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Abstract— We present a novel learning-based trajectory gen-
eration algorithm for outdoor robot navigation. Our goal is to
compute collision-free paths that also satisfy the environment-
specific traversability constraints. Our approach is designed
for global planning using limited onboard robot perception in
mapless environments while ensuring comprehensive coverage
of all traversable directions. Our formulation uses a Conditional
Variational Autoencoder (CVAE) generative model that is
enhanced with traversability constraints and an optimization
formulation used for the coverage. We highlight the benefits
of our approach over state-of-the-art trajectory generation
approaches and demonstrate its performance in challenging
and large outdoor environments, including around buildings,
across intersections, along trails, and off-road terrain, using
a Clearpath Husky and a Boston Dynamics Spot robot. In
practice, our approach results in a 6% improvement in coverage
of traversable areas and an 89% reduction in trajectory portions
residing in non-traversable regions. Our video is here: https:
//youtu.be/3eJ2soAzXnU

I. INTRODUCTION
Global planning for autonomous mobile robots has

evolved significantly over the years. While many methods
rely on map-based planning [1]–[3], accurate maps are not
always available for many scenarios. These scenarios include
rural areas without complex RGB or geometric features in
the environment [4], areas under construction that undergo
significant change over time, satellite-inaccessible areas, etc.
In these cases, mapless global planning [4] or real-time map
analysis [5], [6] are used for navigation.

Most work in map-based planning has focused on com-
puting a collision-free optimal trajectory [8]–[10]. In con-
trast, a key issue in mapless global planning is to compute
traversable directions for long-range navigation and combine
that with collision-avoidance capabilities of a local plan-
ner [4], [11]. These traversable directions can be calculated
at a low frequency (0.1 Hz) to provide a high-level trajectory
for robots to follow. The difference between outdoor map-
based and mapless navigation arises from the fact that the
lack of an accurate global map does not allow a robot to
conduct very accurate collision checking with occlusions.
Therefore, the global planner only needs to compute the
rough navigation directions at different locations for outdoor
navigation. This task can be rather difficult, as the robot
needs to estimate the possible trajectories based on the
limited onboard observations on complex, outdoor terrains.

The trajectory generation task for global planning presents
several challenges, especially in the absence of a map. As
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Fig. 1: Trajectory generation in a campus environment.
The top view is the robot’s trajectory (around 350m). The
bottom row shows generated trajectories at the two locations
corresponding to green and yellow boxes, respectively. The
trajectory closest to the global target, shown at the top, will
be chosen to provide waypoints for the local planner. The
local planner drives the robot and avoids collisions [7]. In
this complex outdoor scenario, our MTG global navigation
method can efficiently and safely generate trajectories for
global navigation and cover most of the traversable areas,
including the narrow pedestrian sidewalks.

shown in Figure 1, on one hand, the generated trajectories
should avoid non-traversable areas, such as bushes, trees,
etc. On the other hand, the generated trajectories should be
able to cover all these traversable directions in the view
of the robot, account for partial occlusion caused by static
and dynamic obstacles, and resolve any ambiguities in path
computation, as shown in Figure 1 (bottom right).

Current solutions for off-road global planning typically
separate trajectory generation and environmental traversabil-
ity analysis [12]–[14]. Moreover, they often rely on intuitive
human maps to handle the occlusion issues and analyze
the traversability of the environment. However, robots could
potentially leverage encoded information, which can be gen-
erated by encoding the observations of the robot with some
learning models, to directly generate trajectories without ne-
cessitating pre-conceptional map construction. Furthermore,
map construction and planning are also computationally
intensive [15], which hinders real-time navigation. There-
fore, our work aims to develop an end-to-end model that
seamlessly handles occlusion, traversability analysis, and
trajectory generation together. To this end, generators [16],
[17] provide a solution for empirical trajectory generation.
For example, DLOW [18] and Ma et al. [19] utilize historical
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trajectories to generate new ones, incorporating likelihood
loss to encourage the diversity of the generated trajectories.
However, they often overlook inter-trajectory influences and
traversability constraints.
Main Results: We present a novel approach for trajectory
generation in mapless global planning, focusing on creating
trajectories that cover the most viable directions within a
robot’s limited (120-degree) field of view while respect-
ing environmental traversability constraints. We present an
end-to-end mapless trajectory generator, MTG, which can
efficiently compute viable trajectories that are traversable
for both wheeled and legged robots. Our model is trained
and demonstrated in the outdoor scenes, where the non-
traversable areas include bushes, trees, buildings, streets with
traffic, etc. The MTG approach achieves 72% coverage of
the traversable areas in the robot’s field of view. The coverage
is calculated by the distance between generated trajectories
and ground truth trajectories (see Section III). The major
contributions include:

1) Novel End-to-End Learning Model: We propose
a novel end-to-end architecture for global trajectory
generation, which can efficiently and effectively gen-
erate viable trajectories. Based on the architecture of
the Conditional Variational Autoencoder (CVAE), we
extend the method to the task of using multiple trajec-
tory distributions to cover possible traversable areas.
Different distributions of the embedded information,
generated by the encoder, are applied with the attention
mechanism to provide the conditions to the decoders.
The attention model informs the decoders about other
trajectories, guiding the generation of more effective
trajectories, which are closer to the ground truth.

2) New Loss Functions: We design an innovative loss
function that accounts for multiple constraints inher-
ent in mapless trajectory generation. These include
traversability, diversity, and coverage constraints. Our
approach ensures trajectories account for the occlu-
sions caused by dynamic obstacles and do not travel
into non-traversable regions while performing compre-
hensive exploration of open outdoor areas.

3) Performance Improvement: Empirical evaluations re-
veal that our model outperforms existing methods, such
as DLOW [18] and CVAE [16]. We demonstrate the
performance by conducting tests on various robots,
including Clearpath Husky and Boston Dynamics Spot
robots, in challenging environments with occlusions
by dynamic obstacles and different non-traversable
areas, such as trees, buildings, bushes, etc. The testing
environment for global planning has a scale of several
hundred meters. Our method consistently shows at
least 6% improvement in coverage of traversable
areas and up to 89% reduction in trajectory portions
belonging to non-traversable regions.

II. BACKGROUND

Path generation in traversable regions in outdoor navi-
gation has attracted significant attention from the robotics

community [20]–[22] In this section, we review different
approaches.

Traversability Analysis: The simplest approach to path
generation is to separate the task into traversability analysis
and planning [12], [23], [24]. For traversability analysis,
multiple sensors can be used as input. Frey et al. [24] use
an RGB camera and ViT [25] with self-supervised learning
to segment traversable areas; WayFAST [23] uses an RGBD
sensor and a Resenet backbone to segment the traversable
areas from the input observations. Step [12] uses both a
Lidar and an RGB mono camera to extract an elevation
map and analyze multiple risks on the map, including
collisions and steep elevation. These methods assume that
with the perfect traversability map, the trajectory generation
problem can be handled by regular path/motion planning
algorithms. However, in real-world scenarios, building an
accurate traversability map in real-time is non-trivial due to
occlusions in observations and the computational constraints
in building a map [13]. In addition, the map is for human
perception, but a robot does not require a human-friendly
map for navigation. We don’t need to generate any interme-
diate map in the process. Therefore, an end-to-end learning
strategy could be efficient to handle the problem of trajectory
generation in traversable areas with occluding obstacles.

End-to-end Approaches: Generating trajectories on
traversable areas can be based on the empirical information
of either other agents or the robot itself. TridentNetV2 [26]
uses a raw path planned by a global planner as a guide to help
the trajectory generation reach a target specified by a GPS
coordinate. However, this method still requires a high-level
map for planning before trajectory generation. ViKiNG [27]
and LaND [28] train their models to generate trajectories
approximating a collected dataset, but these methods are
trained with a specific optimization target and cannot provide
multiple possible directions for different navigation purposes.
FlowMap [29] assesses the agents in front of the robot
to estimate the traffic flow and to generate the trajecto-
ries. However, all these methods require some guidance
beforehand and cannot fully explore the traversable areas by
generating multiple trajectories. Our approach, on the other
hand, generates diverse trajectories that satisfy traversability
constraints and can cover most traversable areas in front of
the robot.

Trajectory predictions: Trajectory prediction estimates
the future trajectories of agents based on their historic paths.
SocialGAN [17] and Flomo [30] use generative models to
forecast the trajectories of the agent, but they cannot generate
diverse trajectories to cover all traversable areas. DLOW [18]
and Ma et al. [19] use the likelihood loss to learn diverse
trajectories. However, they do not constrain the trajectories
to traversable areas. For terrains with limited traversable
areas, such methods could experience convergence issues
since some trajectories always lie in non-traversable regions.
Vern [31], TerraPN [14], GrASPE [32] and AdaptiveON [7]
handle the navigation in off-road navigation scenarios. Al-
though these methods only solve short-distance motion plan-
ning problems, they are complementary to our approach.



Fig. 2: Overall Pipeline of MTG: The inputs are several consecutive frames of Lidar point clouds and velocities of the
robot, ϵ is a Normal distribution, and c is the condition value. Green circles represent distribution of zk, p(zk), where
k ∈ {1, ...,K}. The last part represents the decoders, and each decoder generates one trajectory.

III. APPROACH

In this section, we formulate our problem and describe
our approach to solving it. For global navigation, we need
the local trajectory generator to provide enough trajectory
candidates to cover the traversable areas in the available free
space. In this method, we only use a map in the training
stage. In the experiment stage, the method directly takes
robots’ perceptions as input and output trajectories. During
training, with a traversability map shown in Appendix [33]
Section VI-E, we use the A* algorithm to generate trajecto-
ries to different distributed targets, which are in traversable
areas with a certain distance D from the robot. We assume
that these trajectories mostly cover the directions to all open
spaces in the D-meters. We define these trajectories as the
ground truth trajectories. The coverage of the generated
trajectories is measured by the distances to the ground-truth
trajectories.

A. Problem Formulation

Given the observation o ∈ O, our end-to-end model, mθ(·)
with parameters θ, generates trajectories τk ∈ T , where
τk = mθ(o)k is the kth output of the model mθ(o). K is
the number of generated trajectories. We formulate trajectory
generation as an optimization problem under the constraints
of traversability as follows:

θ̂ = arg max
θ

(⋃K
k=1 f(mθ(o)k)

|A|
− β

K∑
k=1

g(mθ(o)k, Ã)

)
,

(1)

where θ̂ is final well-trained parameter of our model. f(·)
represents the area covered by the generated trajectories τk
in the traversable area, A. g(·) calculates the portion of the
path τk in non-traversable area, Ã. β is a hyper-parameter.
Intuitively, the first term is to encourage trajectories to
cover traversable areas, and the second term is to constrain
their traversability. In this approach, we use the negative
exponential distance to the ground truth to substitute the first
term of Equation 1.

In our formulation, the input contains two sorts of obser-
vations O = {Li,V}, where Li represents the past Nl frames
of 3D Lidar point clouds and V composes Nv consecutive
frames of the robot’s velocities. The encoder, as shown in
Figure 2, processes the observation into an embedding vector
z and a condition vector c. Some randomness is introduced
for the trajectory generation by Gaussian noise ϵ to z. Then a
decoder takes the embedding vector to generate a trajectory
τ . The model’s formulation is represented as,

p(τ |c) =
∫
z

p(τ |z, c)p(z)dz; (2)

p(τ |c) ≈ 1

S

S∑
s=1

p(τ |z(s), c), z(s) ∼ pθ(z|x). (3)

Here, τ ∈ T denotes the generated trajectory, and its
distribution form is denoted as p(τ |x). τ is composed of
S waypoints in the forward (X-axis) and the left (Y-axis)
directions of the current robot frame. x ∈ O denotes the
input observation. In addition, l ∈ L, v ∈ V . z ∈ Z denotes
random sampling data from a Gaussian distribution p(z).
We use a network to represent the function c = fe(x). fe
represents the encoder.

B. Attention-based CVAE

From Equation 1, there are two major tasks: 1. gen-
erate trajectories to cover all traversable areas; 2. make
the trajectories traversable. For the 1st task, it requires the
trajectories to be as diverse as possible to maximize the
coverage. To make the trajectories diverse, we utilize the
DLOW [18] algorithm to linearly project the embedding
vector z to different axes and train the model with trajecto-
ries’ distance. For the 2nd task, considering we can generate
many trajectories but the traversable areas might be limited,
there could be some redundant trajectories that cannot find
uncovered traversable areas. Thus, we define the trajectories
closest to the ground truth trajectories as effective trajectories
and other trajectories as redundant trajectories, under the
assumption that ground truth trajectories are the smallest
number of trajectories to cover all the traversable areas. In
this project, the output of each decoder is a sequence of



positional difference (∆xn,∆yn), which can be accumulated
to a trajectory τ = {p1, ..., pn, ..., pN}, where each position
pn = (xn, yn).

For the diversity of the trajectories, as DLOW, we use mul-
tiple invertible linear transformations zk = Ai(c)z+ bi(c) =
hψari(z) to transform the embedding Gaussian distribution
N (µ, ν) to different Gaussian distributions N (µk, νk), where
ψi = {Ai(c), bi(c)} represents the parameters of the linear
transformation layers. z is the embedding Guassian distribu-
tion with randomness ϵ ∼ N (0, I). For K trajectories, each
trajectory τk can be generated by the decoder, p(τk|zk, c),
where zk ∈ Z and Z represents the set of Gaussian
distributions.

For the effective and redundant trajectories, given the
embeddings Z , we use a self-attention model [34] g(Z) to
calculate the relationship among all zk ∈ Z . Therefore, each
embedding zk is enhanced by other embeddings’ information
Z̄ , where Z̄k = Z \zk. The enhanced embedding zk will be
put into a decoder to generate a single trajectory. Now we
have the CVAE formulation as

p(τk|c) =
∫
zk

p
(
τk|zk, c, Z̄k

)
dzk. (4)

This formulation is to constrain the effective trajectories τc
and redundant trajectories τo to be as close as possible, and
τc,i ∈ τc are as diverse as possible to cover all ground truth
trajectories. Therefore, here are two targets: min d(τc, τo)
and max d(τc,i, τc,j), where d(·, ·) is the distance function
between two trajectories. DLOW [18] solves the second
target, but it’s not able to solve the first target effectively
due to the lack of information on other trajectories. Our
formulation provides the information Z̄ to the decoders and
helps trajectories to achieve the first target.

C. Constraints on Traversability, Diversity, and Coverage

The generated trajectories should satisfy different con-
straints in the outdoor environment: 1. cover different
traversable directions; 2. only lie in traversable areas;
and if there are redundant trajectories after covering all
the traversable areas, these trajectories should still lie in
traversable areas. These constraints are not trivial challenges,
so in the following, we present the methods to apply the
constraints as loss functions in our approach.

The CVAE’s lower bound loss function: This loss
function is to constrain the generated trajectories as ground
truth trajectories. The lower bound loss function contains two
parts: KL-divergence and reconstruction loss, as in Equation
5

LC = −DKL(q(z|x) ∥ p(z)) +
1

L

L∑
l=1

log pθ(τ |x, z). (5)

The reconstruction loss can be formulated in two parts: 1.
The difference between the final positions from both the
ground truth and the generated trajectory; 2. The average
Hausdorff function [35]to make the generated trajectories τ̂
cover all the target trajectories τ , as in Equation 6, where s

and ŝ are waypoints in the trajectories.

dh(τ̂ , τ) =
1

2

(
1

|τ |
∑
s∈τ

min
ŝ∈τ̂

d(s, ŝ) +
1

|τ̂ |
∑
ŝ∈τ̂

min
s∈τ

d(ŝ, s)

)
.

(6)

In contrast to the traditional CVAE reconstruction loss
with only one ground truth and one output, we have multiple
ground truth and output trajectories in each step. We want
the generative model to cover all the ground truth instead
of only one-one comparison. Therefore, we change the
reconstruction loss to the coverage loss, where in each time
step we only back-propagate the information of the nearest
trajectory to each of the ground truth trajectories:

LCV AE = DKL(q(z|x) ∥ p(z)) + dh(τ̂c, τk), (7)

where the τ̂c is the closest trajectory to the kth ground truth
trajectory τk.

Diversity loss function: In this problem, we generate
T trajectories at each step that are diverse enough. Very
different from DLOW, if T is more than the ground truth
trajectories, we want the redundant generated trajectories as
close as possible to other ground truth trajectories. We have
the diversity loss function:

LD = exp (−d(τ̂c, τ̂c)) + exp (d(τ̂o, τ̂c)), (8)

where τ̂ is the output trajectory, τc represents the trajectories
closest to one of the ground truth trajectories, and τo rep-
resents the redundant trajectories. The redundant τo always
appears when generated trajectories are more than ground
truth trajectories. d(·) is the Euclidean distance between two
trajectories, where each τo only compares with the closest
τc. The attention model contributes to telling the information
of other trajectories and enhances the generated trajectories
either close to the ground truth or close to other effective
trajectories, τc.

Traversability loss function: Trajectory generation re-
quires the generated trajectories to be collision-free with
nearby obstacles (bushes, trees, buildings, etc) or incursions
into non-traversable areas. We use the distance to the non-
traversable areas as the loss to train the generated trajectories
away from the regions:

Lc = exp

(
1−min(max(

1

N

N∑
n=1

min d(C,pn), 1), 0)

)
,

(9)

where C represents the obstacles set near the robot and
distance function d(·) represents the Euclidean distance
between the generated waypoint pn and the obstacles or non-
traversable areas.

The total loss function can be written as,

L = β1DKL(q(z|x) ∥ p(z)) + β2 (dh(τ̂c, τk) + LD) + β3Lc,
(10)

where the first part is the CVAE KL-divergence, and the
second part contributes to the exploration by achieving the
maximum open space by covering the ground truth paths.
The third part constrains the paths to the traversable areas.



IV. EXPERIMENTS
In this section, we introduce the details of the imple-

mentation, describe the results, and compare MTG with
other approaches. For the real-world experiment we combine
MTG and a low-level motion planner AdaptiveON [7] for
global navigation as shown in Figure 1. Details of the real-
world experiment can be found in Appendix [33] VI-A. We
also analyze the confidence of generated trajectories and the
generalizability of our approach in Appendix [33] VI-B.

A. Implementation

During experimentation, we deployed the model on differ-
ent robots, a Clearpath Husky and a Boston Dynamics Spot.
The major perceptive sensor is a 16-channel Lidar, Velodyne
VLP-16, with a 3Hz frequency. we choose Nl = 3 frames
in the experiment, based on the prior research [36], [37]
that 3 previous frames are enough to encode the information
of dynamic obstacles for collision avoidance. To keep the
observation at the same time, we choose Nv = 10 for ve-
locities based on a 10Hz frequency measured by the robots’
odometers. Our training and testing datasets are collected in
a campus environment, as shown in Appendix VI-G; the two
datasets are collected from very different areas. The training
dataset contains three parts: 1) The original observation data,
including Lidar and velocities. 2) Based on the perception,
we build a traversability map, which is only used as the
ground truth to guide the training. We briefly described the
generation of the traversability map in Appendix VI-C. 3)
Based on the map, we sample multiple diverse targets and
apply an A* planner to generate raw ground truth trajectories.
The targets are sampled 15m away, considering the robot’s
speed is 1m/s and the trajectories are generated for the next
15 seconds. Details are in Appendix [33] VI-D

As Figure 2 shows, the encoder encodes perception in-
formation to a hidden vector c, which is also the condition
value of the decoder. It contains two sub-models. One is
the Lidar model which composes multiple 3D convolution
layers to process the stacked Lidar data. In this work, we
use PointCNN [38] to process the Lidar data with a 0.08m
voxelization radius. The other model is a velocity model,
including three consecutive fully connected layers, to process
the velocity data. Then these two encoded perception data are
concatenated and processed by several fully connected layers
to generate the hidden vector c. The Ai(c) and bi(c) are
Linear layers with the input, c. The g(Z), is processed by an
attention model where the inputs are the processed Gaussian
distribution vectors and the outputs are cs. Concatenated
with the encoded condition c, we have ci = {cs, c} as
the input of the condition to the decoder. The decoder is
composed of a sequence of GRU cells and outputs a sequence
of {∆xn,∆yn}, which are accumulated to waypoints pn =
(xn, yn) with the initial position of {0, 0}. The details of the
architecture can be found in Appendix [33] VI-F. In each
generated trajectory, there are 16 waypoints, based on the
furthest distance of 15m. The training is processed by an
NVIDIA RTX A5000 GPU and an Intel Xeon(R) W-2255
CPU, and we use this machine for evaluation. The qualitative

evaluation results between the ground truth A* and generated
trajectories are in Appendix [33] VI-E.

B. Comparing Results

In this section, we qualitatively and quantitatively evaluate
the performance of our method with other approaches.

1) Quantitative Results: The evaluation metrics include
the following:

Non-traversable rate: Ratio of the generated trajectories
lying on non-traversable areas. This metric is calculated by

rn =
1

K

K∑
k=1

g(mθ(o)k, Ã)

|τk|
, (11)

where g(·) is defined in Equation 1 as the segments of
trajectory τk lying on non-traversable areas.

Coverage rate: This metric measures the coverage of
the traversable areas in the robot’s perception by generated
trajectories. In this project, we set the robot’s perception
to a 120-degree field of view in front of the robot. The
assumption is that the ground truth trajectories covered all the
traversable areas, which is true of most of the cases based
on the traversable map we built. We measure the smallest
Hausdorff distance between ground truth trajectories and the
generated trajectories and use the following equation as the
coverage metric:

rc =
1

G

G∑
i=1

exp−min dh(τi, Ŷ), (12)

where G is the number of all ground truth trajectories in the
map and Ŷ is the set of generated trajectories. τi is the ith
of the ground truth trajectory.

Diversity rate: Diversity of the generated trajectories.
This metric measures the Euclidean distance among the
generated trajectories. This metric is a complement to the
coverage metric.

rd =
1

N2

N∑
i=1

N∑
j=1

dh(τ̂i, τ̂j), i ̸= j. (13)

Methods Non-traversable Coverage Diversity Running
(109) Time (ms)

Ground Truth 0 1 28 N/A
CVAE [16] 0.14 0.63 7.0 5
DLOW [18] 0.15 0.68 79.0 3
MTG1(Ours) 0.017 0.70 10.0 4
MTG(Ours) 0.013 0.72 14.0 5

TABLE I: Comparison of CVAE [16], DLOW [18], vanilla
MTG, and complete MTG. The ground truth values are also
provided as a reference. Our method achieves 6% improve-
ment in coverage of traversable areas using Equation 12 and
improves traversability of the trajectories using Equation 11.

Running time: t in each step and the unit is seconds.
We compared our method with ground truth A* paths,

vanilla CVAE method [16], and DLOW [18]. As shown in
Table I, CVAE doesn’t have a diversity function or coverage



(a) CVAE (b) DLOW (c) MTG

Fig. 3: The quality results of CVAE [16], DLOW [18], and MTG. The top row is from the robot’s view, and the bottom
row is the birds-eye-view. White areas are non-traversable areas. The CVAE generates trajectories very similar to each other,
while DLOW has a large diversity but is not good in terms of traversability. Our approach generates trajectories that cover
mostly all traversable directions and lie on only traversable areas.

constraints, so the output centers on very similar trajectories.
Therefore, the coverage and diversity of CVAE are very
low. The DLOW method evenly implies the diversity loss
to separate the generated trajectories, so the diversity value
is high. However, neither CVAE nor the DLOW method pro-
vides hard constraints on the non-traversable areas, leading
to trajectories with large segments lying on non-traversable
areas. MTG1 is our method without global information of
other trajectories. With the traversability loss, the generated
trajectories mostly lie in the traversable areas. Because our
diversity loss only applies to the trajectories nearest to the
most effective trajectories (closest to the ground truth tra-
jectories) and drives redundant trajectories close to effective
trajectories, this model has better performance in coverage
but lower diversity than DLOW. The final model, MTG,
implies the information of other trajectories in each decoder;
with the references from other trajectories, the model is
easier to train with better coverage.

2) Qualitative Results: In this section, we qualitatively
show the generation performance of our approach and com-
pare trajectory quality with the other approaches.

Fig. 4: Trajectory generation with different traversable areas;
the blue area corresponds to the region visible to the robot,
and the purple areas denote people.

As shown in Figure 4, the bottom rows of the figures are
from the robot’s view, and the top rows of the figures are
captured from behind the robot. The generated trajectories
are the red curves on the bottom row. Figure 4 (a) to

(c) shows that, with different perception occlusions, the
trajectory generator is still able to cover all diverse directions
the robot can achieve on traversable areas. Figure 4 (a) shows
the generated trajectories covering diverse future directions
the robot can achieve in traversable areas. Figure 4 (b) shows
the trajectory generation with partially occluded perception
and Figure 4 (c) shows the trajectory generation when the
only path in front of the robot is blocked. We can observe
that the trajectories cover the traversable areas well and can
also account for the influence of the dynamic obstacles.

The trajectories generated by different methods are com-
pared in Figure 3. The top row is the robot’s view from
its camera. The bottom row is the local map, where the
white areas indicate the non-traversable regions, which are
manually segmented in the local maps for evaluation. The
purple and red curves are generated trajectories, starting from
the bottom center of each image.

As shown in Figure 3a, the trajectories generated by CVAE
are mostly similar, and some of the trajectories lie on non-
traversable areas. The DLOW method can generate very
diverse trajectories, but, similar to CVAE and as shown in
Figure 3b, the trajectories cannot avoid non-traversable areas
well. Figure 3c shows the trajectories from the MTG method,
which performs better in covering the traversable areas and
not infringing on the non-traversable zones.

V. CONCLUSION AND FUTURE WORK

We present MTG, a novel mapless trajectory generation
method for autonomous mobile robots. We introduce an
innovative trajectory generation architecture that incorporates
a Conditional Variational Autoencoder (CVAE) with an at-
tention mechanism. We also propose novel loss functions that
account for traversability, diversity, and coverage constraints.
We demonstrate superior performance in terms of coverage
of traversable areas and feasibility of the trajectories com-
pared to SOTA methods. This work can be used in the future
for extensive global planning tasks.

This work has some limitations. The current dataset
only provides a front view of the Lidar, thereby limiting
the robot’s ability to generate trajectories behind it. The



traversability map also requires more manual labor before
training. We plan to address these issues in future work.
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VI. APPENDIX

A. Real-world Experiment

For testing, a real-world experiment is done by combining
MTG with a low-level AdaptiveON [7] motion planner for
global navigation, as in Figure 1. We choose the generated
trajectory with the last waypoint closest to the target as the
following trajectory for the local planner. In each step, the
robot takes the nearest next waypoint in the trajectory as the
next goal. The model runs in the timestep around 0.01s on
an onboard machine with an Intel i7 CPU and one Nvidia
GTX 1080 GPU.

B. Analysis

Confidence of Trajectories: The trajectories are gen-
erated by the embedding Gaussian distributions, which are
inputs of the decoder, and we train each distribution to cover
one traversable direction so the standard deviation can tell
the confidence of the trajectory. When the standard deviation
is large, the confidence is low because the distribution is not
certain of the mean value. In our formulation, the variances
for each trajectory can be calculated as vc = AvAT , where
v is the variance of the embedding. vc = {v1, ...,vk},
where vk and A are defined in Section III-B. The generated
trajectories are shown in Figure 5; the higher the variance,
the lower the confidence and the darker the trajectory is. As
the following figures show, when the trajectories are near the
wall or other non-traversable areas, the confidence is low. In
addition, the last row shows when the person is very close
to the robot. Although the model can still ignore the person,
the confidence of the trajectories (passing through the person)
gets lower.

Generalization: As shown in the above results, our model
is well-generalizable to the campus environment. However,
for completely different scenarios like cities or woods, we
don’t expect our method to generalize very well to those
out-of-distribution scenarios, which we believe is reasonable
for most learning-based approaches. In addition to the out-
of-distribution scenarios, because our model is not trained
in non-traversable areas, the model cannot perform well
in fully non-traversable areas. In Figure 6, we demonstrate
that when the robot operates within non-traversable zones,
its trajectories exhibit significant randomness. However, as
the robot exits these zones, its paths realign within the
traversable areas.

C. Traversability Map

Before building 2D maps, we use Lio-sam [15] to build 3D
maps by running robots on the campus. Then we remove the
noisy points and calculate the surfaces of the area. Then large
cliffs, bushes, and buildings are detected and marked as non-
traversable areas. Next, we press the 3D maps into 2D maps,
creating traversable maps with a resolution of 0.1m. Finally,
we manually label some missing non-traversable areas by
combining satellite maps.

D. Trajectory Selection

The trajectory length is empirically determined by our
robot’s speed and the perceptive range of the Lidar sensor. On
the one hand, we would like to generate long trajectories to
provide the robot with proper guidance for future directions.
On the other hand, unnecessarily long trajectories may lead
to occluded areas or out of the perception of the Lidar sensor.
Our two robots drive around 1-2m/s, and 10-20 meters are
enough for robots to drive for 10-20 seconds before the next
trajectory generation. Therefore, we chose 15 meters as our
trajectory length.

E. Qualitative Evaluation

Figure 7 shows the birds-eye-view of the generated tra-
jectories (purple) and ground truth trajectories (yellow and
generated by the A* algorithm). Cyan represents Lidar points
from the middle channel (8th channel) of a 16-channel Lidar
scan for reference. The white areas are all non-traversable
areas. We can see the purple trajectories generated by our
model are very smooth and cover the traversable areas (black
areas), similar to the yellow A* paths.

F. Architectural Details

Perception models in Figure 8: The output of PointCNN
has dimension 512, and it concatenates with the velocity
embeddings, with dimension 256 as input of the Encoder.
The output of the encoder has dimension 512. The function
hψ(z) contains two linear layers, which output dimension
256. The A(·) and b(·) functions are all single linear layers,
and the outputs have the dimension of (512 x trajectory
number).

Self-Attention Model: As in Figure 9, the trajectory em-
bedding keeps the dimension 512.

G. Dataset

The dataset is collected on a university campus. As shown
in the satellite map 10, the blue trajectories are for the
training dataset and the red trajectories are for the testing
dataset. In total, there are 2076 frames with all required
perception data and local maps.



Fig. 5: Trajectory Confidence: The top row shows the camera view of the generated trajectories and the bottom row shows
the bird-eye-view of the trajectories. The Cyan color represents the obstacles detected from the middle channel of the 3D
Lidar.

Fig. 6: The out-of-distribution cases: The top figure shows
the robot fully in a non-traversable area with no traversable
area around it. The bottom figure shows the robot leaving
the non-traversable area, where the robot can still generate
good trajectories.



Fig. 7: Evaluation: A* ground truth paths are yellow trajectories and generated paths from MTG are purple trajectories. The
white are non-traversable areas and cyan is the obstacle detected by the middle channel of the 16-channel Velodyne Lidar.

Fig. 8: Perception Models

Fig. 9: Self-Attention Model



Fig. 10: The data is collected at a university campus. The blue trajectories are for training and the red are for testing.
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