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Abstract— Most autonomous navigation systems assume
wheeled robots are rigid bodies and their 2D planar workspaces
can be divided into free spaces and obstacles. However, recent
wheeled mobility research, showing that wheeled platforms have
the potential of moving over vertically challenging terrain (e.g.,
rocky outcroppings, rugged boulders, and fallen tree trunks),
invalidate both assumptions. Navigating off-road vehicle chassis
with long suspension travel and low tire pressure in places
where the boundary between obstacles and free spaces is blurry
requires precise 3D modeling of the interaction between the
chassis and the terrain, which is complicated by suspension and
tire deformation, varying tire-terrain friction, vehicle weight
distribution and momentum, etc. In this paper, we present a
learning approach to model wheeled mobility, i.e., in terms
of vehicle-terrain forward dynamics, and plan feasible, stable,
and efficient motion to drive over vertically challenging terrain
without rolling over or getting stuck. We present physical
experiments on two wheeled robots and show that planning
using our learned model can achieve up to 60% improvement
in navigation success rate and 46% reduction in unstable chassis
roll and pitch angles.

I. INTRODUCTION

Wheeled robots, arguably the most commonly used mo-
bile robot type, have autonomously moved from one point
to another in a collision-free and efficient manner in the
real world, e.g., transporting materials in factories or ware-
houses [1], vacuuming our homes or offices [2], and deliver-
ing food or packages on sidewalks [3]. Thanks to their simple
motion mechanism, most wheeled robots are treated as rigid
bodies moving through planar workspaces. After tessellating
their 2D workspaces into obstacles and free spaces, classical
planning algorithms plan feasible paths in the free spaces
that are free of collisions with the obstacles [4]–[9].

However, recent advances in wheeled mobility have shown
that even conventional wheeled robots (i.e., without extensive
hardware modification such as active suspensions [10]–
[12] or adhesive materials [13]) have previously unrealized
potential to move over vertically challenging terrain (e.g.,
in mountain passes with large boulders or dense forests
with fallen trees) [14]–[16], where vehicle motion is no
longer constrained to a 2D plane [17] (Fig. 1). In those
environments, neither assumptions of rigid vehicle chassis
and clear delineation between obstacles and free spaces
in a simple 2D plane are valid [18]–[21]. Thanks to the
long suspension travel and reduced tire pressure, off-road
vehicle chassis are able to drive over obstacles (rather than
to avoid them) and experience significant deformation to
conform with the irregular terrain underneath the robot,
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Fig. 1: Front and side view (1st and 2nd row) of a wheeled
robot navigating vertically challenging terrain: (from left to
right) large roll angle, stable chassis, suspended wheel, roll-
over, and get-stuck.

which will be otherwise deemed as non-traversable according
to conventional navigation systems. Therefore, autonomously
navigating wheeled robots in vertically challenging terrain
without rolling over or getting stuck requires a precise
understanding of the 3D vehicle-terrain interaction.

In this paper, we develop a learning approach to model
3D vehicle-terrain interactions and plan vehicle trajectories
to drive wheeled robots on vertically challenging terrain.
Considering the difficulty in analytically modeling and com-
puting vehicle poses using complex vehicle dynamics [22]–
[24] in real time, we adopt a data-driven approach to model
the forward vehicle-terrain dynamics based on terrain eleva-
tion maps along potential future trajectories. We develop a
Wheeled Mobility on Vertically Challenging Terrain (WM-
VCT) planner, which uses our learned model’s output in
a novel cost function in 3D and produces feasible, stable,
and efficient motion plans to autonomously navigate wheeled
robots on vertically challenging terrain. We present extensive
physical experiment results on two wheeled robot platforms
and compare our learning approach against four existing
baselines and show that our learned model can achieve up
to 60% improvement in navigation success rate and 46%
reduction in unstable chassis roll and pitch angles.

II. RELATED WORK

We review related work in 2D robot navigation in planar
workspaces, facilitating mobility on vertically challenging
terrain, and machine learning approaches for mobile robots.

A. 2D Rigid-Body Navigation in Planar Workspaces

Roboticists have been developing classical ground nav-
igation planners for decades [4]–[6]. Recently, researchers



have also investigated high-speed [25], [26], off-road [27]–
[29], and social [30]–[36] navigation. In the aforementioned
research thrusts, most robots are modeled as 2D rigid bodies
(e.g., bounding boxes) and most feasible navigation plans
are in 2D and collision-free, regardless of the robot type
(e.g., wheeled or tracked). In order to allow wheeled mobile
robots to venture into other difficult-to-reach spaces, recent
work has extended wheeled mobility to vertically challenging
terrain [17], considering that vertical protrusions from the
ground are not uncommon in real-world unstructured envi-
ronments [14], [15]. However, both rigid body and planar
workspace assumptions are no longer valid in such spaces,
requiring new methods to model the interactions between the
non-rigid robots and 3D environments.

B. Robot Mobility on Vertically Challenging Terrain

Most research aiming at allowing robots to move in
vertically challenging environments are from the hardware
side. Still treating vehicles as rigid bodies, tracked vehi-
cles are expected to crawl over more rugged terrain than
wheeled platforms due to the increased surface contact and
therefore propulsion [37], while adhesive materials [13]
and tethers [16] allow robots to overcome gravity while
climbing vertical slopes. Relaxing the assumption of rigid
body, vehicles with active suspensions have been devel-
oped [10]–[12] to proactively maintain a stable pose of the
chassis on vertically challenging terrain. Highly articulated
systems, e.g., legged [38], [39], wheel-legged [40], [41],
or snake [18], [42] robots, are another choice to negotiate
through such terrain with a stable torso, or virtual chassis
for limbless snake robots [43], by solving many Degrees-
of-Freedom (DoFs) of the robot joints. However, despite the
versatility to overcome verticality, such specialized hardware
are expensive, inefficient (especially on flat terrain), and not
as common as conventional wheeled robots.

C. Machine Learning for Robot Mobility

In addition to the aforementioned classical methods,
roboticists have also started utilizing data-driven approaches
for robot mobility [44]. Learning from data, robots no
longer need hand-crafted models [26], [45], [46], cost func-
tions [33], [47]–[49], or planner parameters [50]–[55], see
beyond sensor range [56], [57], and acquire navigation be-
haviors end-to-end from sensor data [58]–[66]. Researchers
have also used end-to-end Behavior Cloning (BC) [67] to ad-
dress wheeled mobility on vertically challenging terrain [17].
Considering the power of machine learning and drawbacks
of end-to-end BC (e.g., data-hungry, prone to overfitting,
and not generalizable), this work takes a structured learning
approach to only model the vehicle-terrain forward dynam-
ics, then constructs a novel cost function in 3D specifically
tailored for vertically challenging terrain, and finally plans
trajectories to move robots toward their goal.

III. APPROACH

The difficulties in navigating a wheeled mobile robot
on vertically challenging terrain are two fold: (1) the high

variability of vehicle poses due to the irregular terrain
underneath the robot may overturn the vehicle (rolling-over,
4th column in Fig. 1); (2) not being able to identify that a
certain terrain patch is beyond the robot’s mechanical limit
and therefore needs to be circumvented may get the robot
stuck (immobilization, 5th column in Fig. 1). Therefore, this
work takes a structured learning approach to address both
challenges by learning a vehicle-terrain forward dynamics
model based on the vertically challenging terrain underneath
the vehicle, using it to rollout sampled receding-horizon
trajectories, and minimizing a cost function to reduce the
chance of rolling-over and immobilization and to move the
vehicle toward the goal.

A. Motion Planning Problem Formulation

Consider a discrete vehicle dynamics model of the form
xt+1 = f(xt,ut), where xt ∈ X and ut ∈ U denote
the state and input space respectively. In the normal case
of 2D navigation planning (Fig. 2 left), X ⊂ SE(2) and
X = Xfree ∪Xobs, where Xfree and Xobs denote free spaces
and obstacle regions. xt includes the translations along the
x and y axis (x and y) and the rotation along the z = x×y
axis (yaw) of a fixed global coordinate system. For input,
ut = (vt, ωt) ∈ U ⊂ R2, where vt and ωt are the linear
and angular velocity. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem for the conventional
2D navigation case is to find a control function u : {t}T−1

t=0 →
U that produces an optimal path xt ∈ Xfree,∀t ∈ {t}Tt=0

from an initial state x0 = xinit to the goal region xT ∈ Xgoal
that follows the system dynamics f(·, ·) and minimizes a
given cost function c(x), which maps from a state trajectory
x : {t}Tt=0 → X to a positive real number. In many cases,
c(x) is simply the total time step T to reach the goal.
Considering the difficulty in finding the absolute minimal-
cost state trajectory, many mobile robots use sampling-based
motion planners to find near-optimal solutions [68], [69].

Conversely, in our case of wheeled mobility on vertically
challenging terrain, vehicle state X ⊂ SE(3) (i.e., trans-
lations and rotations along the x, y, and z axis) with the
same input ut = (vt, ωt) ∈ U ⊂ R2. The system dynamics
enforces that xt is always “on top of” a subset of Xobs (i.e.,
vertically challenging terrain underneath and supporting the
robot) or some boundary of X (i.e., on a flat ground) due
to gravity, requiring a 3D, 6-DoF vehicle-terrain dynamics
model in SE(3) (Fig. 2 right).

B. Vehicle-Terrain Dynamics Model Learning

Compared to the simple 2D vehicle dynamics in SE(2),
our non-rigid vehicle-terrain dynamics on vertically chal-
lenging terrain in SE(3) becomes more difficult to model,
considering the complex interaction between the terrain and
chassis via the long suspension travel and deflated tire
pressure of off-road vehicles to assure adaptivity and traction
(Fig. 1). Therefore, this work adopts a data-driven approach
to learn the vehicle-terrain dynamics model, which can be
used to rollout trajectories for subsequent planning.



Fig. 2: 2D navigation in SE(2) vs. 3D, 6-DoF navigation on vertically challenging terrain in SE(3).

To be specific, xt = (xt, yt, zt, rt, pt, ϕt), where the first
and last three denote the translational (x, y, z) and rotational
(roll, pitch, yaw) component respectively along the x, y, and
z axis. Note that unlike most 2D navigation problems in
which the next vehicle state xt+1 only relies on the current
vehicle state xt and input ut alone, our next vehicle state
is additionally affected by the vertically challenging terrain
underneath and in front of the vehicle in the current time
step, denoted as mt. Therefore, the forward dynamics on
vertically challenging terrain can be formulated as

xt+1 = fθ(xt,ut,mt), (1)

which is parameterized by θ and will be learned in a data-
driven manner. Training data of size N can be collected by
driving a wheeled robot on different vertically challenging
terrain and recording the current and next state, current
terrain, and current input: D = {⟨xt,xt+1,mt,ut⟩Nt=1}.
Then we learn θ by minimizing a supervised loss function:

θ∗ = argmin
θ

∑
(xt,xt+1,mt,ut)∈D

∥fθ(xt,ut,mt)− xt+1∥H ,

(2)
where ||v||H = vTHv is the norm induced by a positive
definite matrix H , used to weigh the learning loss of the
different dimensions of the vehicle state xt. The learned
vehicle-terrain forward dynamics model fθ(·, ·, ·) can then be
used to rollout future trajectories for minimal-cost planning.

C. Sampling-Based Receding-Horizon Planning

We adopt a sampling-based receding-horizon planning
paradigm, in which the planner first uniformly samples input
sequences up until a short horizon H , uses the learned model
fθ to rollout state trajectories, evaluates their cost based on a
pre-defined cost function, finds the minimal-cost trajectory,
executes the first input, replans, and thus gradually moves
the horizon closer to the final goal. In this way, the modeling
error can be corrected by frequent replanning. However, an
under-actuated wheeled robot, i.e., using ut = (vt, ωt) ∈
U ⊂ R2 to actuate xt = (xt, yt, zt, rt, pt, ϕt) ∈ X ⊂ SE(3)
subject to fθ, may easily end up in many terminal states
outside of Xgoal, which the vehicle cannot escape and recover
from, i.e., rolling over or immobilization (getting stuck) due

to excessive roll and pitch angles, irregular terrain geometry,
and large height change, e.g., on a large rock. Therefore,
while our goal is still to minimize the traversal time T
leading to Xgoal, for our receding-horizon planner, we seek
to optimize five cost terms on a state trajectory x0:H =
{xt}Ht=0, s.t.,xt+1 = fθ(xt,ut,mt),∀t < H , which starts
at the current time 0 and ends at the horizon H , to avoid
these two types of terminal states on vertical challenging
terrain and also move the robot towards the goal:

c(x0:H) = w1crp(x0:H) + w2ctg(x0:H) + w3chc(x0:H)

+w4cmb(x0:H) + w5cest(xH),
(3)

where crp(·), ctg(·), and chc(·) denote the cost corresponding
to the robot’s (extensive) roll and pitch angle, (irregular) un-
derneath terrain geometry, and (large) terrain height change
respectively; cmb(·) is the cost of moving out of the observ-
able map boundary; cest(·) is the estimated cost to reach
the final goal region Xgoal from the state on the horizon
xH , which can be computed by the Euclidean distance
cest(xH) = ||xH −xG||2, where xG is any state inside Xgoal.
w1 to w5 are corresponding weights for the cost terms.

D. Modeling Rolling-Over and Immobilization

Vehicle roll-over is often associated with large roll and
pitch angles, which we therefore seek to minimize along the
state trajectory. Note that roll rt and pitch pt are part of
the vehicle state xt. Therefore, we design a cost term that
considers the absolute values of roll and pitch:

crp(x0:H) = w1,1

H∑
t=0

|rt|+ w1,2

H∑
t=0

|pt|, (4)

where w1,1 and w1,2 weigh the effect of the absolute value
of roll and pitch.

Similarly, vehicle immobilization often happens when the
vehicle state does not change from time to time due to
irregular underneath terrain geometry. Therefore, trajectories
on which vehicle state significantly changes, especially along
the translational dimension x and y, are encouraged:

ctg(x0:H) = −w2,1

H∑
t=1

|xt−xt−1|−w2,2

H∑
t=1

|yt−yt−1|, (5)



Algorithm 1 WM-VCT Planner
1: Parameters: max iteration I (10), steering sample number N (11),

steering range Ωmin and Ωmax (±0.78rad), roll-out horizon Hr (5),
linear velocity V (0.1m/s), step size S (1s), update horizon Hu (3),
and goal tolerance G (0.02m)

2: Input: robot pose Probot and goal pose Pgoal
3: s1 = (x1, y1, z1, r1, p1, ϕ1) = Probot, Tfinal = {s1}
4: while max iteration I not reached do
5: for Ωi , i ∈ [1, N ], from range Ωmin to Ωmax do
6: Ti = {s1}
7: for t ∈ [1, Hr] do
8: xt+1, yt+1, ϕt+1 = Ackermann(xt, yt, ϕt, V , Ωi, S)
9: zt+1 = Elevation Map Height(xt+1, yt+1)

10: mt = Elevation Map Patch(xt, yt, ϕt, xt+1, yt+1, ϕt+1)
11: rt+1, pt+1 = fθ(mt, rt, pt) ▷ learned roll & pitch model
12: st+1 = (xt+1, yt+1, zt+1, rt+1, pt+1, ϕt+1)
13: Ti.add(st+1)
14: if Distance(st+1, Pgoal) ≤ G then
15: break ▷ goal reached, stop rollout
16: end if
17: end for
18: Ci = Calculate Cost(Ti)
19: end for
20: Tbest = Targmini(Ci)

▷ minimal-cost traj. up to roll-out horizon
21: for sj in Tbest, j ∈ [1, Hu] do
22: Tfinal.add(sj ) ▷ backtrack to and add only up till update horizon
23: end for
24: if Distance(Tfinal[last], Pgoal) ≤ G then
25: Return Tfinal
26: end if
27: s1 = Tfinal[last] ▷ update and restart new samples
28: end while
29: Return Tfinal

where w2,1 and w2,2 weigh the effect of the displacement
along x and y direction.

Furthermore, the vehicle should prefer gentle slope rather
than large height change to avoid immobilization, so we
encourage small displacement in the z direction along the
trajectory:

chc(x0:H) =

H∑
t=1

|zt − zt−1|. (6)

With the cost function (Equation (3)) and cost terms (Equa-
tion (4), (5), and (6)) defined, we can use any motion planner
to find the minimal-cost 6-DoF state trajectory x0:H (see
details in Section IV).

IV. IMPLEMENTATION

We present implementation details of our WM-VCT navi-
gation planner onboard two physical wheeled vehicles.

A. Physical Robots and Vertically Challenging Testbed

We implement our WM-VCT planner on two open-source
wheeled robot platforms, the Verti-Wheelers (VWs) [17], one
with six wheels (V6W, 0.863m × 0.249m × 0.2m) and the
other with four wheels (V4W, 0.523m × 0.249m × 0.2m).
Both robots are equipped with a Microsoft Azure Kinect
RGB-D camera with a 1-DoF gimbal actuated by a servo to
fixate the field of view on the terrain in front of the vehicle
regardless of chassis pose. NVIDIA Jetson computers (ORIN
and Xavier for V6W and V4W respectively) provide onboard
computation. We use low-gear and lock both front and rear
differentials to improve mobility on vertically challenging

terrain. Both robots are tested on a 3.1m×1.3m rock testbed
(with the highest vertical point of Xobs reaching 0.6m)
composed of hundreds of rocks and boulders of an average
size of 30cm, similar to the size of the robots (Fig. 1).
The rocks and boulders on the testbed are shuffled many
times during experiments. The vehicle state estimation for
xt is provided by an online Visual Inertia Odometry system
provided by the rtabmap ros package [70]. In order to
represent mt, we process the RGB-D input into an elevation
map [71], a 2D grid where each pixel (8mm resolution)
indicates the height of the terrain at that point.

B. WM-VCT Planner Implementation

Our planner implementation is shown in Algorithm 1.
1) Dynamics Model Decomposition: We decompose

the full 6-DoF vehicle-terrain dynamics model xt+1 =
(xt+1, yt+1, zt+1, rt+1, pt+1, ϕt+1) = fθ(xt,ut,mt) into
three parts: We utilize a planar Ackermann-steering model to
obtain approximate (xt+1, yt+1, ϕt+1) based on (xt, yt, ϕt)
and ut (line 8 in Algorithm 1); zt+1 is determined by the
value of the elevation map mt at (xt+1, yt+1) (line 9); We
use a neural network to predict the roll rt+1 and pitch pt+1

angles based on mt, rt, and pt (line 11, potentially with
additional history values). In practice, we find such a decom-
position very efficient and sufficiently accurate in capturing
the 6-DoF vehicle dynamics with a very small amount of
training data (approximately 30 minutes) and leave learning
the full dynamics model as future work. We use two 40×100
(0.32m×0.8m) elevation maps centered at both the robot’s
current and next position and aligned with the current and
next yaw angle, i.e., underneath (xt, yt)/(xt+1, yt+1) and
aligned with ϕt/ϕt+1 (line 10). In our neural network model
(Fig. 4), a fully connected sequential head (8000-64-32-8
neurons) processes the 2×40×100 elevation maps into a 8-
dimensional embedding, which is then concatenated with the
8-dimensional embedding from the last and current roll and
pitch angles, rt−1, rt, pt−1, and pt, and fed into two more
fully connected layers (16-8-2), before finally producing the
next roll rt+1 and pitch pt+1 values. To train the model for
each vehicle, we use 43161 data frames for V6W and 41367
for V4W in the open-source Verti-Wheelers datasets [17],
roughly 30 minutes of data each demonstrating both VWs
crawling over different vertically challenging testbeds.

2) Sampling and Roll-Out: For the sampling-based
receding-horizon planner, we keep the linear velocity v
constant (0.1m/s) and sample 11 angular velocities ω, or in
our case, steering curvatures evenly from [−0.78rad, 0.78rad]
(line 1). With a step size of 1 second, we roll out our
vehicle dynamics model with the 11 (v, ω) pairs five times
(roll-out horizon Hr, lines 7-17), evaluate the trajectory
costs (Equation (3) to (6), line 18) with corresponding cost
weights listed in Table I, and expand the search tree again
from the 3rd state (update horizon Hu, lines 21-23) on the
lowest-cost trajectory using the same 11 velocity pairs. We
repeat this process ten times (max iteration I) and find the
overall minimal-cost trajectory of horizon 30 (x0:30). Fig. 5



Fig. 3: Physical Experiments: The V6W (top middle) navigates through a vertical challenging environment (front and top
view of the elevation map shown in top left and top right with the planned 6-DoF vehicle poses and trajectory in black);
roll and pitch values of two successful WM-VCT trials (green lines at the bottom) are shown, while BC suffers from larger
values in the first (red lines bottom left) and fails the second (red lines bottom right).

Fig. 4: Neural Network Architecture for Roll and Pitch.

TABLE I: Cost Function Weights

w1 w2 w1,1 w1,2 w2,1 w2,2 w3 w4 w5

1 8 0.4 0.4 1 1 0.07 10 4

shows the WM-VCT sampling and roll-out strategy depicted
in Algorithm 1.

3) Motion Controller: We implement a low-level con-
troller operating at a frequency of 30Hz, with the objec-
tive of tracking the trajectory that incurs the lowest cost.
Specifically, aiming to reach the next state xt+1 from the
current state xt, the linear velocity controller determines the
throttle command (ranging from [−1.0, 1.0]) by considering
the current pitch angle pt: the controller switches throttle
command among three intervals, i.e., 0.15 for pitch less than
-5°, 0.20 for pitch from -5° to 5°, and 0.30 for pitch greater
than 5°. Such a mechanism approximately maintains constant
velocity with respect to changing terrain. The steering angle
is calculated by measuring the angle between the current
yaw angle ϕt and the line connecting the current 2D position
(xt, yt) to the next position (xt+1, yt+1). Meanwhile, while
the receding-horizon planner constantly replans at 2Hz, the

Fig. 5: WM-VCT Sampling and Roll-Out Strategy.

controller will also trigger instant replanning when the dis-
tance between the robot and the planned trajectory exceeds
a predefined threshold (0.4m).

V. EXPERIMENTS

We provide experiment results and compare WM-VCT’s
performance against other baselines designed for vertically
challenging terrain.

A. Baselines

Our proposed WM-VCT navigation planner is compared
against four baselines. The three baseline algorithms devel-
oped with the open-source Verti-Wheelers project [17], i.e.,
Open-Loop (OL), Rule-Based (RB), and Behavior Cloning
(BC), are implemented on our robots and compared against
WM-VCT. We also compare our method against the Art
planner [72], a state-of-the-art motion planner based on
learned motion cost for quadruped robots to navigate on
rough terrain, which is shown to be not applicable for our
wheeled vehicle-terrain dynamics. In Fig. 3, we show the
V6W navigating the testbed (top middle), front (top left) and
top (top right) view of the elevation map with the planned
6-DoF vehicle state trajectory, and pitch and roll values in
two example environments (bottom left and right). In the
first environment, while both BC (red) and WM-VCT (green)



TABLE II: Experiment Results of BC and WM-VCT: Number of successful trials (out of 5), mean traversal time (of successful
trials in seconds), and average roll/pitch angles (in degrees). OL, RB, and Art fail all trials. Best results are shown in bold.

V6W V4W

BC WM-VCT BC WM-VCT

Easy 5/5, 15.8s, 7.3°/7.9° 5/5, 24s, 5.1°/7.5° 2/5, 18.0s, 9.2°/17.5° 2/5, 27.5s, 5.8°/9.5°
Medium 3/5, 17.0s, 9.4°/8.3° 4/5, 24.5s, 6.1°/8.6° 1/5, 16.0s, 12°/8.5° 2/5, 32.5s, 7.9°/11.4°
Difficult 1/5, 20.0s, 8.3°/10.7° 4/5, 22.7s, 6.2°/7.4° N/A N/A

succeed, the former experiences larger roll and pitch values;
in the second environment, BC (red) fails due to the excessive
roll angle around 7.5s, while WM-VCT is able to successfully
navigate through.

B. Testbed Experiment Results

We randomly shuffle the testbed three times and test all
four baselines against our WM-VCT planner. In all our three
test environments, neither OL nor RB finish one single trial,
either rolling over or getting stuck on challenging rocks. The
Art planner aims at planning trajectories that go through
flat surfaces for a quadruped to have stable foothold, while
the quadruped torso’s roll and pitch angles can be simply
stabilized by the many DoFs on the four limbs, which does
not apply to wheeled vehicles. It is also designed for a large
quadruped robot carrying heavy-duty onboard computation
and takes more than 10 seconds for one single planning
cycle on the small VWs. Without timely replanning, our
controller is not able to follow the outdated trajectory tailored
for legged robots and therefore fails every time at difficult
scenarios after deviating from the planned path.

We present our experiment results in Table II. The left half
shows the V6W results while the right half V4W in the three
obstacle courses labeled with three difficulty levels, five trials
each. In general, our WM-VCT planner achieves better results
on both six-wheeled and four-wheeled platforms, compared
to BC, the only baseline that can occasionally navigate
through, in terms of navigation success rate and average
roll and pitch angles. For V6W, both BC and WM-VCT
finish all five trials in the easy environment, with BC being
more aggressive and therefore achieve faster traversal time
but larger roll and pitch angles; for the medium difficulty,
BC fails two trials due to rolling-over and immobilization,
while WM-VCT fails only one; in the difficult environment,
BC succeeds only one while WM-VCT fails only one. Note
the shorter traversal time of BC is calculated based on only
the successful trials, showing its aggressiveness, while WM-
VCT has lower roll and pitch angles in most cases (other
than slightly larger pitch for Medium). V4W is a much
less mechanically capable platform, and therefore fails more
than V6W (it fails all trials in the difficult environment with
both BC and WM-VCT). But the overall comparison between
BC and WM-VCT remains the same: WM-VCT finishes more
trials, is slower but more stable, and achieves lower roll and
pitch angles overall (except pitch for Medium).

Fig. 6: Outdoor Mobility Demonstration: BC rolls over (left)
and WM-VCT succeeds (right).

C. Outdoor Mobility Demonstration

In addition to the controlled testbed experiments, we also
deploy WM-VCT outdoors in natural vertically challenging
terrain with different rock sizes to test our planner’s gener-
alizability. The outdoor environment is unseen in the training
set and will challenge BC’s generalizability, while we expect
that the limited learning scope of WM-VCT can overcome
such out-of-distribution scenarios. In fact, WM-VCT indeed
allows both V6W and V4W to avoid excessive roll and pitch
angles and getting stuck on large, unseen rocks in the outdoor
environment. As shown in Figure 6, BC fails because the
learned end-to-end policy causes excessive roll angle and
leads to roll-over (left), while WM-VCT’s dynamic model
successfully generalizes to the unseen outdoor environment.

VI. CONCLUSIONS

We present a learning approach to enable wheeled mobility
on vertically challenging terrain. Going beyond the current
2D motion planning assumptions of rigid vehicle bodies
and 2D planar workspaces which can be divided into free
spaces and obstacles, our WM-VCT planner first learns to
model the non-rigid vehicle-terrain forward dynamics in
SE(3) based on the current vehicle state, input, and un-
derlying terrain. Leveraging the trajectory roll-outs under
a sampling-based receding-horizon planning paradigm using
the learned vehicle-terrain forward dynamics, WM-VCT con-
structs a novel cost function in 3D to prevent the vehicle from
rolling-over and immobilization when facing previously non-
traversable obstacles. We show that our WM-VCT planner
can produce feasible, stable, and efficient motion plans to
drive robots over vertically challenging terrain toward their
goal and outperform several state-of-the-art baselines on two
physical wheeled robot platforms.
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