ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization

Cheng-Kang Ted Chao	George Mason University
Jason Klein	Cornell University
Jianchao Tan	Kuaishou Technology
Jose Echevarria	Adobe Research
Yotam Gingold	George Mason University

Palette-based editing

Palette-based editing

Palette-based editing

Palette-based editing

Palette-based editing

Clustering-based: [Chang et al. 2015; Nguyen et al. 2017; Zhang et al. 2017]

Histogram: [Morse et al. 2007]

Data-driven: [Lin \& Hanrahan 2013; O'Donovan et al. 2011]

Geometric palette-based editing

Geometric approach: [Tan et al. 2016;
Tan et al. 2018; Wang et al. 2019]

Geometric palette-based editing

Gnomntric opprogch: [Tan et al. 2016;
Tan et al. 2018; Wang et al. 2019]

Geometric palette-based editing

Lightness is hard to control

$$
I=W \cdot P
$$

Lightness is hard to control

$$
I=W \cdot P
$$

Lightness is hard to control

$$
I=W \cdot P
$$

Input

Lightness is hard to control

$$
I=W \cdot P
$$

Input
[Tan et al. 2018]

Lightness is hard to control

$$
I=W \cdot P
$$

Input

[Tan et al. 2018]

Lightness is hard to control

$$
I=W \cdot P
$$

Input

[Tan et al. 2018]

ColorfulCurves

Lightness is hard to control

$$
I=W \cdot P
$$

Input

[Tan et al. 2018]

ColorfulCurves

Tone curves aren't local or color-aware

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

Editing a pixel needs tedious palette changes

High-level summary

High-level summary

Palette-based editing

Spatially coherent color edits

High-level summary

Palette-based editing

Spatially coherent color edits
Hard to control lightness

High-level summary

Palette-based editing

Spatially coherent color edits
Hard to control lightness
Incompatible with directly changing pixel colors

High-level summary

Palette-based editing

Spatially coherent color edits
Hard to control lightness
Incompatible with directly changing pixel colors

Tone curve editing
Easy to control lightness

High-level summary

Palette-based editing

Spatially coherent color edits
Hard to control lightness
Incompatible with directly changing pixel colors

Tone curve editing

Easy to control lightness
Need manual masking

High-level summary

Palette-based editing

Spatially coherent color edits

Tone curve editing
Easy to control lightness

High-level summary

ColorfulCurves

Easy to control lightness
Palette-based editing
凸
Tone curve editing
Spatially coherent color edits
Compatible with directly changing pixel colors

Re-formulating color decomposition

Re-formulating color decomposition

 color space

Re-formulating color decomposition

Re-formulating color decomposition

Re-formulating color decomposition

$$
f_{i}\left(L_{0}\right)=L_{0}
$$

Re-formulating color decomposition

$$
f_{i}\left(L_{0}\right)=L_{0}
$$

Re-formulating color decomposition

$$
f_{i}\left(L_{0}\right)=L_{0}
$$

Re-formulating color decomposition

Biharmonic functions

$$
f_{i}\left(L_{0}\right)=L_{0}
$$

Re-formulating color decomposition

Re-formulating color decomposition

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

$$
\begin{gathered}
I_{a b}=W \cdot P \\
I_{L}=\sum_{i=1}^{p} \hat{W}_{i} \odot f_{i}\left(L_{0}\right)
\end{gathered}
$$

Re-formulating color decomposition

Re-formulating color decomposition

Re-formulating color decomposition

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

Find the sparsest change to palette and curves that satisfy constraints

Optimizing for sparse edits

$$
E_{s p}=\sum_{i=1}^{p} \sqrt{L_{i}^{T} B^{T} B L_{i}+w_{s p} \cdot\left\|q_{i} \cdot \Delta P_{i, *}\right\|_{2}^{2}}
$$

$$
E_{p}=\sum_{i=1}^{c} \|\left(\sum_{i=1}^{n} \widetilde{w}_{j i}\left(P_{i, j}+\Delta P_{i, j}\right)-\widehat{C}_{s_{j} j}\left\|_{2}^{2}+\sum_{i \in P^{N}}\right\|\left(P_{i, i}+\Delta P_{i, i}\right)-\widehat{P}_{i, \|} \|_{2}^{2}\right.
$$

$$
E_{l}=\sum_{j=1}^{c}\left\|\widetilde{S}_{j} \odot\left(\sum_{i=1}^{p} \widetilde{W}_{i j} L_{i}\right)-\widetilde{C}_{j}\right\|_{2}^{2}+\sum_{i=1}^{p}\left\|\bar{S}_{i} \odot L_{i}-\bar{C}_{i}\right\|_{2}^{2}
$$

Optimizing for sparse edits

$$
E_{s p}=\sum_{i=1}^{p} \sqrt{L_{i}^{T} B^{T} B L_{i}+w_{s p} \cdot\left\|q_{i} \cdot \Delta P_{i, *}\right\|_{2}^{2}}
$$

Optimizing for sparse edits

$$
E_{s p}=\sum_{i=1}^{p} \sqrt{L_{i}^{T} B^{T} B L_{i}+w_{s p} \cdot\left\|q_{i} \cdot \Delta P_{i, *}\right\|_{2}^{2}}
$$

$$
E_{l}=\sum_{j=1}^{c}\left\|\widetilde{S}_{j} \odot\left(\sum_{i=1}^{p} \widetilde{W}_{i j} L_{i}\right)-\widetilde{C}_{j}\right\|_{2}^{2}+\sum_{i=1}^{p}\left\|\bar{S}_{i} \odot L_{i}-\bar{C}_{i}\right\|_{2}^{2}
$$

Optimizing for sparse edits

$$
E_{s p}=\sum_{i=1}^{p} \sqrt{L_{i}^{T} B^{T} B L_{i}+w_{s p} \cdot\left\|q_{i} \cdot \Delta P_{i, *}\right\|_{2}^{2}}
$$

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

$$
E_{p}=\sum_{j=1}^{c}\left\|\left(\sum_{i=1}^{p} \widetilde{W}_{i j}\left(P_{i, *}+\Delta P_{i, *}\right)\right)-\widehat{C}_{*, j}\right\|_{2}^{2}+\sum_{i \in P^{c}}\left\|\left(P_{i, *}+\Delta P_{i, *}\right)-\widehat{P}_{i, *}\right\|_{2}^{2}
$$

subject to

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

$$
E_{l}=\sum_{j=1}^{c}\left\|\widetilde{S}_{j} \odot\left(\sum_{i=1}^{p} \widetilde{W}_{i j} L_{i}\right)-\widetilde{C}_{j}\right\|_{2}^{2}+\sum_{i=1}^{p}\left\|\bar{S}_{i} \odot L_{i}-\bar{C}_{i}\right\|_{2}^{2}
$$

Optimizing for sparse edits

$$
E_{s p}=\sum_{i=1}^{p} \sqrt{L_{i}^{T} B^{T} B L_{i}+w_{s p} \cdot\left\|q_{i} \cdot \Delta P_{i, *}\right\|_{2}^{2}}
$$

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

$$
E_{p}=\sum_{j=1}^{c}\left\|\left(\sum_{i=1}^{p} \widetilde{W}_{i j}\left(P_{i, *}+\Delta P_{i,{ }^{*}}\right)\right)-\widehat{C}_{*, j}\right\|_{2}^{2}+\sum_{i \in P^{c}}\left\|\left(P_{i, *}+\Delta P_{i, *}\right)-\widehat{P}_{i, *}\right\|_{2}^{2}
$$

subject to

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

$$
L_{i, 1}=0, \quad L_{i, s}=1
$$

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

$$
L_{i, 1}=0, \quad L_{i, s}=1
$$

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

fast linear solve

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

$$
L_{i, 1}=0, \quad L_{i, s}=1
$$

small QP problem

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

$$
\begin{gathered}
-128 \leq P_{i}+\Delta P_{i} \leq 127 \\
L_{i, 1}=0, \quad L_{i, s}=1
\end{gathered}
$$

$$
A x_{l}=b
$$

fast linear solve small QP problem

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i}, \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

fast linear solve

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

$$
L_{i, 1}=0, \quad L_{i, s}=1
$$

small QP problem

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\underset{L_{i}, \Delta P_{i}}{\left.\left.\left.\arg \min _{s p}+w_{e q}\left(E_{l}+E_{p}\right)\right\},\right\}\right)}
$$

subject to

$$
-128 \leq P_{i}+\Delta P_{i} \leq 127
$$

$$
L_{i, 1}=0, \quad L_{i, s}=1
$$

small QP problem

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i} \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

$$
\begin{aligned}
& -128 \leq P_{i}+\Delta P_{i} \leq 127 \\
& L_{i, 1}=0, \quad L_{i, s}=1
\end{aligned}
$$

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i} \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

$$
\begin{gathered}
-128 \leq P_{i}+\Delta P_{i} \leq 127 \\
L_{i, 1}=0, \quad L_{i, s}=1
\end{gathered}
$$

Real-time optimization

Block coordinate descent

$$
\left\{L_{i}, \Delta P_{i}\right\}=\arg \min _{L_{i} \Delta P_{i}} E_{s p}+w_{e q}\left(E_{l}+E_{p}\right)
$$

subject to

$$
\begin{aligned}
& -128 \leq P_{i}+\Delta P_{i} \leq 127 \\
& L_{i, 1}=0, \quad L_{i, s}=1
\end{aligned}
$$

Real-time optimization

Real-time optimization

Palette-aware lightness control

Palette-aware lightness control

Constraint-driven color editing

Photo credit: @ Pietro De Grandi

Constraint-driven color editing

Photo credit: @ Pietro De Grandi

Expert study

10 experts, average of 10 years (3-30 years) of photo editing experience

Expert study

10 experts, average of 10 years (3-30 years) of photo editing experience

Expert study

10 experts, average of 10 years (3-30 years) of photo editing experience

Expert study

10 experts, average of is s (3-30 years) of photo editing experience

Expert study

P 10 experts, average of is (3-30 year "[T]o push the challenge further, I
"[T] he color al own away with the accuracy of clean it is". tool and how Clear.
curve per palette color was convenient Q4: The automatically chosen palette colors matched my expectations.

Q5: Recoloring the image by placing pixel constraints was useful.

Q6: Placing and removing constraints in any order was useful.

Q7: I found the overall interface easy and fun to use.

Q8: I found the tool to be more effective at color and luminance editing compared to my most comfortable tool.
choose a portrait to do a skin tone editing and the results are really good."

Expert study

10 experts, average of is s(3-30 year choose a phe challenge further, I

Expert study

10 experts, average of f (3-30 year choose a
" $[T]$ he color changing a wi own away with
amazing. I as

Expert study

"[T] he color changing blown away with the accuracy of the it is" CC JolorfulCurves is intuitive
specific to adjust the color of a
achieved which cannot be compared to my mos
same results using curves adjustments in photoshop, had to use several curves and selective masking. Using
" $[T]$ o push the challenge further, I
choose a portrait to do a skin tone editing and the results are really and selective was easy and quick."

Applications

Applications

Applications

$I_{a b}=W \cdot \not \ell^{\prime}$

Applications

$$
(0,0)
$$

Applications

$$
(0,0)
$$

Applications

$(0,0)$

Applications

Applications

Applications

Applications

Applications

[Miangoleh et al. 2021]

Conclusions, Limitations, Future work

Conclusions, Limitations, Future work

Unite palette-based and tone curve editing to enable color-aware lightness control

Conclusions, Limitations, Future work

Unite palette-based and tone curve editing to enable color-aware lightness control
Real-time editing under constraint-driven sparse optimization

Conclusions, Limitations, Future work

Unite palette-based and tone curve editing to enable color-aware lightness control
Real-time editing under constraint-driven sparse optimization

Semantic-aware color editing

Conclusions, Limitations, Future work

Unite palette-based and tone curve editing to enable color-aware lightness control
Real-time editing under constraint-driven sparse optimization

Semantic-aware color editingExtend to video domain

Conclusions, Limitations, Future work

Unite palette-based and tone curve editing to enable color-aware lightness control Real-time editing under constraint-driven sparse optimization

Semantic-aware color editingExtend to video domain
Text-guided professional photo editing

Conclusions, Limitations, Future work

Unite palette-based and tone curve editing to enable color-aware lightness control Real-time editing under constraint-driven sparse optimization

Semantic-aware color editingExtend to video domain
Text-guided professional photo editingDynamic gamut deformation

Acknowledgements

- Project page: https://cragl.cs.gmu.edu/colorfulcurves/
- Code and data: https://github.com/tedchao/ColorfulCurves

- Photographers: Mariano Garcia, Cheng-Ju Ko, Eric Wang, Mina Nabil, Jaan AlBalushi, Fabio Amore, Ammar Hashhash, Anastasia Vasilchenko, Dilhara Prasangika, Iwan, Areen Shah
- Statistics support
- Yu-Lin Hsu
- Financial support
- Adobe

