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Introduction
One conundrum of using machine learning to find safe nav-
igation systems that can be deployed in the wild is that, in
order to produce safe motions in obstacle-occupied spaces,
a robot needs to first gather experience in those dangerous
spaces before it has learned how to generate safe motions.
This conundrum becomes even more severe when the goal
is to navigate in challenging or even adversarial real-world
scenarios. One solution to learn navigation in the wild is to
learn from pre-supplied, good demonstrations (e.g., from a
human expert (Xiao et al. 2020; Wang et al. 2021)) or per-
form exploration based on trial-and-error (Xu et al. 2021) in
the deployment environment (or one very similar to it), but
both of these approaches become costly in dangerous spaces
in the wild.

Although learning to find an optimal plan among the va-
riety of maneuvers the robot can perform is difficult without
many trial-and-error attempts or an expert who is already
capable of doing so, given a plan performed in obstacle-free
space, it is relatively easy to find an obstacle configuration
for which that plan is optimal.

Based on this observation, instead of finding the opti-
mal motion plan for a specific obstacle configuration, we
consider this “dual” problem of classical motion planning
and seek to find the obstacle configuration(s) where a spe-
cific motion plan is guaranteed to be optimal. We name
this process hallucination. Solving this problem gives us the
freedom to allow random exploration in a completely safe
obstacle-free space and collect an extensive amount of mo-
tion plans, whose optimally will be assured by a class of
hallucination techniques. In this work, we introduce two of
those techniques: to hallucinate (1) the (unique) most con-
strained and (2) a (not unique) minimal obstacle configura-
tion. We then train an end-to-end motion planner that can
produce motions to navigate through realistic obstacles dur-
ing deployment in the wild. Both methods are tested on a
physical mobile robot in real-world cluttered environments.

Safe Learning from Hallucination
Given a robot’s configuration space (C-space) partitioned by
unreachable (obstacle) and reachable (free) configurations,
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C = Cobst ∪Cfree, we define the classical motion planning
problem as to find a function f(·) that can be used to produce
optimal plans p = f(Cobst | cc, cg) that result in the robot
moving from the robot’s current configuration cc to a spec-
ified goal configuration cg without intersecting (the interior
of) Cobst. Here, a plan p ∈ P is a sequence of low-level
actions {ui}ti=1. We introduce two hallucination methods to
approach the “dual” problem of finding optimal f(·).

Hallucinating the Most Constrained Obstacle
Space (Xiao et al. 2021)
Since different Cobst can lead to the same plan, the left in-
verse of f , f−1, is not well defined (see Fig. 1 left). How-
ever, we can instead define a similar function g(·) such that
C∗obst = g(p | cc, cg), where C∗obst denotes the C-space’s
most constrained unreachable set corresponding to p.1 For-
mally, given a plan p and the set of all unreachable sets
Cobst, we say

C∗obst = g(p | cc, cg) iff ∀Cobst ∈ Cobst,

f(Cobst | cc, cg) = p =⇒ Cobst ⊆ C∗obst,
(1)

We denote the corresponding reachable set of C as
C∗free = C \C∗obst. We call g(·) the most constrained hallu-
cination function and the output of g(·) a most constrained
hallucination. This hallucination can be projected onto the
robot’s sensors. For example, for a LiDAR sensor, we per-
form ray casting from the sensor to the boundary between
C∗obst and C∗free in order to project the hallucination onto
the range readings (Fig. 1 right). Given the hallucination
C∗obst for p, the only viable (and therefore optimal) plan is
p = g−1(C∗obst | cc, cg). Note that g(·) is bijective and its in-
verse g−1(·) is well defined. Leveraging machine learning,
g−1(·) is represented using a function approximator g−1θ (·).
Note that we aim to approximate g−1θ (·) instead of the orig-
inal f(·) due to the vastly different domain size: the most
constrained (C∗obst) vs. all (Cobst) unreachable sets.

During deployment, we use a smoothed coarse global
path from a global planner to generate runtime hallucina-
tion so g−1θ (·) does not need to generalize to unseen scenar-
ios. Other components, including a Turn in Place, Recovery

1Technically, cg can be uniquely determined by p and cc, but we include it as an
input to g(·) for notational symmetry with f(·).



Figure 1: p = f(Cobst | cc, cg) and C∗obst = g(p | cc, cg)

Figure 2: Left: Cminobst defined by three consecutive configura-
tions with cc, cm, cg , and symmetry point c′m. Right: LiDAR
reading randomly sampled between min and max range.

Behavior, and Speed Modulation modules, are used in con-
junction with g−1θ (·) to address inevitable out-of-distribution
scenarios and adapt to the real C-space.

Hallucinating the Minimal Obstacle Space (Xiao,
Liu, and Stone 2021)
Learning from hallucinated C∗obst can efficiently reduce in-
put space, and therefore learning complexity, but requires
runtime hallucination and other components during deploy-
ment. Hallucination of a minimal obstacle space generates
Cminobst , which is a minimal set of obstacle configurations re-
quired to cause the plan p to be optimal, We then randomly
samples augmentations to the minimal unreachable set. For-
mally, we define the set of Cminobst as:

Cmin
obst = {Cminobst | ∀c ∈ Cminobst ,

f(Cminobst \ {c} | cc, cg) 6= f(Cminobst | cc, cg)}
(2)

We use a special Cminobst to approximate any Cminobst ∈ Cmin
obst

(Fig. 2 left). This approximation is sufficient when the robot
trajectory is composed of a dense sequence of configurations
and Cminobst is instantiated on discrete LiDAR beams, which
will be shown empirically. As shown in Fig. 2 right, the max
range of a LiDAR beam is determined by Cminobst (if the beam
intersects Cminobst ) or the sensor’s physical limit (if not), while
the min range for each beam is determined by the boundary
of the robot path. A random range is sampled between the
min and max values, considering possible continuity among
neighboring beams and being offset for uncertainty/safety
induced by the optimal plan p. Therefore, many Cobst can
be augmented based on Cminobst . We then train a parameterized
policy fθ(·) to approximate classical motion planner f(·).

The advantage of augmenting Cminobst and generating many
Cobst is, during deployment, no runtime hallucination with
the help of a global path and other extra components are
required. The learned fθ(·) can plan in response to the real
perception and adapt to the actual scenarios on its own.

Physical Experiments2

Two datasets are collected by two random exploration poli-
cies in an obstacle-free space in simulation: one with mostly
constant 0.4m/s linear velocity (v ≈ 0.4m/s) and varying an-
gular velocity (ω ∈ [−1.57, 1.57]rad/s), the other with vary-
ing v ∈ [0, 1.0]m/s and ω ∈ [−1.57, 1.57]rad/s. If trained on
the first dataset, the speed of the planner output is modulated
by a Model Predictive Control based collision probability
checker, achieving a max v = 0.6m/s. Four neural net-
work based planners are trained using the two datasets and
two hallucination techniques. Simulated (Perille et al. 2020)
and physical experiments are performed. While the minimal
hallucination works well on both datasets and outperforms
all other variants, and even the classical DWA motion plan-
ner, the most constrained hallucination only performs well
on the 0.4m/s dataset, because learning from varying speed
while hallucinating only the most constrained space causes
ambiguity for the learner.

Conclusions
Instead of seeking an optimal motion plan for an obstacle
configuration, we present two learning from hallucination
techniques that approach the classical motion planning prob-
lem from the opposite direction: find the obstacle configura-
tion(s), where a motion plan is optimal. Video links of the
physical experiments of the hallucination methods are pro-
vided, along with references to the detailed papers.
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2Videos: https://www.youtube.com/watch?v=AE-KgxJS-iE&t=48s and https://
www.youtube.com/watch?v=LZcBN9zgtXg&t=50s.


