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Abstract— Learning motion planners to move robot from one
point to another within an obstacle-occupied space in a collision-
free manner requires either an extensive amount of data or
high-quality demonstrations. This requirement is caused by the
fact that among the variety of maneuvers the robot can perform,
it is difficult to find the single optimal plan without many
trial-and-error or an expert who is already capable of doing
so. However, given a plan performed in obstacle-free space,
it is relatively easy to find an obstacle geometry, where this
plan is optimal. We consider this “dual” problem of classical
motion planning and name this process of finding appropriate
obstacle geometry as hallucination. In this work, we present
two different approaches to hallucinate (1) the most constrained
and (2) a minimal obstacle space where a given plan executed
during an exploration phase in a completely safe obstacle-free
environment remains optimal. We then train an end-to-end
motion planner that can produce motions to move through
realistic obstacles during deployment. Both methods are tested
on a physical mobile robot in real-world cluttered environments.

I. INTRODUCTION

While classical motion planners, such as Dynamic Win-
dow Approach (DWA) [1], can reliably navigate the robot
in cluttered spaces with properly tuned parameters, recent
machine learning techniques have also been applied to the
motion planning problem [2]. Those approaches either learns
from a classical motion planner [2] or a human expert [3],
or through an extensive amount of trial-and-error, such as
Reinforcement Learning (RL) [4]. However, most learned
motion planners still under-perform their classical counter-
parts. Despite the advantage of learning motion planners
without hand-crafted rules [1] or in-situ adjustment [5] in
a data-driven fashion, the performance is still bottlenecked
by the requirement of good-quality training data [6].

Consider the “dual” problem of motion planning: instead
of finding the optimal motion plan for a specific obstacle
configuration, either using hand-crafted rules or training
data, we seek to find the obstacle configuration(s) where a
specific motion plan is guaranteed to be optimal. We name
this process hallucination. Solving this problem gives us
the freedom to allow random exploration in a completely
safe obstacle-free space and collect an extensive amount
of motion plans, whose optimally will be assured by a
class of hallucination techniques. In this work, we introduce
two of those techniques: to hallucinate (1) the (unique)
most constrained and (2) a (not unique) minimal obstacle
configuration.
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II. GEOMETRIC HALLUCINATION
Given a robot’s configuration space (C-space) partitioned

by unreachable (obstacle) and reachable (free) configura-
tions, C = Cobst ∪ Cfree, we define the classical motion
planning problem as to find a function f(·) that can be used
to produce optimal plans p = f(Cobst | cc, cg) that results
in the robot moving from the robot’s current configuration
cc to a specified goal configuration cg without intersecting
the interior of Cobst. Here, a plan p ∈ P is a sequence
of low-level actions {ui}ti=1, where ui ∈ U. This work
introduces two methods to approach the “dual” problem of
finding optimal f(·).

A. Hallucinating Most Constrained Obstacle Space [7]
Since different Cobst can lead to the same plan, the left

inverse of f , f−1, is not well defined (see Fig. 1 left).
However, we can instead define a similar function g(·) such
that C∗obst = g(p | cc, cg), where C∗obst denotes the C-
space’s most constrained unreachable set corresponding to
p.1 Formally, given a plan p and the set of all unreachable
sets Cobst, we say

C∗obst = g(p | cc, cg) iff ∀Cobst ∈ Cobst,

f(Cobst | cc, cg) = p =⇒ Cobst ⊆ C∗obst,
(1)

We denote the corresponding reachable set of C as
C∗free = C \ C∗obst. We call g(·) the most constrained
hallucination function and the output of g(·) a most con-
strained hallucination. This hallucination can be projected
onto the robot’s sensors. For example, for a LiDAR sensor,
we perform ray casting from the sensor to the boundary
between C∗obst and C∗free in order to project the hallucination
onto the range readings (Fig. 1 right). Given the hallucination
C∗obst for p, the only viable (and therefore optimal) plan is
p = g−1(C∗obst | cc, cg). Note that g(·) is bijective and its
inverse g−1(·) is well defined. Leveraging machine learning,
g−1(·) is represented using a function approximator g−1θ (·).
Note that we aim to approximate g−1θ (·) instead of the
original f(·) due to the vastly different domain size: the most
constrained (C∗obst) vs. all (Cobst) unreachable sets.

During deployment, we use a smoothed coarse global path
from a global planner to generate runtime hallucination so
g−1θ (·) does not need to generalize to unseen scenarios. Other
components, including a Turn in Place, Recovery Behavior,
and Speed Modulation modules, are used in conjunction with
g−1θ (·) to address inevitable out-of-distribution scenarios and
adapt to the real C-space.

1Technically, cg can be uniquely determined by p and cc, but we include it as an
input to g(·) for notational symmetry with f(·).



Fig. 1: p = f(Cobst | cc, cg) and C∗obst = g(p | cc, cg)

Fig. 2: Left: Cminobst is defined by three consecutive configura-
tions with cc, cm, cg , and symmetry point c′m. Right: LiDAR
reading is randomly sampled between min and max range.

B. Hallucinating Minimal Obstacle Space [8]

Learning from hallucinated C∗obst can efficiently reduce
input space, and therefore learning complexity, but requires
runtime hallucination and other components during deploy-
ment. Hallucination of a minimal obstacle space generates
Cminobst , which is a minimal set of obstacle configurations
required to cause the plan p to be optimal, We then ran-
domly samples augmentations to the minimal unreachable
set. Formally, we define the set of Cminobst as:

Cmin
obst = {Cminobst | ∀c ∈ Cminobst ,

f(Cminobst \ {c} | cc, cg) 6= f(Cminobst | cc, cg)}
(2)

We use a special Cminobst to approximate any Cminobst ∈ Cmin
obst

(Fig. 2 left). This approximation is sufficient when the robot
trajectory is composed of a dense sequence of configurations
and Cminobst is instantiated on discrete LiDAR beams, which
will be shown empirically. As shown in Fig. 2 right, the max
range of a LiDAR beam is determined by Cminobst (if the beam
intersects Cminobst ) or the sensor’s physical limit (if not), while
the min range for each beam is determined by the boundary
of the robot path. A random range is sampled between the
min and max values, considering possible continuity among
neighboring beams and being offset for uncertainty/safety
induced by the optimal plan p. Therefore, many Cobst can
be augmented based on Cminobst . We then train a parameterized
policy fθ(·) to approximate classical motion planner f(·).

The advantage of augmenting Cminobst and generating many
Cobst is, during deployment, no runtime hallucination with
the help of a global path and other extra components are
required. The learned fθ(·) can plan in response to the real
perception and adapt to the actual scenarios on its own.

C. Physical Experiments2

Two datasets are collected by two random exploration
policies in an obstacle-free space in simulation: one with

2Videos: https://www.youtube.com/watch?v=T72Z6rz9ges&t=1s
and https://www.youtube.com/watch?v=xtLaSF0kiB0&t=49s.

mostly constant 0.4m/s linear velocity (v ≈ 0.4m/s) and
varying angular velocity (ω ∈ [−1.57, 1.57]rad/s), the other
with varying v ∈ [0, 1.0]m/s and ω ∈ [−1.57, 1.57]rad/s.
If trained on the first dataset, the speed of the planner
output is modulated by a Model Predictive Control based
collision probability checker, achieving a max v = 0.6m/s.
Four neural network based planners are trained using the
two datasets and two hallucination techniques. Simulated [9]
and physical experiments are performed. While the minimal
hallucination works well on both datasets and outperforms
all other variants, and even a classical motion planner [1],
the most constrained hallucination only performs well on the
0.4m/s dataset. This is because learning from varying speed
while hallucinating only the most constrained space causes
ambiguity for the learner.

III. CONCLUSIONS
We present a class of two geometric hallucination tech-

niques that approach the classical motion planning problem
from the opposite direction. Instead of seeking an optimal
motion plan for an obstacle configuration, we find the obsta-
cle configuration(s), where a motion plan is optimal. The first
approach hallucinates the most constrained C-space, where
the plan is the only feasible, and therefore optimal, plan.
It largely reduces the learning complexity, since the learned
motion planner g−1θ (·) only plans in the most constrained
C-spaces, instead of any C-spaces. However, the downside
of this approach is during deployment, runtime hallucination
along with other extra components are necessary. The second
approach finds a minimal obstacle set to make a plan optimal,
augments this minimal set to generate a large body of training
data, and therefore does not require any extra components
during deployment.
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