2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-9190-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/IR0S55552.2023.10341820

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 1-5, 2023. Detroit, USA

Team Coordination on Graphs with State-Dependent Edge Costs

Manshi Limbu*, Zechen Hu*, Sara Oughourli*, Xuan Wang!, Xuesu Xiaof, and Daigo Shishikaf

Abstract— This paper studies a team coordination problem
in a graph environment. Specifically, we incorporate “support”
action which an agent can take to reduce the cost for its
teammate to traverse some high cost edges. Due to this added
feature, the graph traversal is no longer a standard multi-agent
path planning problem. To solve this new problem, we propose
a novel formulation that poses it as a planning problem in a
joint state space: the joint state graph (JSG). Since the edges
of JSG implicitly incorporate the support actions taken by the
agents, we are able to now optimize the joint actions by solving a
standard single-agent path planning problem in JSG. One main
drawback of this approach is the curse of dimensionality in both
the number of agents and the size of the graph. To improve
scalability in graph size, we further propose a hierarchical
decomposition method to perform path planning in two levels.
We provide both theoretical and empirical complexity analyses
to demonstrate the efficiency of our two algorithms.

I. INTRODUCTION

In this work, we are interested in designing coordinated
group motion, where the safety or cost for one agent to move
between locations may depend on the support provided by
its teammate. Suppose, there are two robots traversing an
environment represented as a graph in Fig. 1. Starting from
node 1, the robots face a wall, represented by a red edge. The
robots could either climb a ladder together and potentially
fall and break (move from 1 to 4 together), or one robot
could hold the ladder (support from 2) while the other moves
up from 1 to 4. The former option is of high risk, while
the latter is of low risk and thus preferred. Alternatively,
if the level of risk is low (e.g., the ladder is bolted to the
ground or the robot is cheap), one may prefer both robots to
make progress towards the goal without the extra effort of
supporting each other. This paper develops a framework to
autonomously decide when supporting actions are or are not
necessary to minimize the overall cost towards a goal.

We study support in the context of mitigating some risks
that exist in the environment, which have been formulated in
various ways, such as probability of achieving certain levels
of performance in a stochastic setting [1]-[3], coherent risk
measures [4], chance constraints [5], or uncertainty in the
adversary’s behavior [6]. Yet, risk can purely be described
as the “cost” of traversal [1]. In this work, we will only use
this cost of traversal approach to simplify our analysis.

The terms cooperation and coordination take various
meanings in different contexts. Prior works have investigated
the coordination of actions of agents to reach a state of order,

Equally contributing* and advising® authors, George Mason University.
{klimbu2, zhu3, soughour, xwang64, xiao, dshishik}@gmu.edu.
Code: https://github.com/RobotiXX/team-coordination.
Work supported by Tactical Behaviors for Autonomous Maneuver (TBAM)
collaborative research program (W911NF-22-2-0242).

978-1-6654-9190-7/23/$31.00 ©2023 IEEE

= =P Support
4—> Risk
44— Non-Risk

Fig. 1: Example of an environment graph with risk edges
and supporting nodes.

such as consensus and formation control [7]-[9]. Others have
studied cooperation in terms of simultaneously performing
tasks in a spatially extended manner, like in surveillance [9]
and sampling [10]. Cooperation is also explored in problems
where agents need to react locally to avoid conflict or
collision [11], [12]. We see in these situations that there is
little coupling between the agents to achieve their mission
objective. In this work, we are interested in tightly coupled
agents that depend on each other to meet their objective.

Cooperation and coordination have been studied both in
centralized and distributed settings. Decentralized systems
are more computational efficient and better at handling
scalability [13]-[15]. On the other hand, centralized systems
are better known for optimality guarantees [16]. It is less
likely to suffer from communication costs, information loss,
and synchronization issues [17]. A centralized approach is
better suited for tightly coupled agents that require a high
degree of coordination [18], which is the focus of this work.

However, this choice comes with the challenge of ensuring
computational tractability. Approaches to simplifying multi-
agent planning problems have been widely studied, such as
decomposition and graph reformulation [18], [19]. In our
work, we develop a hierarchical decomposition method on
a reformulated graph to solve a multi-agent path planning
problem with tight coordination.

The contributions of the paper are: (i) a formulation of a
new multi-agent coordination problem with strong coupling
between teammembers’ positions and actions; (ii) a conver-
sion of the problem into a single-agent path-planning prob-
lem; and (iii) development of a hierarchical decomposition
scheme that alleviates the curse of dimensionality.

II. PROBLEM FORMULATION

We consider a scenario where a team of robots must move
from their initial locations to some goal locations. More
specifically, we are interested in a situation where the cost of
traversal is affected by the presence and actions of other team
members. Next, we will introduce the base graph, and then
formulate how the edge cost changes based on the “support”

Authorized licensed use limited to: George Mason University. Downloaded on January 16,2024 at 17:16:46 UTC from IEEE Xplore. Restrictions apply.

Support from
node 3

Support from

node 2 3 =1

Case 1

C4=5 C4=3
C14=2 C14=2
c=1 c=1

Fig. 2: Tllustrative example of an environment graph with a
risk edge and supporting nodes. Case 1 has a high risk cost.
Case 2 has a low risk cost.

provided by the teammate. For conciseness, we will restrict
the discussion to a two-agent team, robot A and robot B.

The environment is modeled as a graph where nodes repre-
sent key locations, and the edges represent the traversability
between them. The base graph is denoted by G = (V,€),
where V is a set of nodes, and £ is a set of edges, £ C Vx V.
We assume G to be strongly connected. The starting positions
of the agents are denoted by the node set Vy C V. The robots
seek to reach a set of goal nodes V,; C V while minimizing
the cost of traversal. The nominal cost for traversing the edge
e;,; € £ is given as a constant, ¢; ; for 7,7 € V.

Let I, denote a path (set of edges) froma € V to b € V.
We use 1, 3 to denote the minimum cost to move from a to

b:
Ygq,p = Mmin E Cij-
Iab

€i,j€lap

(D

A standard path planning will simply consider this minimum
cost path for each agent.

We now define the environment graph, which incorporates
the notion of risk and support. Each edge e; ; is associated
with a set of support nodes, Z; ; C V. If this set is non-
empty, then an agent at v € Z; ; can provide support for the
agent traversing e; ;. The action set for an agent n € {4, B}
at node 4 is given as A} = {{a; ;}jen;,a,}. Where N is
the neighborhood of ¢, and a, ; is the action to move to node
j given that it is ;. The action a, is the support.

Let p' = (p%y, pl3) be the position of agents A and B, and
let a' = (ay, aly) be the actions agents A and B take at time
t. The cost of an action for agent A is given as:

cij ifay,=a;;and pg ¢ Z;; orap # ag,
‘ iy ifa, = a; j» Pp € Z;;, and ag = ag,
cal) =19 . .

¢ if ay = a,,

0 ifay #ag,and ay #a, ;.

2)
where (-) represents the arguments (p, a’, Z; ;).

For example, in Fig. 2, suppose at ¢ = 1 agent A is at
node 2 (a supporting node) and provides support to agent B
as the latter moves from node 1 to node 4, then the cost for
agent A would be ¢!y = ¢, and the cost for agent B would be
c}g = C1.4. If both agents A and B move together from node
1 to node 4, the cost for the agents would be ¢!y = ¢k = ¢1 4.

680

In order to find the total cost at time ¢, we can simply sum
the costs for both agents as:

C' = cYy + k.

3)

Let R™ = {r},...,r™} be the set of action sequences
agent n can take from start node to goal node. Where each
sequence is the ordered set of actions taken from start to
goal from ¢ = 1 to the time it takes for the agents to reach
the goal state, 7', i.e., v, = [al,...aL]. The sum of the costs

for a given sequence of actions 74 € R4, rB € RE are:

T
F(rirP)=>"C" 4
t=1

The goal is to find a pair (r*,75*) that minimizes the total
cost, I":

min F.
rAcRArBeRB

S

An illustrative example is shown in Fig. 2, where agents A
and B need to reach goal node 5. To traverse the risk edge,
they either use or do not use support depending on how
costly, or risky, the edge is. Agents demonstrate supporting
behavior in Case 1. If agent B traverses risk edge ej 4
without support from A, the cost for B would be ¢; 4 = 5.
With support from A, the reduced cost for B would be
C1,4 = 2. The total cost at this time step ¢ is Ct = Cla+cC=
2 4+ 1 = 3. Thus, agents in this case accrue less costs by
supporting each other. Case 2 is a scenario where the agents
do not show supporting behavior in a low risk situation. Since
c1,4 = 3, B can traverse e; 4 without support from A. The
total cost at this time step ¢ is C* = c1a+0=3+0=3
without A’s support.

One way to solve the minimization problem in (5) is
by posing it as an instance of Markov Decision Process
(MDP). However, we will introduce a simplification using
the concept of Joint State Graph in the next section.

III. METHOD

We first introduce the concept of Joint State Graph (JSG)
which simplifies the joint action selection problem into a
standard path planning problem on graphs. To improve scal-
ability, we propose in III-B a method of decomposing JSG
to deal with scalability of the graph. Finally, we conclude
the section with a complexity analysis.

A. Joint State Graph

The problem described earlier can be solved using an
MDP. However, we prospose transforming the environment
graph into a Joint State Graph (JSG). Paths on the JSG inherit
the agents’ actions, eliminating the need to consider action
sets. This simplifies the problem compared to an MDP. Let
the JSG be a graph J = (S, L), where S = {s;; : i,j € V}
is the set of nodes representing joint states, and L is the set
of edges.

Let s171 be the initial state assuming that Vo = (1,1). Let
544 be the goal state. Edges on JSG are denoted as €;; 1 =
(sij, Swk) if agent A can move from ¢ to w in the base

Authorized licensed use limited to: George Mason University. Downloaded on January 16,2024 at 17:16:46 UTC from IEEE Xplore. Restrictions apply.

graph, and agent B can move from j to k, i.e., €;, € &
and e; € £. If agent A does not move, we have i = w.
Similarly, if B does not move, j = k.

Let C be the set of costs for each edge on the JSG, where
an element is denoted as Cj; k. If A remains at i € Z;;,
while B traverses from j to k& € N, the cost is defined
as Cjyj i, = min{c; , (¢j,x + ¢)}. This is how the edge in
JSG subsumes the action selection in the original problem.
However, if i ¢ Z; j, then the cost is simply Cj; ik = ¢ -
The case when A moves is defined similarly. This explains
lines 7-17 of Algorithm 1. If A traverses from i to w € N
and B traverses from j to k € j\/j, then we add the nominal
costs Cjj.wk = Ciw + Cj k- When both agents are stationary,
the cost is Cj;,;; = 0. The details of the JSG construction
are in Algorithm 1.

Algorithm 1: JSG Construction.

1 Input G = (V,€), Z, ;.

2 Let J = (87£) Add Sij to S, Vi, j € V.

3 for any two distinct elements s;;, sy, € S do
4 | ifi=w, j#kandk € N then

miH{Ci’w, (6i71u + 6)} lf 7 c Z]k
5 Cijwk = .
Cjk otherwise
6 else if i # w, j = k and w € N; then
min{cjﬂk, (Ej,k + 6)} if j € Z
7 Cijwk = ,
Ciw otherwise

8 else if & € NV; and w € N; then

9 | Cijwk = Cipw + Cjk
10 else

11 ‘ Cij,wk = Null

12 end

13 If Cjj. i 7 Null, add edge e;; 1 to L.
14 end
15 Return J = (S, £) and the associated costs Cjj k.

Let Y = {uy,...,u,} be the set of paths connect-
ing s1; and sgy on the JSG, where an element u =
{€11 kw, ---s €ij,gq} set of edges. Then, the cost of each path
u is given as follows,

Qu)= > Cijuk (6)

€ij,wk EU

Using a standard shortest-path algorithm, we can find the
optimal path «* that minimizes Q(u):
Q(u”) = min Q(u). 7

An example of JSG is shown in Fig. 3, which corresponds
to the environment graph shown in Fig. 2. The edges
highlighted in blue indicates the optimal path «* for Case 1
in Fig. 2. Importantly, we can easily identify the original
actions from the edges selected in this JSG: e.g., the use of
edge ez 24 indicates that A at node 2 supports B who moves
from node 1 to 4.

Although planning on JSG is conceptually simple, it can
become computationally expensive for larger graphs. The
next section addresses this issue.

681

s 2.5) [sr-:-::_ (4,5) (5, 5)
74) (5, 4)

E)

; 2) i‘ (s,2)

\ 1) 5. 1

Fig. 3: Joint State Graph for a 5-node environment graph.
Black edges are non-risky edges, red edges are risk with no
support, and green edges are risk with support.

B. Search Algorithm: Critical Joint State Graph

In this section, we introduce a new search algorithm based
on constructing a Critical Joint State Graph (CJSG), which
has reduced computational complexity compared with the
straightforward JSG method in Sec. III-A. Note that the
JSG J has |S| = |V|?> number of nodes, leading to high
complexity if directly used for planning. To address this
issue, our key idea is to classify the agents’ movements
into coupled and decoupled modes, where only the coupled
movements need to be planned on a joint state representation,
and the decoupled movements can be independently planned
by each agent on base graph G. As visualized in Fig. 4, the
environment graph formulated in Sec. II builds on a base
graph G, then associates some of its edges with a set (Z; ;)
of support nodes. Depending on whether the edges in G
have at least one support node, we define a risk edge set
Er such that Ve, ; € Egr, Z;; # 0. Note that the support
graph in Fig. 4 does not follow the standard ‘graph’ definition
in mathematics. It only describes a supporting relationship
between nodes and risk edges which we use later to study
coupled movements of agents.

We start by considering the costs for decoupled move-
ments of the two agents. Recall that v,; denotes the
minimum cost for an agent to move from a to b on the
base graph G, the following statement holds.

Lemma 1. (Decoupled planning on base graph): On graph
G, consider the first agent moves from node i to w; the
second agent moves from node j to k. Let R;j . be the
minimum cost for the two agents to complete the movement
without performing supporting behaviors. Then

Rijwk = Yiw + Vj k-

The proof of Lemma 1 is straightforward and is omitted.
Now, to characterize the coupled movements of the two
agents, we construct a Critical Joint State Graph (CJSG),
T = (M, #), where M and H are the node set and edge set
of T, respectively. For any h;; . € H, let W;; .1, denote the
cost associated with this edge. Details of CJSG construction
are summarized in Algorithm 2.

Authorized licensed use limited to: George Mason University. Downloaded on January 16,2024 at 17:16:46 UTC from IEEE Xplore. Restrictions apply.

Environment Graph Base Graph Support Graph
supp"“‘“g nodes ® Suppor(\ng ges ®

Fig. 4: Example for environment graph decomposition. In G,
nodes 2 and 3 can support the edge between nodes 1 and 4.

Remark 1. (Algorithm 2 explained): In CJSG, we consider
the node of the graph as any joint state that the two agents
(i) can initiate or complete supporting behaviors (c.f. steps 5
and 6), (ii) at their start or goal position of the planning task
(c.f. step 8). We let CJISG be fully connected. The edge costs
are associated with two agents moving over the base graph
(c.f. step 15) or a possible lower cost when they perform
a support behavior (c.f. steps 11 or 13, depending on who
supports who).

Algorithm 2: CJSG Construction

1 Input (‘:R, S115 Sgg» Zi,j,Rij,wk~
2 Let T=(M,H)
3 for each e; ; € Eg do
for each k € Z; ; do
Add sp; and sp; to M.
Add s;;, and s to M.
end
Add s11 = (1,1) and sgq = (g, 9) to M (if they
are not already in M).
9 for any two distinct elements s;j, 5w € M do

® N A

10 if e, €Erandi=w € Z;, then

11 Add edge h;j 1 to H. Define its cost as
Wijwk = min{(¢; x + ¢), Rijwk }

12 else if e; ., € Eg and j =k € Z; ,, then

13 Add edge h;j .k to H. Define its cost as
Wijwk = min{ (G w + €), Rij,wk }-

14 else

15 Add edge h;j .k to H. Define the
associated cost as Wi wr = Fij wk-

16 end

17 end

18 end

19 Return T = (M, #) and the associated costs W;; k.

As an example, Fig. 5 shows the construction of CJSG cor-
responding to the environment graph in Fig. 4. The critical
Jjoint states are highlighted in Fig. 5 (a). By computing edge
costs according to Lemma 1 and Algorithm 2, the resultant
CISG is constructed as shown in Fig. 5 (b). Red edges are
edges under supporting behaviors such that ¢; ;, and ¢; ,, are
available. The blue edges are associated with R;; ., where
two agents are decoupled, and the agents individually seek
optimal paths on the base graph.

Now, we present our search algorithm over a given CJSG.
We first define a path composition operation. Suppose u; =
{eap,€cdr - 1€ij} us = {egn,€rt, -+ ,epe}. Then uy &
Uz = {€qag.bhs €crdts - - » €l ¢} When the two paths do not

Agent A
(1L1) (12) (13)

(2,2) (2,4)

34 34) l AN
Fully
Connected

Agent B

(42) (4,3)
(5,5) (43)

(a) Critical Joint States (b) Critical Joint State Graph

Fig. 5: Example for CJISG Construction.

have the same length, we extend the shorter one by repeating
its final node (so that in the graph representation, it stays at
that node). For example, if u; is two elements shorter than
ug then we extend it by u1 = {eqp,€c,d, " ,€ij,€5.5:€5.}
Based on CJSG and path composition, our search algorithm
is presented in Algorithm 3, where PathPL can be any path
planning algorithm, i.e., Dijkstra’s algorithm [20], that can
obtain a shortest path between two nodes.

Algorithm 3: Path Planning based on CJSG.
1 Input T= (M, H), G=(V,E).

2 U+ PathPL(T, s11, s44)

3 for each hij ., in @ do

4 if Wijwr = Rijwr then

5 ‘ Add [PathPL(G, i, w)®PathPL(G, 4, k))] to u'

6 else if Wij,wk: = Ei,w + ¢ or Wij,wk: = Ej,k +c
then

7 ‘ Add [e;;,1] to uf

8 end

9 end
10 Return u'.

Remark 2. (Algorithm 3 explained): We first perform
path planning on T. Note that some edges h;j..x, when
Wijwk = Rijwk, are associated with paths of two agents
planned in G using Lemma 1. We use step 5 to reconstruct
these edges back to paths that the agents can traverse on the
environment. Furthermore, although step 5 recalls a path
planning process, this planning should have already been
computed by Lemma 1 when executing Algorithm 2.

Lemma 2. (Effectiveness of the CISG): The following
statements hold.

(i) For any CJSG, the optimal path u' reconstructed from
u is a feasible path for the two agents on the environment
graph, thus, Q(u') > Q(u*).

(ii) The optimal path planned from the CJSG has the same
minimum cost as the optimal path planned directly from the

JSG, thus, Q(ul) < Q(u*).

Proof. Since CJSG is generated from JSG by reformulating
the coupled and decoupled movements of agents, statement
@), i.e., Q(u) > Q(u*) is straightforward. In the following,
we shall focus on proving statement (ii). We do this by
showing that for any optimal path planned from the JSG,
there is a path on CJSG with the same cost. Considering the
optimal path planned from JSG, it consists of two agents’
movements with and (possibly) without supporting behav-

682

Authorized licensed use limited to: George Mason University. Downloaded on January 16,2024 at 17:16:46 UTC from IEEE Xplore. Restrictions apply.

iors. Let u* be divided into different segments according to
the above attribute. It is obvious that all such segments are
connected by joint states that correspond to the initiation and
termination of the supporting behavior. Notice that these are
critical-joint states. Therefore, if we consider each segment
independently, the optimal path over this segment must
always be associated with the edges on the CISG, either
in the form of decoupled paths on the base graph or by
performing a supporting behavior. Thus, for any optimal path
planned from the JSG, there is a path on CJISG with the same
cost. This together with the fact that ' is the optimal path on
CJSG leads to the conclusion Q(u') < Q(u*). We complete
the proof. O

C. Comparison of Computational Complexity

We quantify the computational complexity of the search
algorithms to demonstrate the advantage of CJSG over the
JSG.

For JISG J = (S, L), the graph construction complexity is
given by the addition of complexities for nodes and edges.
The complexity for the nodes is O(|S|) = O(|V|?). The
complexity of edges is O(|£|) which equals O(|V[*) in the
worst case senario when edges are fully connected. Thus, the
graph construction complexity of JSG is

Oreonst = O([V)?) + O(IV]Y). 3

Since the total number of nodes in JSG is O(|V|?), the search
complexity when edges are fully connected follows

Optan = O(IVI*).)
Combining (8) and (9), complexity of JSG becomes
Ois6 = O(|V[*). (10)

Similarly, the construction complexity of CJISG T =
(M, H) can be expressed as the addition of construction
complexities for nodes and edges. For nodes, the complexity
simply equals O(|M|). For edges, the complexity equals
O(|MJ?) + O(|V|?log(|V])), where the first term is the
number of edges in T, which is fully connected. The second
term comes from Lemma 1, which, in the worst case, needs
to compute the shortest path between any pair of nodes in
G. The complexity of O(|V|?1log(|V|)) assumes the use of
Johnson’s algorithm [20]. Thus, the construction complexity
of CJSG equals

Oconst = O(IM[) + O(IM[*) + O(|V[*log(V])). (1)

The search complexity of CJSG is determined by the number
of nodes in T, which follows

Opian = O(IM[?) + O(IM]).

where for the first term, we assume the use of Dijkstra’s
Algorithm [20] on T, to obtain u. The second term is asso-
ciated with reconstructing «! from 7. Although Algorithm 3
embeds searches in step 5, all the planning must have been
computed by Lemma 1 when executing Algorithm 2. No
replanning is needed. By combining (11) and (12), one has

Ocis = O(IM|?) + O(|V[* log(|V])). (13)

12)

Comparision of JSG and CJSG

-)JSG with 1/5 risk edges ratio
CJSG with 1/5 risk edges ratio
-——-]SG with 1/3 risk edges ratio
-——- CJSG with 1/3 risk edges ratio
—— JSG with 1/2 risk edges ratio
—— CJSG with 1/2 risk edges ratio

ey
o

w
o

[y
o

Total Solution Time (s)
N
o

o

(92}

10 15 20 25 30
Number of Nodes

Fig. 6: Comparison of time taken by JSG and CJSG to

generate total solution with respect to increasing number of

nodes and risk edges ratio.

TABLE I: Comparison of Graph Construction (GC) and
Shortest Path (SP) Time in Seconds of JSG and CJSG

Nodes Risky JSG CISG
Edge
GC SP GC SP

10 /5 0214004 0144002 0014000 0.0240.02
13 0184005 0154000 0.0940.02 0.1340.02
12 0194003 016001 0.18+0.01 0.15+0.05

20 15 3174004 2104004 0.65+0.09 0.4340.07
13 3404006 2204007 1774005 0.80+0.01
12 3864009 2324003 3644059 12540.12

30 15 20944083 11.6440.13 6114055 2.8040.18
13 2249£171 12.33£050 13.824073 4.60+0.22
12 25984043 13.4440.14 26824149 6914027

Remark 3. (Comparison of complexity): To compare the

complexities of Ocysg and Oysg, we only need to compare
O(|M|?) and O(|V|*). Note that in most scenarios, we
assume the number of support edges in G is small. As a
consequence, the number of critical-joint states is far less
than that of common joint states, i.e. |M| < |V|%. Then
the proposed Algorithm 3 based on CJSG is significantly
more efficient than the original JSG method. The worst case
scenario happens when support edges widely exist in G,
which yields |M| — |V|%, but | M| is still upper bounded by
|V|? due to the fact that critical joint states are subsets of
joint states. Thus, Ocysg is always no worse than Ojsg.

IV. NUMERICAL RESULTS

We evaluate JSG and CJSG on the basis of graph con-
struction and path planning under different conditions. Our
experimental design allows us to gain insights through com-
parative analysis of JSG and CJSG in terms of scalability and
performance. The experiments are carried out on a MacBook
Pro with 2.8 GHz 8 core CPU and 8GB of RAM.

For both graph construction and path planning analyses,
a random graph generator is used to generate environment
graphs with varying number of nodes and edges. We control
the ratio of risk edges to the total edges to be 1/5, 1/3, and
1/2. For different number of nodes and risk edges ratio in an
environment graph, we calculate graph construction time and
shortest path planning time for JSG and CJSG (Table I). Each
entry shows the mean and variance from the experimental
trials.

683

Authorized licensed use limited to: George Mason University. Downloaded on January 16,2024 at 17:16:46 UTC from IEEE Xplore. Restrictions apply.

A. Graph Construction Analysis

From Table I, we analyze the graph construction time for
JSG and CJSG under different conditions. Given a fixed risk
edges ratio, e.g., 1/3 of the total edges, the improvement in
graph construction time by CJSG compared to JSG maintains
as the number of nodes increases from 10 to 30. Similarly,
if we fix the number of nodes, e.g., 10, and increase the
risk edges ratio gradually from 1/5, then 1/3, and finally 1/2,
CIJSG still takes less time compared to JSG. We can also
see such a pattern for node 20 and node 30. These results
provide empirical evidence that CJSG is more efficient in
constructing graphs. Note that when the risk edge ratio
reaches 1/2, nearly all joint states are critical joint states,
i.e., [M| — |V]?, and the graph construction times for the
two approaches are close to each other. This observation is
in line with Remark 3.

B. Path Planning Analysis

From Table I, we also assess the path planning time for
JSG and CJSG with varying nodes and risk edges ratio.
Given a certain risk edges ratio, e.g., 1/3, we can see that
CISG takes less time than JSG. This is true even if we
increase the nodes from 10 to 30. Similarly, if we fix the
node size, e.g., 20, and gradually increase the risk edges
ratio as 1/5, 1/3, and 1/2 of total edges, CJSG is still more
efficient than JSG. We can see the same pattern for nodes 10,
20 and 30. These results indicate that CJSG is more efficient
than JSG in terms of shortest path planning when the ratio
of risk edges to nodes increases.

Based on the experimental results shown in Table I, we
compute the total time taken by both JSG and CJSG to
find the final solution. The total time involves time taken
for graph construction and shortest path planning. In Fig. 6,
we show that as the number of nodes increases, the time to
generate total solution for JSG increases more significantly
than that of CJSG. Fig. 6 also illustrates that as the risk
edges ratio increases, the time to generate solution for JSG
increases more significantly compared to CJSG. Thus, CJSG
is more efficient than JSG for overall solution generation.

V. CONCLUSION

We presented a team coordination problem in a graph
environment, where high levels of coordination in the form
of “support” allows agents to reduce the cost of traversal on
some edges. As an alternative to solving this with a version
of MDP, we presented a method of planning in the joint
state space — the Joint State Graph (JSG). We showed that
a multi-agent path planning problem can be reduced to a
single-agent planning in JSG, since the actions taken by the
agents are built in to the edges of the JSG. We addressed
the issue of scalability in the graph size by presenting a
hierarchical decomposition method to perform path planning
in two levels. We provided complexity and statistical analysis
which show that the construction time for both CJSG and
JSG do not differ by much, but the CJSG is significantly
more efficient with regards to shortest path planning. Our
numerical results verify this.

684

For future work, there are many aspects of the problem we
proposed that we are intrigued to build upon. For instance,
we would like to integrate more sophisticated notions of
risk by using concepts from game theory and incorporating
stochasticity in the formulation, such as stochastic costs. We
are also interested in addressing the issue of scalability in
terms of number of agents.

REFERENCES

[1] D. Bertsekas, “Dynamic programming and optimal control 3rd edition,
vol. i, ser,” Athena Scientific Optimization and Computation series.
Athena Scientific, vol. 2, no. 1, 2007.

X. Xiao, J. Dufek, and R. Murphy, “Explicit motion risk representa-
tion,” in 2019 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pp. 278-283, IEEE, 2019.

X. Xiao, J. Dufek, and R. R. Murphy, “Robot risk-awareness by formal
risk reasoning and planning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 28562863, 2020.

M. Ahmadi, A. Dixit, J. W. Burdick, and A. D. Ames, “Risk-averse
stochastic shortest path planning,” in 202/ 60th IEEE Conference on
Decision and Control (CDC), pp. 5199-5204, IEEE, 2021.

F. Yang and N. Chakraborty, “Chance constrained simultaneous path
planning and task assignment for multiple robots with stochastic
path costs,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6661-6667, IEEE, 2020.

D. Shishika, D. G. Macharet, B. M. Sadler, and V. Kumar, “Game
theoretic formation design for probabilistic barrier coverage,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 11703-11709, IEEE, 2020.

W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655-661, 2005.

R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401-420, 2006.

B. Liu, X. Xiao, and P. Stone, “Team orienteering coverage planning
with uncertain reward,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 9728-9733, IEEE, 2021.
J. Bellingham, “Autonomous ocean sampling network,” Moss Landing,
CA: Monterey Bay Aquarium Research Institute, 2006.

X. Wang, Y. Zhou, and W. Jin, “D3g: Learning multi-robot coordina-
tion from demonstrations,” arXiv preprint arXiv:2207.08892, 2022.
J. Hart, R. Mirsky, X. Xiao, S. Tejeda, B. Mahajan, J. Goo, K. Baldauf,
S. Owen, and P. Stone, “Using human-inspired signals to disam-
biguate navigational intentions,” in Social Robotics: 12th International
Conference, ICSR 2020, Golden, CO, USA, November 14-18, 2020,
Proceedings, pp. 320-331, Springer, 2020.

S. Bhattacharya, M. Likhachev, and V. Kumar, “Multi-agent path
planning with multiple tasks and distance constraints,” in 2010 IEEE
International Conference on Robotics and Automation, pp. 953-959,
IEEE, 2010.

F. Wu, S. Zilberstein, and X. Chen, “Online planning for multi-
agent systems with bounded communication,” Artificial Intelligence,
vol. 175, no. 2, pp. 487-511, 2011.

X. Wang, S. Mou, and B. D. Anderson, “Consensus-based distributed
optimization enhanced by integral feedback,” IEEE Transactions on
Automatic Control, vol. 68, no. 3, pp. 1894-1901, 2022.

S. G. Loizou and K. J. Kyriakopoulos, “Closed loop navigation for
multiple holonomic vehicles,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3, pp. 2861-2866, IEEE, 2002.
M. Khonji, R. Alyassi, W. Merkt, A. Karapetyan, X. Huang, S. Hong,
J. Dias, and B. Williams, “Multi-agent chance-constrained stochastic
shortest path with application to risk-aware intelligent intersection,”
arXiv preprint arXiv:2210.01766, 2022.

R. J. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in Twenty-Second International
Joint Conference on Artificial Intelligence, 2011.

J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic Foundations of Robotics X: Proceedings of the
Tenth Workshop on the Algorithmic Foundations of Robotics, pp. 157—
173, Springer, 2013.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Authorized licensed use limited to: George Mason University. Downloaded on January 16,2024 at 17:16:46 UTC from IEEE Xplore. Restrictions apply.

