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Abstract— Accurate control of robots at high speeds requires
a control system that can take into account the kinodynamic
interactions of the robot with the environment. Prior works
on learning inverse kinodynamic (IKD) models of robots have
shown success in capturing the complex kinodynamic effects.
However, the types of control problems these approaches can
be applied to are limited only to that of following pre-computed
kinodynamically feasible trajectories. In this paper we present
Optim-FKD, a new formulation for accurate, high-speed robot
control that makes use of a learned forward kinodynamic
(FKD) model and non-linear least squares optimization. Optim-
FKD can be used for accurate, high speed control on any
control task specifiable by a non-linear least squares objective.
Optim-FKD can solve for control objectives such as path
following and time-optimal control in real time, without needing
access to pre-computed kinodynamically feasible trajectories.
We empirically demonstrate these abilities of our approach
through experiments on a scale one-tenth autonomous car. Our
results show that Optim-FKD can follow desired trajectories
more accurately and can find better solutions to optimal control
problems than baseline approaches.

I. INTRODUCTION AND RELATED WORK

At moderate speeds, pure kinematic models or simplified
kinodynamic models are sufficient for point to point motion
control, for example, in model predictive control [1]–[3]
schemes. Such simplified models assume that robots only
operate in a limited subspace of their entire state space, such
as low acceleration and speed, minimum wheel slip, negligi-
ble tire deformation, and perfect non-holonomic constraints.
However, real-world robotic missions such as high-speed
off-road driving may entail violations of such simplified
kinodynamic models.

Since accurate kinodynamic models are hard to construct
analytically, there has recently been considerable interest in
applying learning to motion control [4]. End-to-end learning
is the most straightforward way to encapsulate both the
model and controller in one function approximator and to
train it with data, e.g., learning a neural network using
imitation learning [5]–[12] or reinforcement learning [13]–
[16]. Such end-to-end approaches suffer from drawbacks
such as requiring a significant volume of training data, poor
generalizability to unseen scenarios, and most importantly, a
lack of safety assurance for navigation, which is commonly
provided by classical planning and control algorithms.
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To address such disadvantages of end-to-end learning, hy-
brid approaches have been introduced that leverage existing
robot planning and control methods. For example, Wigness
et al. [17] and Sikand et al. [18] used imitation learning to
learn a cost function for existing navigation controllers to
enable adaptive behaviors for semantics. Similar techniques
have been applied to learn socially compliant navigation
[19]–[21]. Xiao et al. [22] introduced Adaptive Planner
Parameter Learning, which learns to dynamically adjust
existing motion planners’ parameters to efficiently navigate
through different obstacle configurations using teleoperated
demonstration [23], corrective interventions [24], evaluative
feedback [25], and reinforcement learning [26]. These ap-
proaches focus on using machine learning to enable custom
behaviors, such as semantic awareness, social compliance,
or smooth obstacle-avoidance.

Machine learning has also been used for high-speed robot
control [9], [27], [28]. Model Predictive Path Integral con-
trol [29] utilizes a classical sampling based controller in
an online learning fashion: it learns a sample distribution
during online deployment that is likely to generate good sam-
ples [30]. However, it uses a simple unicycle forward model
to predict future paths based on the samples and compensates
for such an over-simplified model by a massive number of
samples evaluated in parallel on GPUs [31]. Brunnbauer
et al. [32] reported that model-based deep reinforcement
learning substantially outperforms model-free agents with
respect to performance, sample efficiency, successful task
completion, and generalization in autonomous racing. Learn-
ing inverse kinodynamics conditioned on inertial observa-
tions [33] has also been shown to be effective for accurate,
high-speed, off-road navigation on unstructured terrain.

Another class of approaches apply machine learning to
model predictive control [34]–[36]. These approaches how-
ever either use simple learned primitives for modelling
dynamics, or are geared primarily towards process control,
and have not been demonstrated to be capable of controlling
complex robotic systems at high speed in real time.

Leveraging a hybrid paradigm to address high-speed robot
control problems, our approach, which we call Optim-FKD,
utilizes non-linear least squares optimization to find optimal
control sequences based on the learned model in order to
enable high-speed, accurate robot motions. The contributions
of this paper are summarized as follows:

1) A novel formulation for robotic control using a learned
forward kinodynamic function and non-linear least
squares optimization. We demonstrate that this for-
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mulation is easily extensible to a range of control
tasks without requiring the retraining of a new forward
kinodynamic model.

2) A novel learning formulation that enables a highly
accurate forward kinodynamic model to be learned.

3) A detailed description of the system architecture re-
quired to enable the presented approach to run on real
robot hardware in real time.

4) Empirical results demonstrating that the presented ap-
proach outperforms baselines for various robot control
tasks.

II. OPTIM-FKD MATHEMATICAL FORMULATION

We first present a general mathematical formulation for
optimal control stated as a non-linear least squares problem
using a learned forward kinodynamic function. Next, we
demonstrate how such a formulation can be applied to
different objectives, including trajectory following and time-
optimal control.

A. Preliminaries

Let X represent the state space of the robot. X consists
of configuration space variables (such as position and orien-
tation) and dynamics variables (such as linear and angular
velocity). Let U represent the control space of the robot.
Consider a period of time of operation of the robot ∆t.
It is assumed that controls are executed on the robot in a
piecewise constant manner. Let τ be the duration for which
a particular constant control is executed. In the time period
of operation ∆t, the robot will execute n = ∆t

τ constant
controls.

To model the response of the robot from the executed
controls, we introduce a state transition likelihood function
ρ : X × Un × Xn → [0, 1]. ρ takes as input the initial
state of the robot x0 ∈ X , a length-n piecewise constant
control sequence u1:n, and a length-n state sequence x1:n.
Each xi ∈ x1:n represents the state of the robot at time i · τ .
The output of ρ is the probability that the state sequence x1:n
is observed after executing u1:n beginning from x0.

We assume that the motion of the robot obeys the Markov
property, that is, the probability of reaching a state xi
depends only on the previous state xi−1 and the constant con-
trol executed beginning at that previous state ui. This induces
a local state transition likelihood function ρi(xi−1, ui, xi) for
every i ∈ 1...n. The probability that x1:n is observed after
executing u1:n from x0 can be written in terms of ρi as

ρ(x0, u1:n, x1:n) =

n∏
i=1

ρi(xi−1, ui, xi) . (1)

Moreover, the maximum likelihood state sequence x̂1:n after
executing u1:n from x0 is

x̂1:n = argmax
x1:n

ρ(x0, u1:n, x1:n) (2)

= argmax
x1:n

n∏
i=1

ρi(xi−1, ui, xi) . (3)

Breaking down each generative probability ρi into discrimi-
native probabilities yields

ρi(xi−1, ui, xi) = p(xi|ui, xi−1)p(xi−1|ui)p(ui) (4)
= p(xi|ui, xi−1)p(xi−1)p(ui) , (5)

where Eq. 5 is obtained by applying the fact that
the previous state xi−1 is independent from the
next control. Plugging Eq. 5 in Eq. 3 yields x̂1:n =
argmaxx1:n

∏n
i=1 p(xi|ui, xi−1). We assume p(xi|ui, xi−1)

follows a normal distribution: p(xi|ui, xi−1) ∼ N (x̄i, σxi
),

and represent the maximum likelihood estimate of
p(xi|ui, xi−1) as the forward kinodynamic function
π(ui, xi−1) = x̄i. With this definition of π, equation 3 can
be rewritten as

x̂1:n = (π(u1, x0), ..., π(un, x̂n−1)) (6)

Next, we show that various robot control problems can be
expressed as nonlinear least squares optimizations that use
the forward kinodynamic function π.

B. Objective 1: Path Following

The problem we consider here is that of following a
predefined path as closely as possible. This problem becomes
noteworthy at high speeds where accurate control of the robot
becomes increasingly more difficult.

We are given x∗1:n which describes a path to follow.
Following this path as closely as possible amounts to solving

u∗1:n = argmax
u1:n

ρ(x0, u1:n, x
∗
1:n) . (7)

From Eq. 6, this is equivalent to solving

u∗1:n = argmin
u1:n

||x∗1:n − x̂1:n||22 , (8)

which is a nonlinear least squares problem where each x̂i ∈
x̂1:n is determined from the forward kinodynamic function
π.

C. Objective 2: Optimal Connectivity

Another variant of the robot control problem that we
consider is reaching a goal state xf from a start state xi in the
shortest amount of time possible. Problems of this type ap-
pear frequently in optimal sampling-based motion planning,
where algorithms like RRT* [37] and BIT* [38] require a
steering function that can time-optimally connect arbitrary
states. Learned kinodynamic models for such problems have
so far only been studied in simulation [39].

Consider the maximum likelihood state sequence x̂1:n
from earlier. If we wanted the final state of the robot to be
as close as possible to the goal state xf , we would optimize

u∗1:n = argmin
u1:n

||xf − x̂n||22 (9)

This formulation however keeps the time that the goal state
xf is reached fixed. Specifically, the state x̂n is reached after
time n ·τ . To also minimize the time taken to reach the goal,
n is introduced as an optimization parameter. This results in
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the objective function

u∗1:n, n
∗ = argmin

u1:n,n
||xf − x̂n||22 + (α(n · τ))2 (10)

where α is a scaling parameter that trades off time to reach
the goal and the distance to the goal. Like the path following
formulation, this formulation is a nonlinear least squares
optimization where x̂n is determined from the forward
kinodynamic function π.

III. FORWARD KINODYNAMIC MODEL LEARNING

In this section we present how the forward kinodynamic
model π is learned. Since π is an integral component to the
nonlinear least squares optimizations introduced earlier, it is
key that π models the true forward kinodynamics effectively.
We learn π for a scale one-tenth autonomous robot car.

A. Dataset Generation

The FKD model π is trained in a supervised manner.
We obtain the labeled training data by teleoperating the
robot at various speeds and recording at every timestep the
state estimates of the robot and the joysticked control com-
mands. This results in a dataset D of trajectories T1, ..., Tm
where each trajectory Ti ∈ D is a tuple of the form
(vx(t), vy(t), ω(t), x(t), y(t), θ(t), δ(t), ψ(t)). Here, vx(t) is
the velocity in the x-direction, vy(t) is the velocity in the y-
direction, ω(t) is the angular velocity, x(t) is the x-position,
y(t) is the y-position, θ(t) is the orientation, δ(t) is the
commanded forward velocity, and ψ(t) is the commanded
angular velocity. All of these functions are time-dependent
and are defined in the domain [0, t

(i)
f ] where t

(i)
f is the

termination time for trajectory Ti.

B. Learning Formulation

The formulation presented earlier for π maps an initial
state of the robot and a constant control to the most likely
immediate next state of the robot. Training of an FKD model
with such short prediction horizon is challenging in practice.
If the model is tasked with predicting the state after τ units
of time, where τ is a small positive number, it can get away
with simply predicting the current state without incurring
much loss. In order to ensure the model’s predictions are of
high quality, the model needs to learn to model the state of
the robot after a time period much greater than τ .

Simply increasing τ would not suffice for achieving a
longer prediction horizon since that would forego the fine-
grained prediction capabilities of the model. We address this
problem by training π in a recurrent fashion. The basic
structure of the recurrence formulation is as follows. The
model predicts the next state xi = π(ui, xi−1). For timestep
i+1, instead of being given access to the ground truth value
of xi, the model uses its previous prediction as the starting
state: xi+1 = π(ui+1, xi). This process continues for the
number of timesteps in the prediction horizon.

This simple recurrent approach has a few limitations
however. The base timestep duration τ is selected to be small
so as to capture minute changes in the state of the robot. In
our experiments we set τ to 0.05 seconds. For the model to

predict the state of the robot after time tpred, tpred
τ forward

passes through the model are needed. In our experiments, we
set tpred to 3.0 seconds, requiring 60 forward passes through
the model. Since π is to be used in a real-time optimization
framework, the number of forward passes through π need to
be limited to maintain computational efficiency. We achieve
this by introducing a model prediction time tmodel. The FKD
model π, in one forward pass, outputs the next tmodel

τ states
given the next tmodel

τ controls. It also takes in as input the
previous tmodel

τ states, enabling recurrence. In our experi-
ments tmodel was set to 0.5 seconds. This approach enables
both computational efficiency and fine-grained prediction.

Having motivated the model formulation, we now present
the learning objective. For each trajectory Ti in our dataset
D, we evenly sample k starting times (t1, ..., tk) from the
range [tmodel, t

(i)
f − tpred]. For each starting time ta ∈

(t1, ..., tk), we use the model to predict the states at times
ta + bτ for b ∈ [0, 1, ...,

tpred
τ ]. For brevity, let Sta be the

state variables vx(t), vy(t), ω(t), x(t), y(t), and θ(t) sampled
evenly with spacing τ from the time period [ta, ta+ tmodel].
Additionally let Mta be the control variables δ(t) and ψ(t)
sampled in the same manner. The model π takes in as input
Mta and Sta−tmodel

and produces as output S̃ta . S̃ta differs
from Sta in that the former is the model’s prediction whereas
the latter is the ground truth. Taking everything into account,
we obtain the following learning objective

argmin
Θ

∑
Ti∈D

∑
ta∈(t1,...,tk)

tpred
tmodel

−1∑
i=0

||π(S̃ta+tmodel·(i−1),

Mta+i·tmodel
)− Sta+i·tmodel

||22
(11)

where Θ is the parameter set of π and S̃ta−tmodel
=

Sta−tmodel
for i = 0.

IV. OPTIMIZATION SYSTEM ARCHITECTURE

In this section, we describe the system architecture of the
proposed approach. We discuss how to integrate the opti-
mization procedure and calls to the FKD model in a manner
that enables real-time control on real robot hardware. Figure
1 shows a block diagram of the system components. There
are four key components that all operate asynchronously: the
state estimator, optimizer, updater, and executor.

A. State Estimator

In order for a predefined path to be followed accurately
or for a goal state to be reached as fast as possible, accu-
rate state estimates of the robot are essential. These state
estimates define the robot’s position, orientation, velocity,
and angular velocity with respect to some coordinate frame.
The state estimates themselves can come from a variety
of sources such as a LIDAR based localization algorithm
or visual odometry. It is assumed that there exists some
delay ϵ between the actual, real-world state of the robot and
output of the state estimator. The state estimator operates
asynchronously, continuously updating a fixed sized buffer
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Fig. 1: System architecture block diagram.

of the most recent state estimates. It is critical that each
estimated state in the buffer is timestamped.

B. Optimizer

The optimizer begins by obtaining from the state buffer
with the most recent estimated state of the robot ξ. This
state is used as the start state in the optimization procedure.
Depending on the optimization objective, different steps are
taken. For the path following objective, it is critical to first
localize the robot on the map that the robot is desired to
follow. Let P be the path that the robot is assigned to follow
at speed vdesired. P consists of a series of robot positions
x, y, θ ordered in increasing order by which each position
is to be reached by the robot. Each optimization will plan
the next ∆t controls for the robot. To do this, the goal state
g ∈ P the robot needs to reach after time ∆t needs to be
determined. Localizing the robot in P amounts to finding the
position s ∈ P that minimizes ||ξ − s||22. The goal state g
can then be obtained by computing g = P ⇝ vdesired · ∆t
where the a⇝ b operator looks ahead in P from position a
by b distance.

Next, the optimizer prepares the input required by the
forward kinodynamic model, namely the past tmodel units
time of robot state information. This is done by running
time synchronization on the states in the state buffer by
making use of the states’ timestamps to sample tmodel

τ evenly
spaced states. Finally the optimization procedure is called,
which optimizes over the next ∆t of controls by making

∆t
tmodel

calls to the FKD model. The result u∗ along with ξ
is stored in a concurrency-safe data structure. Note that the
optimization horizon ∆t differs from the prediction horizon
tpred in equation 11.

C. Updater

The main role of the updater is dealing with latencies
that are characterstic of real robot systems. We consider the
two most impactful latencies: ϵ, the previously introduced
latency in the state estimators measurements, and γi, the
time required for optimization i to complete. Since γi is
different for every run of the optimizer, it needs to first be
computed. This is done by computing the difference between
the current system time and the timestamp of ξ that was used
as the starting state of the optimization procedure. The first

Fig. 2: UT-Automata F1Tenth Robot Car

γi + ϵ time units of controls are discarded from u∗, and the
remainder replaces the contents of the control buffer.

D. Executor

Finally, the executor asynchronously executes the com-
mands stored in the control queue one at a time on the
robot. Given a well-trained and accurate forward kinody-
namic model π the evolution of the state of the robot after
executing the controls will closely match the predicted state
sequence by the model, meaning the controls output by the
optimization procedure are the desired ones.

V. EXPERIMENTS

To evaluate the performance of our proposed Optim-
FKD approach, we perform two sets of experiments, each
involving a different variant of the robot control problem.
We demonstrate the ability of Optim-FKD to successfully
complete both, and show improved performance over an
optimization-free, IKD model baseline [33].

A. Experimental Setup

The robot platform used for our experimentation is the
UT-Automata F1tenth Car depicted in figure 2. We make
use of the car’s Intel Realsense T265 tracking camera for
localization and its Nvidia Jetson TX2 for compute.

We consider two different experimental setups, each in-
volving a different form of the robot control problem and
thus a different optimization objective. For the first task we
consider having the robot follow two different predefined
paths as accurately as possible at speeds varying from
1.0 m/s to 3.0 m/s. This task corresponds to the optimiza-
tion objective presented in equation 8. For the second task
we have the robot traverse from an initial starting state to
a goal state in as little time as possible, without explicitly
constraining which path it needs to take to reach the goal
state. This task corresponds to the optimization objective
presented in Eq. 10.

The baseline algorithm we compare against in all of the
experiments is an inverse kinodynamic model. In contrary
to the forward kinodynamic model, which maps a sequence
of controls to the most likely next sequence of states, the
inverse kinodynamic model attempts to infer what controls
lead to a particular state sequence. To ensure fairness in
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(a) Optim-FKD on rounded rectan-
gle (b) IKD on rounded rectangle (c) Optim-FKD on figure 8 (d) IKD on figure 8

Fig. 3: Superposition of execution traces of both the Optim-FKD and IKD algorithms running at different speeds on the
rounded rectangle and figure 8 paths. In (a) and (c), which correspond to Optim-FKD, the execution trace matches the
desired path (black) very closely. In contrast, there are significant errors in the baseline IKD model shown in (b) and (d).

(a) Rounded rectangle path (b) Figure 8 path

Fig. 4: Average Hausdorff distances between the executed paths and the desired paths across different speeds. Each speed’s
average is computed for five rollouts.

the comparison, the underlying feedforward neural network
used in both the FKD and IKD models was identical, with
the same architecture (6 layers, 256 neurons per layer) and
activations (ReLU); the dataset that both were trained on
was identical; and finally the number of iterations each was
trained for was identical.

B. Experiment 1: Path Following

Here we assess the control capabilities of the Optim-FKD
model on the task of accurately following a path. Figure
3 shows a visualization in black of the two paths used:
a rounded rectangle path and a figure 8 path. Both paths
were generated by joysticking the robot at a slow speed
and recording only the position estimates. Each algorithm
is assessed on how accurately it can follow the paths both at
slower and higher speeds. For each speed, five full traversals
through the desired path are completed. We measure an
algorithm’s ability to closely follow a path at a particular
speed by computing the Hausdorff distance between the
executed path and the desired path.

Figure 4 shows the evaluation of the Hausdorff distance
metric for (a) the rounded rectangle path and (b) the figure 8

path. Optim-FKD produces execution traces that are signifi-
cantly closer to the desired trajectories than the IKD model.
For both paths, the Optim-FKD algorithm is strictly under
0.2m Hausdorff distance, while the IKD algorithm is strictly
greater than 0.2m. Figure 3 provides a visual argument for
these results: in (a) and (c) the executed path hugs the
desired path much more closely than in (b) and (d). For both
algorithms and across both paths, we observe that increases
in velocity tend to result in higher Hausdorff distances.
This is expected, since at high velocities the kinodynamic
responses of the robot with respect to the terrain become
more pronounced, making accurate control more difficult.

We posit that the better performance of the Optim-FKD
approach is explained by an inherent advantage in FKD
models over IKD models: lesser impact of domain shift. Most
robots where kinodynamic interactions with the environment
are important are underactuated, i.e., the dimensionality of
the control space is smaller than that of the state space.
For a FKD model and an IKD model trained on the same
dataset, the FKD model will learn a mapping from a lower
dimensional space (the control space) to a higher dimensional
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Fig. 5: Paths produced by Optim-FKD, a human, and the
IKD model following the human’s path. Objective is to reach
from the start (green) state at (0, 0) to the goal (red) state at
(−5, 0) in minimum time. The start and end velocities are
constrained to be 0 m

s , the start heading is π
2 rad, and the

end heading must be 3π
2 rad.

space (the state space), whereas the IKD model learns the
opposite mapping. During training, both the FKD model and
the IKD model will be exposed to a limited subset of their
input spaces - namely the space of teleoperable control inputs
and the space of kinodynamically feasible state sequences.
However when deployed, it is not guaranteed that the FKD
model will receive control inputs characteristic of those dur-
ing training, or the IKD model will be given kinodynamically
feasible trajectories. Both models will suffer a domain shift,
but the impact will be less for the FKD model. With the
control space’s lower dimensionality, the same quantity of
training data will allow for the FKD model to have higher
input space coverage than the IKD model, meaning there is
less of a domain difference between train and test data.

C. Experiment 2: Optimal Connectivity

In this experiment, we assess the generalizability of
Optim-FKD compared to the IKD approach. As demon-
strated in section II-C, the optimal connectivity problem can
be solved by Optim-FKD simply by altering the optimization
objective. However, solving the same problem with the IKD
approach requires the retraining of a new IKD model. This is
because the IKD model has a fixed prediction horizon. Given
a nearby state, it can output what controls to execute during
this prediction horizon to reach the goal state. However in
the general optimal connectivity problem, it may be possible
that the goal state cannot be reached within the IKD model’s
prediction horizon, simply because it is too far away. Thus
multiple evaluations of the IKD model would be necessary.
But to do any one evaluation, the IKD model must know
what the desired state is at time equal to its prediction
horizon. This effectively means that the IKD model needs
to be supplied with the so called racing lines, i.e., a user-
specified path to take to reach the goal state. However, user-
specified racing lines are prone to being suboptimal.

Figure 5 depicts the problem of reaching the goal position
(−5, 0) from the start position (0, 0) in as little time as
possible. Since, this task cannot be completed within the
duration of the IKD model’s prediction horizon, racing lines
shown in yellow are provided by a human demonstrator. The
IKD model attempts to trace the racing line as fast as pos-
sible shown. In contrast, Optim-FKD runs the optimization
described in Eq. 10, and is thus not dependent on racing
lines nor requires a new FKD model to be trained.

Using Optim-FKD, the robot is able to reach the goal
state in 3.3 s, whereas it takes 6.3 s for the robot to execute
the path when using the IKD model. Thus Optim-FKD is
able to find a more optimal path than the human provided
one. Figure 5 depicts the path taken by the robot under each
navigation algorithm. Using Optim-FKD the robot makes a
wider turn, which allows it to reach velocities higher than
3 m

s whereas the maximum linear velocity of the robot when
using the IKD model is 2.6m

s

VI. CONCLUSION

In this work we presented Optim-FKD, a new approach for
accurate, high-speed robot control. We showed that solutions
to various formulations of the robot control problem can be
naturally expressed as a nonlinear least squares optimization
with a FKD model. We demonstrate how such an FKD
model can be learned effectively and integrated with the
optimization on real robot hardware. Finally we evaluate
our proposed approach on two robotic control tasks at high
speeds and show that it outperforms the baseline.
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