 𝑃 𝐴𝑛𝑐 × 𝑇 𝑂𝐹 

+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 
𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 

6 𝑘 𝑟 
√
𝑁 𝑅 

] 
+ 

[ 
1 

Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

] 
𝑈𝐴𝑉 Ω𝑀𝑎𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
∫

𝑇𝑂𝐹 

[
{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 

] 3 
2 

𝑇 𝑂𝐹 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
𝑇 𝑂𝐹 

(25) 

Rearranging the terms in Eq. (25) , we get: 

 𝑂𝐹 = 𝐸̃ 

𝑃 𝐴𝑛𝑐 + 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 
𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 

6 𝑘 𝑟 
√
𝑁 𝑅 

] 
+ 

[ 
1 

Γ𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

] 
𝑈𝐴𝑉 Ω𝑀𝑎𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
⎧ ⎪ ⎨ ⎪ ⎩ 

∫
𝑇𝑂𝐹 

[
{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 

] 3 
2 

𝑇 𝑂𝐹 

⎫ ⎪ ⎬ ⎪ ⎭ 
(26) 

Replacing 𝑇 𝑂𝐹 = 

𝑑 𝑀𝑎𝑥 

𝑣 𝑂𝑝𝑡 
in Eq. (26) , we obtain: 

𝑑 𝑀𝑎𝑥 

= 𝐸̃ 

𝑃 𝐴𝑛𝑐 
𝑣 𝑂𝑝𝑡 𝐷 

+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 
𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 

6 𝑘 𝑟 
√
𝑁 𝑅 

] 
+ 

[ 
1 

𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

] 
𝑈𝐴𝑉 Ω𝑀𝑎𝑛 𝑣 𝑂𝑝𝑡 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
⎧ ⎪ ⎨ ⎪ ⎩ 

∫
𝑇𝑂𝐹 

[
{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 

] 3 
2 

𝑇 𝑂𝐹 

⎫ ⎪ ⎬ ⎪ ⎭ 

, 

∵D=100% for UAV , 

𝑑 𝑀𝑎𝑥 

= 𝐸̃ 

𝑃 𝐴𝑛𝑐 
𝑣 𝑂𝑝𝑡 

+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 
𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 

6 𝑘 𝑟 
√
𝑁 𝑅 

] 
+ 

[ 
1 

𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

] 
𝑈𝐴𝑉 Ω𝑀𝑎𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
⎧ ⎪ ⎨ ⎪ ⎩ 

∫
𝑇𝑂𝐹 

[
{ 𝑚 𝑅 𝑔 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 

] 3 
2 

𝑇 𝑂𝐹 𝑣 𝑂𝑝𝑡 

⎫ ⎪ ⎬ ⎪ ⎭ 

, 

(27) 

From Eq. (27) , the factor { 
[ 
𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 

6 𝑘 𝑟 
√
𝑁 𝑅 

]+[ 1 
Γ𝑟 𝑝 

√
2 𝑁 𝑅 𝜌𝜋

] 

𝑈𝐴𝑉 Ω𝑀𝑎𝑛 
}

 

∫𝑇𝑂𝐹 [{ 𝑚 𝑅 𝑔+ 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔} 𝑑𝑡 ] 
3 
2 

𝑇𝑂𝐹 𝑣 𝑂𝑝𝑡 
} represents the average resistive force

xperienced by the UAV over the entire time of flight. This is akin to
q. (13) which serves to justify our claim of a unified framework . An apt
eplacement of this parameter by using the expected average resistive
orce can help to estimate the maximum operational range for the UAV.
he error in estimation of this factor directly translates to the error

n expected operational range and can be estimated using the same
ethods as mentioned in the case of UGV. 

.2.2. Approach 2: Online operational range estimation for diverse mobile 

obot platforms 

Previously, we introduced an offline range estimation model,
hereby, based on a priori known mission characteristics, we can esti-
ate the maximum attainable range for mobile robots. However, in re-

lity, it might be rather challenging to strictly follow the mission charac-
eristics or to even obtain a priori mission information. In order to adapt
o such situations, we now propose an online variant of our operational
ange estimation framework. In this method, based on all available real-
ime data, the operational range is recursively updated. 

.2.2.1. UGV operating in uneven terrain. In Eq. (13) , the terms k ( x ) Terr 

nd 𝜃( x ) can either be set by a human operator (offline model) or can be
educed from prior missions carried out in that terrain. However, the
ormer introduces human error and the latter is usually not available.
hus, as an alternative, we now replace k ( x ) , 𝜃( x ) by their respective
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5 taken from http://www.micropik.com/PDF/HCSR04.pdf . 
stimates, 𝑘̂ ( 𝑥 ) 𝑇 𝑒𝑟𝑟 , ̂𝜃( 𝑥 ) . Additionally, the offline model used instanta-
eous rolling resistance C rr ( x ) while here it is being approximated by a
onstant C rr . So, the estimated maximum range for the remaining mis-
ion is now given by: 

 ̂

[ 𝑡 ∶ 𝑒𝑛𝑑] 
𝑀𝑎𝑥 

∶= 

𝐸̃ 𝑅𝑒𝑚 

𝑃 𝐴𝑛𝑐 
𝑣 𝑂𝑝𝑡 𝐷 

+ 

𝑘̂ ( 𝑥 ) 𝑇 𝑒𝑟𝑟 [ 𝐶 𝑟𝑟 cos ̂𝜃( 𝑥 ) + sin ̂𝜃( 𝑥 )] 𝑚 𝑅 𝑔 
𝑈𝐺𝑉 Ω𝑀𝑎𝑛 

, (28)

here 

̃
 𝑅𝑒𝑚 = 𝐸̃ 

[0∶ 𝑒𝑛𝑑] − 𝐸̃ 

[0∶ 𝑡 ] (29)

ere, 𝐸̃ 𝑅𝑒𝑚 is the useful energy remaining in the battery and 𝐸̃ 

[0∶ 𝑒𝑛𝑑] is
he usable energy present in the battery at the start of the mission, i.e,
t 𝑡 = 0 . Similarly, 𝐸̃ 

[0∶ 𝑡 ] is the energy spent from 𝑡 = 0 to time instance
 . Now, the total estimated maximum operational range over the entire
ission is given by: 

 ̂

[0∶ 𝑒𝑛𝑑] 
𝑀𝑎𝑥 

= 𝑑 [0∶ 𝑡 ] + 𝑑 [ 𝑡 ∶ 𝑒𝑛𝑑] 
𝑀𝑎𝑥 

(30)

n Eq. (30) , to estimate the net operational range for the entire mis-
ion ( ̂𝑑 [0∶ 𝑒𝑛𝑑 

𝑀𝑎𝑥 
]) , we need to utilize the distance that has already been cov-

red ( d [0: t ] ) and estimate the maximum distance that may be covered
 ̂𝑑 [ 𝑡 ∶ 𝑒𝑛𝑑] 
𝑀𝑎𝑥 

) based on available residual energy. The value of ̂𝑘 ( 𝑥 ) 𝑇 𝑒𝑟𝑟 that is

equired for estimating 𝑑 [ 𝑡 ∶ 𝑒𝑛𝑑] 
𝑀𝑎𝑥 

can be estimated using Eq. (28) . During
he mission, after every time-step ( t ), the robot will have the knowledge
f the distance that it has covered in that time-step, energy it has spent
o cover that distance and terrain elevation 𝜃 for that time step. Substi-
uting the value of 𝑑 [ 𝑡 −1∶ 𝑡 ] for d Max and 𝐸 

[ 𝑡 −1∶ 𝑡 ] for 𝐸̃ 𝑅𝑒𝑚 in Eq. (28) , we
an calculate the value of 𝑘 ( 𝑥 ) [ 𝑡 ] 

𝑇 𝑒𝑟𝑟 
for the given time-step t . Now, these

et of values of 𝑘 ( 𝑥 ) [ 𝑡 ] 
𝑇 𝑒𝑟𝑟 

can be used to estimate 𝑘̂ ( 𝑥 ) 𝑇 𝑒𝑟𝑟 which in turn
an be used to make predictions about the distance the robot can still
over using the remaining energy. Since the estimate for the remaining
istance depends upon the value on the estimation of 𝑘̂ ( 𝑥 ) 𝑇 𝑒𝑟𝑟 and 𝜃̂( 𝑥 ) ,
hich needs to be recursively updated as new data is being collected,
e utilize a recursive average filter. For ease of notation, we define
̂
 

[ 𝑡 ] = [ ̂𝑘 ( 𝑥 ) [ 𝑡 ] 
𝑇 𝑒𝑟𝑟 

, ̂𝜃( 𝑥 ) [ 𝑡 ] ] and 𝐙 

[ 𝑡 −1] = [ 𝑘 ( 𝑥 ) [ 𝑡 −1] 
𝑇 𝑒𝑟𝑟 

, 𝜃( 𝑥 ) [ 𝑡 −1] ] which represents
he set of actual (noisy) measurements up till the last time step ( 𝑡 − 1) . 

Then, given a noisy set of measurements, 𝐙 

[0∶ 𝑡 −1] , and no additional
nformation about the impact of environmental factors on the system
ynamics, a reasonable estimate for the system state at the current time-
tep, t can be obtained as: 

̂
 

[ 𝑡 ] = 𝑃 [ 𝑡 −1] 
∑𝑡 −1 

𝑖 =0 
𝐙 

[ 𝑖 ] (31)

here 𝑃 [ 𝑡 −1] = 

1 
𝑡 − 1 

represents the responsiveness of the filter, i.e., the

lter is very responsive (making a lot of corrections) in the beginning
ince limited data is available. As time passes and more data becomes
vailable, the filter becomes more certain about its estimates, and thus,
educes the relative importance of the measurements. However, being
 fixed response model (true values of k Terr and 𝜃Terr are fixed) with
esponse rate decreasing with time, it cannot always adapt to sudden
hanges in the values of k ( x ) Terr and 𝜃( x ) Terr as 1 

𝑡 −1 can be very small.
hese sudden changes can occur when there is a change in terrain type
r weather conditions, however their impact is diminished with the pas-
age of time. We can now manipulate Eq. (31) to obtain the recursive
pdate rule as follows: 

̂
 

[ 𝑡 ] = 𝑃 [ 𝑡 −1] 
∑𝑡 −1 

𝑖 =0 
𝐙 

[ 𝑖 ] 

= 𝑃 [ 𝑡 −1] 
∑𝑡 −2 

𝑖 =0 
𝐙 

[ 𝑖 ] + 𝑃 [ 𝑡 −1] 𝐙 

[ 𝑡 −1] 

= 

𝑡 − 2 
𝑡 − 1 

× 1 
𝑡 − 2 

∑𝑡 −2 
𝑖 =0 

𝐙 

[ 𝑖 ] 

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐗̂ [ 𝑡 −1] 

+ 𝑃 [ 𝑡 −1] 𝐙 

[ 𝑡 −1] 

= 𝐗̂ 

[ 𝑡 −1] + 𝑃 [ 𝑡 −1] 
(
𝐙 

[ 𝑡 −1] − 𝐗̂ 

[ 𝑡 −1] 
)

(32)

Eq. (32) represents the recursive state update rule wherein the term
 

[ 𝑡 −1] ( 𝐙 

[ 𝑡 −1] − 𝐗̂ 

[ 𝑡 −1] ) represents the measurement innovation i.e., the new
180 
nformation acquired via the new observation. Similarly, the recursive
pdate rule for the filter response can also be derived as: 

 

[ 𝑡 ] = 𝑃 [ 𝑡 −1] − 𝑃 [ 𝑡 −1] ( 𝑃 [ 𝑡 −1] + 1) −1 𝑃 [ 𝑡 −1] (33)

From Eqs. (32) and (33) , it is clear that our filter is a modified moving
verage filter [30] with increasing window size, that accommodates all
he data available. The predictions begin at 𝑡 = 2 , and 𝐗̂ 

[1] = 𝐙 

[1] . Here,
e can see that X 

[ t ] is a function of 𝐙 

[0∶ 𝑡 −1] which is a series of points
ndexed in time order i.e., a time-series. So we can use common time-
eries forecasting method to estimate the value of X 

[ t ] such as various
ariants of Autoregressive moving average (ARMA) model [13] . In our
ase, we have used a modified moving average model (ARMA(0,0,1)),
hat computes the average of all the data points available to estimate
he value of X 

[ t ] . 

.2.2.2. Multi-rotor UAV operating in presence of external disturbances.
imilar to the case of UGVs, we now replace the term 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 in Eq.
27) by its estimated value ̂𝑘 ( 𝑡 ) 𝐸𝑛𝑣 . Thus, the estimated maximum range
or UAV for remainder of the mission is now given by: 

 ̂

[ 𝑡 ∶] 
𝑀𝑎𝑥 

∶= 
𝐸̃ 𝑅𝑒𝑚 

𝑃 𝐴𝑛𝑐 
𝑣 𝑂𝑝𝑡 

+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 
𝑈𝐴𝑉 Ω𝑀𝑎𝑛 𝜌𝐶 𝐷 𝐴𝑟 

3 
𝑝 

6 𝑘 𝑟 
√
𝑁 𝑅 

] 
+ 

[ 
1 

𝑟 𝑝 
√
2 𝑁 𝑅 𝜌𝜋

] 
𝑈𝐴𝑉 Ω𝑀𝑎𝑛 𝑣 𝑂𝑝𝑡 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
[ 𝑚 𝑅 𝑔 + ̂𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔] 

3 
2 

(34) 

Now, the maximum operational range estimation can be done similar
o Eqs. (30) and (32) . However, in case of UAV, we define 𝑋̂ 

[ 𝑡 ] = 𝑘̂ ( 𝑡 ) 𝐸𝑛𝑣 
nd 𝑍 

[ 𝑡 −1] = 𝑘 ( 𝑡 − 1) 𝐸𝑛𝑣 as the estimated and observed values of the envi-
onmental variable which are required for operational range estimation.

. Experiments 

In this section, we present the details of the robotic platforms used
or empirical validations of the unified framework proposed, followed
y empirical analysis of results thus obtained. 

.1. Robot platforms 

First, we explain the robotic platforms that were used for our model
erification along with their corresponding parameters that are used by
ur frameworks. 

.1.1. Unmanned Ground Vehicle (UGV) 

For the ground robot, we assembled a custom robot from readily
vailable off-the-shelf components which was named as Rusti V2.0 . As
n enhancement over its predecessor showcased in our prior work, this
ow has a stronger alloy frame and powerful 12 V DC geared motors. We
ounted a Raspberry Pi 3 kit on-board which can receive control com-
ands from the human operator using wired Double Pole Double Throw

DPDT) switches. In order to gather the accelerometer data, we used
he Empatica E4 wristband which measured the GSR and HR [11] us-
ng its independent power source. This wearable sensor records mul-
iple physiological signals but since the scope of this study is limited
o the accelerometer, the readings from other sensors were not pro-
essed. Thus, our accelerometer data was logged separately and was
ater fused with other information for analysis. As for the ancillary func-
ions, we connected the 𝐻𝐶 − 𝑆𝑅 04 Ultrasonic ranging module with a
on-contact detection range of (2 − 400) ± 0 . 3 cm 

5 . Our UGV weighing
round 3.10 Kgs is shown in Fig. 5 . 

.1.2. Unmanned Aerial Vehicle (UAV) 

The Parrot ARDrone 2.0 quadrotor platform was used for our UAV
elated experiments as shown in Fig. 6 . It has 𝑁 = 4 rotors, each with a

http://www.micropik.com/PDF/HCSR04.pdf
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Fig. 5. Rusti V2.0 with all-terrain wheels and external 3-axis accelerometer sensor for outdoor field experiments carried out on different terrains. 

Fig. 6. Ardrone 2.0 with GPS used for outdoor experiments. 
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6 Given the wheel radius of 65 mm , these translate to 𝑣 = 0 . 544 , 0 . 952 m/s re- 

spectively. The velocities were pre-set at the beginning of the field trial and 

were not monitored during the field trial. For offline and online models, the 

heading velocity remained constant and for turning, while one side of motors 

were slowed by 𝛿, the other side was sped up by the same factor. This ensured 

that the average velocity of the center of mass of the robot remained constant. 
7 The translation velocities were chosen from [0.1,0.2,0.4,0.6,0.8] m/s which 

are subject to brief change upon change in heading direction. E.g., consider 
adius of 𝑟 𝑝 = . 1016 𝑚 . The average propeller efficiency 𝑈𝐴𝑉 Ω𝑀𝑎𝑛 = 0 . 27
as taken based on multiple experimental evaluations as showcased in

1] . The nominal operational voltage of the high density 1500 mAH bat-
ery for ARDrone is 11.1 V . We mounted a GPS sensor which operates
t 500 mA @ 5 V . The maximum rpm of the motor is 41400 while for
overing is 28500 rpm with a gear ratio of 2:17 with the propellers. The
ass of ARDrone was found to be 0.46 Kgs . 

.2. System identification 

Before we proceed to present our results of the field experiments,
e need to obtain the system parameters i.e., efficiency of ancillary and
aneuvering branches. 

For the Rusti V2.0 , the battery charge storage losses ( 𝜂1 ) were found
o be negligible (0.5%) (based on our prior work) while the motor losses
 𝜂2 ) and mechanical losses ( 𝜂3 ) were deduced based on wheels-up test.
or this test, we simply connect the motors to the battery and Raspberry
i to a stepped down 5 V supply via a voltage regulator. We then let
he motors run until the battery is completely drained and based on
he logged data we can calculate the motor losses. These losses thus
ombine the losses incurred owing to motor itself and the heat losses
rom the motor driver. Since there were no significant heat loss from any
lectronics component used on-board, we assume the ancillary losses

4 ≈0. 
For the ARDrone , like the UGV case, the battery charge storage losses

 𝜂1 ) were taken to be negligible (0.5%). Motor efficiency ( 𝜂2 ) can be
educed from Fig. 4 of [14] . However, monitoring real time RPM of
he motors for empirically estimating motor losses is rather challeng-
181 
ng. Thus, we use the data for another similar motor which matches the
pecifications of the ARDrone motor as closely as possible. The average
ropulsion system efficiency ( i.e., combined motor efficiency ( 𝜂2 ) and
ropeller efficiency ( 𝜂3 )) was derived based on several experiments and
as reported to be equal to 0.27 in [1] . The ancillary losses were taken

o be negligible ( 𝜂4 ≈0) in this case. 

.3. Outdoor experiment setup 

Now we explain the navigation conditions in which the two robots
ere evaluated. For the UGV, we performed 36 experiments on vari-
us terrains comprising of either grass, tiles, or asphalt with varying
levations and wheel rpm of 80 and 140 6 Due to space limit, only 12
xperiments are plotted and shown in this paper. The reason for consid-
ring these terrain types individually was the lack of capable hardware
o determine change in terrain types on-the-fly and accordingly adjust
he coefficient of rolling friction for making online prediction. We per-
ormed 6 wheels-up tests at 100 and 200 rpm for system identification.
he average rolling coefficients for terrain resistance offered by grass,
iles, and asphalt were set as 0.099,0.066, and 0.062, respectively and
he prior information of 𝛾 to be used in the offline estimation was set
ased on Table 1 of [29] . In order to deduce the average values of the

arameters, we used 𝑘 
[0∶ 𝑡 ] 
𝑇 𝑒𝑟𝑟 ← 

𝐸̃ [0∶ 𝑡 ] − 𝐴𝐸 [0∶ 𝑡 ] 
𝐹 𝑆𝑙𝑜𝑝𝑒𝑠 

. Similarly, the equations for

[0∶ 𝑡 ] , 𝜃
[0∶ 𝑡 ] 

can be deduced. 
As for the UAV, we performed 30 experiments split into two different

ets, viz., hovering and motion . Only 5 of those experiments are plotted
nd shown in Fig. 12 . For hovering , only the altitude of the UAV was var-
ed and the human operator occasionally had to send control commands
o maintain the position of the drone within a set perimeter. As opposed
o this, in motion case, the human operator constantly fed linear mo-
ion commands to the drone whilst occasionally commanding the drone
o hover (in cases when wind gusts lead to dangerously high velocity
ains). This not only helped ensure the safety of the drone and its oper-
tor but also helped emulate the real life scenarios in which the drone
ay loose connection to the base station or corruption of mission crit-

cal information. The control commands were sent at operator-defined
ata transmission rate such that the P Comm 

in Eq. (6) remained constant.
e performed 10 experiments for hovering at different altitudes vary-

ng between [1,10] meters. Furthermore, we conducted 20 experiments
t 5 different operational velocities 7 for motion to account for a mix of
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Fig. 7. Geometric analysis of wind compensation an- 

gle to deduce the value of parameter 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 . Suppose 

the UAV is stable, then the orientation is represented 

by xy and OB represents the thrust ( T ) exerted by the 

UAV for maintaining flight. Now let us assume that be- 

cause of sudden wind action, the rotorcraft is displaced 

by an angle 𝜃 (which can also be interpreted as wind 

compensation angle) and the new orientation is x ′ y ′ . 

So, OA will represent the same thrust under the sud- 

den influence of the wind at an angle 𝜃 to the previous 

direction. Thus, the net altitude destabilization effect 

of the wind is given by BC . 
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ind gusts, altitude adjustments, variable mission speeds, and trajecto-
ies. Experiments were performed at intervals of 2 hrs so as to account
or changing environmental factors like wind and weather conditions. 

In our experiments, we constantly monitored the wind compensation
ngle of the UAV. Through simple geometry, this was then used to calcu-
ated real-time values of 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 as explained in Fig. 7 . From this figure,
e know that the net stabilization required on the part of the rotorcraft
ill be 𝐶𝐵 = 𝑂𝐵(1 − cos ( 𝜃)) . When the rotorcraft was maintaining a con-

tant altitude, the value of 𝑂𝐵 = 𝑚 𝑅 𝑔. So here CB represents 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 𝑚 𝑅 𝑔

s explained in Eq. (17) . Therefore, we get 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 = 1 − cos ( 𝜃) . 
From Eqs. (13) and (27) , we can see that to make predictions of

 Max , we need to have an estimate of average resistive forces, for which
alue of factor k ( x ) Terr or 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 is required. So, to make predictions in
eal-time, we need to recursively update our estimates of these factors.
hus, the proposed filter is fed with real time mission data to update
hese parameters recursively. 

.4. Batteries used for field experiments 

Since the ARDrone comes factory fitted with a mini-tamiya connector
e used the 11.1 V @1500 mAh high density LiPo battery for it. However,
aving custom built the Rusti V2.0 , we had the freedom to use the fol-
owing 2 LiPo batteries for our experiments: 

• 11.1 V @2200 mAh 

• 11.1 V @1500 mAh (also used for ARDrone ) 

.5. Empirical results 

The following section provides factual performance of our frame-
ork in real world operations. Besides these, we also provide other

nteresting conclusions that can be drawn from these experiments
 Figs. 8–10 ). 

.5.1. Rusti V2.0 

In Figs. 8–10 , we analyse the performance of our offline and online

odels during real field trials on grass, asphalt, and tiles, respectively.
or offline estimation, we know from Eq. (13) that for estimating the op-
rational range our model needs prior information about 𝜃, 𝛾, and k Terr .
lso, the mechanical efficiency 8 is unascertained. For 𝛾, we fixed the
perational velocity of 0.1 m/s along + 𝑋 direction. Upon request to change 

irection to − 𝑋, the velocity during this brief transition period will vary from 

.1 m/s in + 𝑋 to 0 m/s in + 𝑋 followed by 0.1 m/s in − 𝑋 direction. This velocity 

rofile cannot be feasibly estimated for offline model, so we directly used the 

perational velocity (0.1 m/s for this e.g. ), while for the online model, velocity 

as continuously observed, so the average velocity till current time step was 

sed. 
8 Rusti ΩMan is dependent only on the motors and will account for both frictional 

osses as well as heat losses in motor 

e  
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e
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alue based on Table 1 of [29] , and empirically set the values of 𝜃𝐴𝑣𝑔 to
°. Estimating the values of k Terr and 𝑅𝑢𝑠𝑡𝑖 Ω𝑀𝑎𝑛 = Π3 

𝑖 =2 ¬𝜂𝑖 are rather chal-
enging and require some prior field experience. So, for estimating these,
e modified Eq. (13) to bring efficiency within the integral and treated
𝑘 𝑇 𝑒𝑟𝑟 

𝑅𝑢𝑠𝑡𝑖 Ω𝑀𝑎𝑛 
as a single terrain dependent variable. The average value of

his terrain dependent factor was then determined through a series of
eld trials as 

𝑘 𝑇 𝑒𝑟𝑟 
𝑅𝑢𝑠𝑡𝑖 Ω𝑀𝑎𝑛 

= [3 . 09 , 2 . 81 , 2 . 69] for grass, asphalt, and tiles, re-

pectively. For online estimation, the belief of the model over the net
perational range achievable is updated in real-time based on cumula-
ive performance characteristics. Effectively, on an average, the net true
istance covered by the robot at 0.544 m / s and 0.952 m / s are almost the
ame on all types of terrain. This can be attributed to the fact that be-
ause of the use of high torque dc motors in our robot Rusti , the net
ncillary energy requirements are negligible compared to maneuvering
nergy (which is independent of operational speed). From Eq. (13) we
ee that this in fact will be the case if P Anc ≪ P Man . Also, the true dis-
ance covered using the 2200 mAh battery is greater than that covered
sing the 1500 mAh battery but they are not in proportion of the battery
apacities i.e. the ratio of battery capacities is 22 15 = 1 . 47 but the ratio

f achieved true range is 6 . 67 5 . 17 = 1 . 29 . This difference can be attributed
o the fact that the mass of the robot is slightly higher when using the
200 mAh battery which dilutes the effect of extra charge capacity. 

Then in Fig. 11 , we evaluate the accuracy of both our offline and
nline models. As was expected, the offline model tends to over-shoot
r under-shoot the true operational range incurring extreme errors with
igh variance 9 whilst the online models tends to attain the true oper-
tional data with a very high accuracy and low variance. It must be
ointed out here that while traversing on grass using the following set-
ings: 1500 mAh @0.952 m / s , both the models show comparable average
erformance while for 2200 mAh @0.952 m / s the offline model performs
lightly better. Despite this, the variance of the offline model remains
igher which can also be confirmed from Fig. 8 . Overall, the online

odel shows ≈60% enhanced accuracy as compared to its adversary
or operational range estimation of Rusti V2.0. 

.5.2. Ardrone 2.0 

In Fig. 12 , we demonstrate the real world performance of our offline

nd online estimator models: 
For offline estimation, prior information regarding the operational

nvironment of the robot is required to make meaningful predictions
f its operational range. Since there is no prior research explaining how
he values of the parameter 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 vary, we performed an additional set
f 5 experiments (each in varying conditions) and averaged their data
or estimating the value of the parameter 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 which was found to
9 N.B. : The readers are hereby cautioned that the said variance is the variance 

n the performance of the online filter over multiple trials. This must not be 

onfused with the variance in the forecasting capabilities of the filter during an 

xperiment. As for the offline filter, there is a large bias. 
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Fig. 8. Rusti’s operational range estimation for grass. Top row represents experiments performed using 11.1 V @1500 mAh battery @80 rpm followed by @140 rpm . 

Bottom row represents the similar pattern for 11.1 V @2200 mAh battery respectively. 

Fig. 9. Rusti’s operational range estimation for asphalt. Top row represents experiments performed using 11.1 V @1500 mAh battery @80 rpm followed by @140 rpm . 

Bottom row represents the similar pattern for 11.1 V @2200 mAh battery respectively. 

183 
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Fig. 10. Rusti’s operational range estimation for tiles. Top row represent experiments performed using 11.1 V @1500 mAh battery @80 rpm followed by @140 rpm . 

Bottom row represents the similar pattern for 11.1 V @2200 mAh battery respectively. 

Fig. 11. Range estimation error for Rusti while traversing on grass, asphalt and tiles. Here b 1, b 2 refer to the 1500mAh and 2200mAh batteries and 𝑣 1 , 𝑣 2 refers to 

0.544,0.952 m/sec velocities respectively. 
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e ≈0.01. Using this prior information, we estimated the operational
ange using the offline model in the 20 experiments presented here. As
he mean estimation error for the offline model is about 30 meters in
ach experiments, with even lower errors at slower speeds, the value of
 ( 𝑡 ) 𝐸𝑛𝑣 = 0 . 01 is claimed to be optimal. 

For online estimation, the estimate of the net operational range is
pdated recursively using mission data acquired in real time. We do
ot explicitly provide a priori known mission information to deduce the
alue of the parameters 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 and 𝑣 . Instead, they are deduced based
n real-time mission information. When deploying this model in real
ife, we can set the prior mission information based on the information
athered in that terrain/field from previous experiments. If no previous
xperiment data is available, then, the first few values can be used to
enerate a prior knowledge. For this work, we utilized the initial set of
amples as the prior information for the online model. We refer to the
184 
nitial instability in the Ardrone and the sensor’s data, just after takeoff,
s the burn-in phase. The data of the burn-in phase is discarded and the
nline estimation frameworks is activated only upon Ardrone’s stabiliza-
ion. For the purpose of continuous representation in graphs, the data
as interpolated during this phase resulting in the initial straight line

rends observed during the burn-in phase of the plots. Also, as is evident
rom the plots, the online estimator converges to the true distance as the
ission progresses. As more and more mission data becomes available,

he estimation performance of the online model becomes significantly
etter than its offline counterpart. 

It must also be pointed out here that the variations in the online es-
imator are quite profound during the early stages of the mission which
an be attributed to the fact that the estimator is trying to update its
elief with sparse and limited amount of data, but it quickly stabilizes
s the amount of data grows. Also, it might seem that increasing the
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Fig. 12. Ardrone’s operational range estimation at various velocities. The notation convention used in the figure labels are as follows: 𝑣𝑒𝑙 ∗ refers to the operational 

velocity used for the trial and exp ∗ refers to the experiment ID. In this figure, we have only shown the results obtained during experiment 2 for operational velocities 

in {0.1, 0.2, 0.4, 0.6} and {0.8} m / sec respectively. 
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Fig. 13. Battery Decay for UAV while hovering and during motion. 
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10 Analyzed from the data obtained from motion experiments at varying veloc- 

ities as shown in Fig. 12 . 
perational velocity ( 𝑣 ) always leads to an increase in the operational
ange ( d ). However, when the Ardrone attains an operational velocity
 𝑂𝑝𝑡 which is high enough, so much so, that the aerodynamic drag forces
cting on the body of the drone is higher than that on the propeller, the
heoretical maximum operational range ( d Max ) will be attained and any
urther increase in the velocity will result in decrease in the operational
ange. Besides, such high velocities ( 𝑣 𝑂𝑝𝑡 ) are not attainable by current
ulti-rotor UAVs. 

We would also like to highlight that the variance in the input data
wind compensation angle) being very low, results in low variance in
 ( 𝑡 ) 𝐸𝑛𝑣 . This low variance in 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 , coupled with its low absolute value
1% on average), results in very low variance in predicted distance, often
ess than a meter. So for the sake of clear understanding of the experi-
ental graphs, we have omitted the variance in predicted distance. From

he data acquired from the field experiments, we see that the variance
n wind compensation angle ( 𝜃) is very small. So using the information
rom Fig. 7 , we see that the variance in 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 will also be small. The
ariance in predicted operation range ( Eq. (34) ) will come from the fac-
or 1 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 . However, very small absolute value of 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 (almost
qual to 0.01) along with small variance leads to very small variance in
 + 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 , leading to small variance in predicted distance. This makes
ense considering the fact that UAV experiments lasted for about 10 − 12
ins. and were carried out in calmer conditions for the safety of the
rone. The variance in wind, and thus wind compensation angle would
e small. 

In Fig. 13 , we showcase how the energy stored in the battery is con-
umed as the mission progresses. An interesting fact to note here is that
he trends for both the hovering case and motion case are quite similar.
185 
he reason for this can be attributed to the fact that the value of 𝑘 ( 𝑡 ) 𝐸𝑛𝑣 
hich represents the average excess percentage of thrust that needs to
e exerted to maintain stability and velocity, owing to changing envi-
onmental conditions, remains below 2% 

10 So, the major component of
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Fig. 14. Range estimation error. Plot showing error in operational range cal- 

culated using the offline and online models along with corresponding standard 

deviation. 
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nergy is utilized to maintain flight (altitude) instead of stabilizing the
otorcraft and maintaining its velocity. 

Fig. 14 shows the operational range estimation performance for both
ur proposed online and offline frameworks. For this, we report average
stimation error of both frameworks for each operational velocity. It
an be clearly seen from the graph that the online model is ≈58% more
fficient than its counterpart. Also, to clarify the high offline estima-
ion error at 𝑣 = 0 . 1 𝑚 ∕ 𝑠, we would like to point out that even for small
mounts of hovering time, the percentage difference in the average ve-
ocity and operational velocity is considerably higher than in cases of
igher velocities which translates to higher percentage error in predic-
ion using the offline model. 

. Conclusion 

In this work, we have presented a methodology for identifying and
uantifying the energy consumers for mobile robots. This work is an ex-
ension of our prior findings with the purpose of making our operational
ange estimation framework well suited to multiple robot platforms op-
rating in real-world scenarios. The aim of this study was to unify the
attery dissemination models into one framework that can now estimate
perational range for various robotic platforms operating under realis-
ic environmental conditions. Existing works focus on a pre-meditated
ission profile and thereby try to estimate the energy requirements for

he mission. However, the missions are usually limited by the available
esources (energy stored in battery). Thus, we intend to solve the inverse
roblem of optimizing the mission profile given a fixed energy budget
governed by the battery type) and known robot dynamics model. The
dvantage of our framework is that it can be used for commercial and
ustom-built robots alike and is easily extendable to a plethora of plat-
orms. Our framework is assisted by two operational range estimation
odels: Firstly, an offline model which relies on the expertise of the oper-

tor for setting the prior information, and, secondly, a self-reliant online

ariant that iteratively updates the operational range based on the avail-
ble mission data. The advantage of proposing both variants in a unified
ramework could be realized from the fact that while the offline model
llows the supervisor to set a rough upper bound on the path length
f the robot at the beginning of the mission, the online model can re-
ursively update the bound based on real-time performance data. High
ccuracy of our proposed framework ensures that the robots would re-
urn to base station thereby preventing them from getting stranded in
he field during the mission. 
186 
Upon empirical evaluation, we verified that the framework incurs
ignificantly lower error as compared to our prior work, and further-
ore, the online model outperforms the offline variant. The online model

stimates operational range with an average accuracy of 93.87%, while
he offline model attains 82.97%. In light of this claim, our framework is
ell suited to be considered as a state-of-the-art for operational range es-

imation of a variety of robots operating under natural outdoor environ-
ental conditions. In our further works, we would like to enhance our

ncillary functions ’ energy consumption model by implementing SLAM
31] and mounting an array of additional sensors endowing our robot
 full autonomy suit to make self-reliant decisions. In doing so, the en-
rgy consumed by the ancillary branch would significantly increase and
hus, the importance of accurately estimating operational range from the
esidual maneuvering energy would become even more pronounced. 
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