
User Tracking: Persistent Cookies and Browser Fingerprinting

Hong Kaing, Michael Risher and Brian Schulte
George Mason University

Volgenau School of Engineering
hong_kaing@yahoo.com, mrisher@masonlive.gmu.edu, brianr.schulte@gmail.com

Abstract

The two most common ways to identify a returning user
online is to require a user to provide a username and password
and the use of “cookie” data stores. However, usernames and
passwords can be stolen and cookies can be disabled and
deleted. To make up for these weaknesses, there has been much
research done in the areas of “browser fingerprinting” and
persistent cookies. A browser fingerprint is simply the
collection of readily available information from the client that
will help uniquely identify the user, much like how a human
fingerprint uniquely identifies a human. A persistent cookie is a
cookie, or collection of cookies, that are resistant to deletion.
This paper will provide a brief summary of several research
studies involving these two topics. It will also document our
experience in implementing the persistent cookie concept, which
will use as its value our own browser fingerprint identifier.

1. Introduction

1.1 Usernames and Passwords

The concept of identifying users on the internet is not new
but new methods of identifying users continue to be developed,
evidenced by the continual granting of patents [1] for this very
purpose. We are all aware of the concept of targeted
advertising, which is an industry that continues to grow. The
Interactive Advertising Bureau (IAB) reported online
advertising revenue for the first half of 2012 to be at $17 billion.
But beyond advertising, there are several other reasons websites
desire to properly identify users. Any website that stores bank
or credit card information must properly guard that information
from unauthorized users in order to prevent fraudulent activity.
Content service providers such as Netflix may also want to curb
the sharing of accounts between multiple users through the
sharing of usernames and passwords.

While usernames and passwords have historically been the
preferred method of identifying users, there are some that
believe “the age of the password is over [2].” In that Wired
article, Mr. Honan chronicles how “hackers destroyed my entire
digital life in the span of an hour.” They were able to get

control of his accounts despite the fact that he used long,
complex alphanumeric passwords, which is what is
recommended. As a result the hackers were able to gain access
to his Apple account and delete messages, documents and
family photographs. All this was done because they wanted his
Twitter handle (aka username), which was “@mat”.

The article continues to list out the most common ways
passwords are obtained: Phishing, guessing, using keyloggers
and password resetting through a company’s customer support
department. In summary, the article believes the primary reason
passwords fail is due to the fact that passwords must be simple
enough for humans to remember. This explains why, according
to the article, the top two passwords used are “password” and
“123456”. And there must be contingencies put into place
should passwords be forgotten, contingencies such as the
customer support password reset that allowed the hackers to
gain control or Mr. Honan’s accounts.

1.2 Two-factor authentication

While passwords may not be obsolete, we can see numerous

examples of where passwords are now being augmented with
other means of authentication. The most common being the
very popular Two-Factor authentication system [3]. The most
common implementation of the Two-Factor authentication
system is to not only require the user to enter their own unique
password, but then to enter another number generated by a
hardware token that is in their possession or to register a phone
that is called upon login request.

The Two-Factor authentication system is an improvement
over simply requiring a password but physical tokens are more
expensive to implement. In fact, a class action lawsuit against
the video game company Blizzard has been filed because users
were angry over the cost for a required authentication token in
order to gain access to their games [7]. Additionally, these
tokens may not always be in the possession of the user or
simply lost due to their usually small size.

To combat these weaknesses of Two-Factor authentication
some companies have developed their own Two-Factor
authentication system, such as Facebook’s Social
Authentication (SA). The SA system requires users who log in
from suspicious computers to properly identify friends who

have been tagged in their photo albums. Not only is such
system prone to attack by people in the users social circle (who
can easily identify friends in photos) but a study has shown that
using a web crawling procedure developed in Python, along
with the OpenCV toolkit’s face detection utility, they were able
to successfully guess 22% of SA’s tests using only public
information (including public photos posted by the victim).
However, should any of the victim’s friends accept a friend
request from the attacker, the success rate jumps to 100% [9].

Even if a company provides the authentication tokens free of
charge to the user there are still security problems as there have
been documented cases where these tokens have been
purposefully given away to unauthorized users [8].
Additionally, contingencies must be put in place so access may
be granted in case the token is lost, forgotten are stolen. And
these contingencies are usually identical to the ones used to
retrieve passwords.

These examples are listed not to infer that Two-factor
authentication is not valuable, but simply to show that no
authentication system is perfect and users still prefer the lowest
cost, least intrusive and most convenient solution available.
This is where browser fingerprinting and persistent cookies
come in.

1.3 Brower Fingerprinting and Persistent Cookies

With browser fingerprinting and persistent cookies, no

additional software or hardware is required. The
implementation of both simply uses tools that are most likely
already installed in the web browser (JavaScript, Cookies) and
information that is easily accessible (User Agent Strings).
Advanced users may decide to disable features that can be used
to uniquely identify them, such as disabling JavaScript,
blocking Flash cookies or altering their User Agent String
(UAS). But several studies have shown that these measures
may actually have the reverse effect by helping to uniquely
identify them as only a small percentage of users go to such
extremes as to alter their fingerprint [5, 11].

Let us conclude our introduction by acknowledging that
undesired identification of a user always presents the risk of
violating privacy rights. However, we have shown clear
examples of when identification against the user’s wishes is
required and debating the issue of privacy rights is not within
the scope of this paper.

2. Related work.

A set of persistent cookies termed “Evercookie” was
developed by Samy Kamkar in 2010 [6]. Evercookie takes
advantage of storing cookies for web clients in multiple
locations assuring redundancy if a single cookie is removed
from the system. Specifically, Evercookie stores cookies in 13
locations, including: Standard HTTP Cookies, Local Shared
Objects (Flash Cookies), Silverlight Isolated Storage, Web
History, HTML5 Session Storage and HTML5 Local Storage.
So long as a single cookie remains in any location, regeneration
of cookies in the other locations is possible. And so long as the
Flash Cookie exists, identification across browsers is possible.

The phrase “bits of entropy” refers to how likely a piece of
information will be identical between any two random users.
For example, if 8 different browsers are equally used by all
users, the browser ID is said to have “3 bits of entropy” or a 1 in

23 likelihood of having an identical match. For browser
fingerprinting, it has been noted that only 33 bits of data is
needed to uniquely identify all of Earth’s 6+ billion inhabitants
since 233 = 8,589,934,592 [4].

In two separate studies on browser fingerprinting, entropy
values are given to different attributes. They are summarized in
Table 1 below:

Table 1: Entropy values of browser attributes

Attribute Boda Study
[10]

Eckersley Study
[11]

User Agent String 8.095 10.0
Timezone 2.22 3.04
User ID 9.03 -
All fonts 8.57 13.9
Universal fonts 6.83 -
Detected fonts 7.63 -
Plugins - 15.4

It should be noted that that Boda study focused on cross

browser user identification so it excluded Eckersley’s Plugins
attribute, since plugins vary between browsers. The highest
entropy value for Boda is the User ID. This User ID is script
generated identifier derived from the first two octets of the IP
address, screen resolution, time zone and list of basic fonts. The
highest entropy value for Eckersly is the plugins attribute,
which is simply a list of all plugins installed on the browser.

From this table we can see that by using only the User Agent
String [12] we should be able to uniquely identify between 273
(Boda) and 1024 (Eckersly) unique users. When the User
Agent String is used in conjunction with the User ID or Plugins
attribute we can, in theory, identify at least 142,935 unique
users. In fact, Eckersley concludes that his fingerprinting
algorithm can uniquely identify up to 286,777 unique users.

Another interesting browser fingerprinting technique
developed by Mowery [5] is to use benchmark JavaScript
execution times to uniquely identify users. The methodology is
quite simple, create several custom JavaScript tests and record
the execution time for each test as they run on the client’s
machine. The reasoning behind using these benchmark tests is
that system attributes such as the IP address or User Agent
String can be falsified, the execution time cannot.

However, even the authors note that there are still several
hurdles that must be overcome for these benchmark tests to
become usable. The total running time for their 39 JavaScript
tests took an average of 190.8 seconds to complete. Clearly this
is unacceptable as no user want to wait over 3 minutes for a
page (with no actual data to visualize) to load. Additionally,
runtimes using the same computer configuration can be very
volatile as run times depend on what other programs are
currently running at the same time as the JavaScript. Ironically,
if you were to disable JavaScript (using NoScript [13]) in an
attempt to be “anonymous” their alternative fingerprinting
method executes much faster: between 22.2 and 23.3 seconds.

Mowery demonstrated that users who have installed the
NoScript plug-in for the Firefox browser could still be uniquely
identified. NoScript disables executable code such as
JavaScript, Java and Flash. However, since most websites
require these plug-ins to function properly users must create a
whitelist of websites that can execute code. Mowery’s team

created a page that could check for domains in the NoScript
white list, utilizing a technique that would load scripts from 689
of the top 1000 sites according to Alexa. For each script that is
tested provides 1 bit of entropy for unique user identification.

3. Implementation and Analysis

Our project can be broken down into three different tasks.
The first task involves the implementation of the Evercookie
concept. Modifications to the Evercookie source code may be
necessary to account the for browser changes since the last
stable release of Evercookie. Browser specific modifications of
Evercookie may need to be implemented in order to get all the
advertised features of Evercookie to work.

The second task of our project involves the use of browser
fingerprinting concept. Our research has uncovered 189
different attributes (see: Appendix A) that can be retrieved,
primarily using JavaScript, and used to uniquely identify a user.
A subset of these attributes will be used to create a hash value
that will serve as the value for the Evercookie.

Lastly, the cookies created will be stored on our test server in
a database in order to identify any return users. Should the user
succeed in deleting all of our created cookies, the client’s
attributes can still be obtained for the current session based on
its fingerprint. These attributes can be compared to the data
stored on our server to determine the most likely user.

3.1 Evercookie

 We utilize the 3rd party library “Evercookie” in our
implementation to combine persistent cookies with browser
fingerprinting. Evercookie utilizes various storage locations for
cookies, ensuring redundancy in return user identification. None
of these storage locations ever explicitly ask the user for
permission to store persistent data.
 Evercookie uses a multitude of locations and techniques to
store a cookie on the client: standard cookies, local shared
objects, Silverlight storage, storing in cached images, web
history, HTTP ETags, web cache, window.name caching,
Internet Explorer userData storage, and various HTML storage
locations.
 Standard cookies are simply utilizing the default storage
location for the client browser. Next, local shared objects are
used, which are also known as Flash Cookies. By default, the
Flash Player does not require a user’s permission to store
objects on the file system which is taken advantage of by
Evercookie to store their persistent cookies.
 Silverlight provides a virtual file system to store information
for trusted applications. In our tests, explicit permission was not
needed to utilize the virtual storage location, so Evercookie was
easily able to store its cookie there as well.
 The PNG caching works by storing the cookie inside of an
image file. When created, the cookie is passed to a special script
that creates an image with each RGB value set to the data of the
cookie. It is then sent back to the client, which is instructed to
cache it for an extended period of time. When attempting to
retrieve the cookie, the script will send back a response of “304
Not Modified”, forcing the client to look in its local cache for
the stored PNG file.
 ETags are used as an additional field used by HTTP for web
cache validation. A server can return an ETag value along with
a web asset which will in turn get cached by the client. Upon

subsequent requests, the client will pass along the ETag value
with its request.
 Web cache cookies simply utilize the default cache in a client
to store a persistent cookie. The space available using the
window.name property is also used for cookies. There is storage
available for all current browsers through the use of the DOM
property window.name. A drawback of this type of storage is
that it is cross-domain, meaning that other websites can
theoretically be able to read the data as well.
 HTML5 also offers multiple storage locations for Evercookie
to store its persistent cookies. The global storage that
Evercookie previously used is outdated and no longer supported
and does not seem to be working with current versions of the
browsers in our tests. Local storage is still available and
provides storage for each domain to use where a cookie can be
stored. The local storage is persistent and has no expiration date
meaning that it will reside on the client until a user explicitly
deletes the data. Session data is very similar to local storage
data, although it is only available until the current session
concludes. Due to this restriction, session data is not as reliable
as other methods for persistent cookies. Lastly, database storage
is provided within HTML5 and allows storage on a local
client’s database.
 The combination of all of these techniques provides
astounding persistence of cookies on a client’s browser. If any
of these cookies are deleted, as long as one still persists, the
other locations will be refilled with the cookie and a server can
remain able to identify the return user.

3.2 Fingerprinting

 The largest difference between our project and Evercookie, is
the fingerprinting feature. This allows us to track users even in
the event that the user has been able to remove all of the
tracking information from their computer.
 Our fingerprinting technique is based on the prior work done
by many others before. We aggregated a list of over 180
different attributes that can be used to create a unique
fingerprint. The list of attributes that we choose to use was
designed to accomplish two goals. First, we wanted to choose
few enough attributes such that it does not impose a runtime
load on the browser. Secondly, we need to choose attributes that
can uniquely identify the browser product and version and then
uniquely identify the settings and customizations that the user
has set within their environment. While JavaScript in critical in
being able to generate a fingerprint for the browser, however in
order to retrieve the highly unique attributes requires either
Adobe Flash or Oracle’s Java to access these fields.
 The attributes that we choose to use accomplish the goals
above. We track the UAS which provides the most uniqueness
for the browser product and version. The ability to capture the
list of available fonts and browser plugins provide the most
uniqueness in identifying the user (see Table 1), however, these
attributes are easily modifiable by users and we can expect them
to be updated at regular intervals.

3.3 Tracking the user

 In our implementation of persistent cookies, we keep a
database on the server comprised of user’s cookies and a user
number to identify them. On our test site, once a cookie is
created by a user’s client, it is then uploaded and added to our

database if it is not already present. There are also buttons to
return which locations contain the cookie for the user both with
and without utilizing Evercookie’s mechanism to replace
deleted cookies. This allows us to test what methods actually
work for attempting to delete these persistent cookies.
 We have also implemented the ability to make a guess as to
which user a visitor is based on the client’s fingerprint. Since
our cookie values are based on a hash of various information
obtained about a client we can use that information to make a
guess as to which user a visitor to our site is. Using this method,
even if a user manages to completely erase all evidence of the
persistent cookie, if they had previously been registered as a
user in our system we can reinstate the cookies based on the
browser fingerprint.
 Our implementation could have implemented additional
features to track a particular user across the internet should the
product be included in websites across the Internet. Additionally
we could extract information from the browser’s header to get
the referring website. Combining all of this information would
give us a very complete picture of a user’s activities across the
Internet.

3.4 Limitations

 Browsing while utilizing browser’s various stealth browsing
modes will thwart the attempts of Evercookie to establish a
persistent presence on the client. A cookie can be created and
stored within the private browsing session, but once it is
concluded the persistence is lost as all data that had been stored
during the session is erased. Some browsers, however, do not
erase all of the locations that Evercookie stores data allowing
some functionality during stealth mode browsing.
 It is possible for a vigilant user to remove all cookies stored
in the various locations that Evercookie uses. However, for the
typical user this is not a simple task. For instance, to stop Flash
cookies, the user would need to alter the Flash settings,
restricting the storage abilities of the Flash player. In order to
clear the data saved by Silverlight, the user would need to
navigate to the location on the file system where the data resides
and manually delete it.
 Since the code used for this project is stored on a private
server, we had limited access to test a large number of users
creating cookies. Because of this we were not able to produce
enough results to test for possible collisions.

4. Future Work

 For future work with this project we would like to be able to
establish a new location to be able to store cookies. All our
research indicated that there is no easily available places to store
a duplicate cookie for redundancy. One possibility could be to
use the file system API provided by HTML5. The issue with
this approach would be the explicit permission needed from the
user to utilize this functionality. While good for typically usage
of file I/O, this would not allow us to covertly track a user as
Evercookie can currently accomplish.
 Another feature that we would like to capture is GPS data
which has become increasingly available with HTML5 APIs
and the increased use of mobile devices with built-in GPS
devices. For purposes of authentication, we can use GPS data to
determine if the user’s current location is reasonable when
compared to the previously known location given time needed

to travel to the new location. For purposes of tracking, a study
by de Montjoye [14] was able to show that even anonymized
GPS data can be used to uniquely identify someone with as few
as 4 points with over 50% accuracy and with 11 points able to
achieve over 95% accuracy.
 Additionally, improvements are needed to the fingerprinting
algorithm to support inexact matching. The attributes used in
browser fingerprinting can and will change over time. Browsers
and plugins will be upgraded; Plugins and fonts will be installed
or removed causing a slightly different fingerprint. While this
fingerprint wouldn’t match exactly, it would be quite close to
the original fingerprint and fuzzy searching should be used to
find the closest matching value. This would be tricky because it
could be discarding a legitimately new fingerprint value. We
need to track these changes in the fingerprint and update the
database to track the user across multiple different fingerprints.

5. Conclusion

 Tracking return users has been a goal for many organizations
across the web. Most sessions are forgotten once a user deletes
their cookies and a server can no longer identify them as a
return user. We have researched methods in providing resiliency
for cookies in clients and have implemented a system, which
makes it very difficult to remove tracking measures. We utilize
a library called “Evercookie” to perform redundant cookie
storage on a client. We combine this with browser
fingerprinting to provide unique values for cookies as well a
method for reinstating a cookie even after complete deletion by
a user. Our implementation provides a resilient method for
organizations to be able to identify return visitors to their
websites.

6. References

[1] Mu, Ruicao, T. Hu (2012), U.S. Patent No. 8,126,816 B2.
Washington, DC: U.S. Patent and Trademark Office.

[2] Honan, Mat (November, 2012). “Kill the Password: Why a
String of Characters Can’t Protect Us Anymore”, Wired,
available: http://www.wired.com/gadgetlab/2012/11/ff-mat-
honan-password-hacker/

[3]Two Factor Authentication:
http://en.wikipedia.org/wiki/Multi-factor_authentication

[4] Narayanan, Arvind, “33 Bits of Entropy”, Retrieved, 4-6-
2013, from: http://33bits.org/about/

[5] Mowery, Keaton, D. Bogenreif, S. Yilek, and H. Shacham,
“Fingerprinting Information in JavaScript Implementations”,
Proceedings of W2SP 2011, IEEE Computer Society, Oakland, CA,
May 2011, pp. 1-10.

[6] Vega, Tanzina (October 10, 2010), “New Web Code Draws
Concern Over Privacy Risks”, nytimes.com, Retrieved 4-6-2013, from:
http://www.nytimes.com/2010/10/11/business/media/11privacy.html

[7] Kain, Erik (November 10, 2012), “Blizzard Responds To Class
Action Lawsuit Over Security Concerns”, Forbes.com, Retrieved: 4-6-
201, from: http://www.forbes.com/sites/erikkain/2012/11/10/blizzard-
responds-to-class-action-lawsuit-over-security-concerns/

[8] Hill, Kashmir (January 16, 2013) “Software Developer Who
Cleverly Outsourced His Job To China Betrayed By His Digital
Footprint”, Forbes.com, Retrieved 4-6-2013, from:
http://www.forbes.com/sites/kashmirhill/2013/01/16/software-
developer-who-cleverly-outsourced-his-job-to-china-betrayed-by-his-
digital-footprint/

[9] Polakis, Iasonas, M. Lancini, Georgios Kontaxis, et. al, “All Your
Face Are Belong to Us: Breaking Facebook’s Social Authentication.”,
Proceedings of 2012 Annual Computer Security Applications
Conference, Applied Computer Security Associates, Orlando, FL,
December 2012, pp. 399-408

[10] Boda, Karoly, A.M. Foldes, G.G. Gulyas and S. Imre, “User
Tracking on the Web via Cross-Browser Fingerprinting”, 16th Nordic
Conference on Secure IT Systems, Copyright 2012 Springer Berlin
Heidelberg, pp. 31-46.

[11] Eckersley, Peter, “How Unique Is Your Web Browser?”,
Proceedings of the 10th International Conference on Privacy
Enhancing Technologies, Copyright 2010 Springer Berlin Heidelberg,
pp. 1-18.

[12] User Agent String format:
http://en.wikipedia.org/wiki/User_agent#Format

[13] G. Maone. No Script. Online: http://noscript.net/

[14] de Montjoye Yves-Alexandre, Hidalgo, Cesar, Verleysen,
Michael, Blondel, Vincent. “Unique in the Crowd: The privacy
bounds of human mobility”. Scientific Reports Issue 3. 25
March 2013.

7. Appendix A: Available Attributes

List of available attributes along with the method of obtaining
the attribute, if known, and how often that attribute can change
between user web sessions.

attribute method volatility
accept http header stable
charset http header stable
encodings http header stable
language http header stable
activex javascript stable
geckoactivex javascript stable
adobe reader javascript Semi-

stable
cookie http header volatile
user agent http header Semi-

stable
appName javascript Semi-

stable
appCodeName javascript Semi-

stable
appVersion javascript Semi-

stable
appMinorVersion javascript Semi-

stable
vendor javascript Semi-

stable
user agent javascript Semi-

stable

oscpu javascript stable
platform javascript stable
securityPolicy javascript stable
onLine javascript Semi-

stable
browser.name javascript Semi-

stable
browser.version javascript volatile
layout.name javascript Semi-

stable
layout.version javascript Semi-

stable
os.name javascript stable
Operating System javascript stable
alpha javascript
aolversion javascript stable
backgroundSounds javascript stable
beta javascript
comment javascript Semi-

stable
cookies javascript
crawler javascript stable
cssVersion javascript stable
frames javascript stable
iframes javascript stable
javaapplets javascript Semi-

stable
javascript javascript Semi-

stable
parent javascript stable
tables javascript stable
vbscript javascript stable
win16 javascript stable
win32 javascript stable
win64 javascript stable
isMobile javascript stable
isSyndicationReader javascript stable
ActiveBorder CSS/Javascript stable

ActiveCaption CSS/Javascript stable

AppWorkspace CSS/Javascript stable

Background CSS/Javascript stable

ButtonFace CSS/Javascript stable

ButtonHighlight CSS/Javascript stable

ButtonShadow CSS/Javascript stable

ButtonText CSS/Javascript stable

CaptionText CSS/Javascript stable

GreyText CSS/Javascript stable

highlight CSS/Javascript stable

HighlightText CSS/Javascript stable

InactiveBorder CSS/Javascript stable

InactiveCaption CSS/Javascript stable

InactiveCaptionText CSS/Javascript stable

InfoBackground CSS/Javascript stable

InfoText CSS/Javascript stable

Menu CSS/Javascript stable

MenuText CSS/Javascript stable

ScrollBar CSS/Javascript stable

ThreeDDarkShadow CSS/Javascript stable

ThreeDFace CSS/Javascript stable

ThreeDHighlight CSS/Javascript stable

ThreeDLightShadow CSS/Javascript stable

ThreeDShadow CSS/Javascript stable

Window CSS/Javascript stable

WindowFrame CSS/Javascript stable

WindowText CSS/Javascript stable

Components javascript Semi-
stable

max connections per
host

javascript stable

using proxy javascript stable
cookies enabled javascript Semi-

stable
JS cookies enabled javascript Semi-

stable
server cookies enabled javascript Semi-

stable
HTTP only cookies javascript Semi-

stable
Can JS read cookies? javascript stable
meta tag cookies javascript stable
max JS cookies per
server

javascript stable

max size per cookie javascript stable
browser history CSS/Javascript volatile

date/time javascript volatile
Date locale format stable
timezone offset http header stable
diff between client and
server time

http header Semi-
stable

directX IE Semi-
stable

HTML support javascript stable
XML support javascript stable
Views support javascript stable
StyleSheets support javascript stable
CSS support javascript stable
CSS2 support javascript stable
Events support javascript stable
UIEvents support javascript stable

MouseEvents support javascript stable
MutationEvents supports javascript stable
HTMLEvent support javascript stable
Traversal support javascript stable
Range Support javascript stable
DNT http header Semi-

stable
.NET framework IE stable
flash version Flash volatile
flash version javascript volatile
navigator.plugins javascript volatile
flash platform Flash stable
flash major version Flash stable
flash build version Flash volatile
flash capabilities Flash stable
flash JS bridge javascript stable
font count Flash volatile
font list Flash Semi-

stable
font count java volatile
font list java Semi-

stable
google gears javascript Semi-

stable
geolocation support javascript Semi-

stable
IP city http header volatile
IP zip http header volatile
IP lat/lon http header volatile
gzip browser javascript stable
gzip JS javascript stable
gzip CSS javascript stable
http version http header stable
image format support html/javascript stable

country http header Semi-
stable

host name http header volatile
IP address http header volatile
java version javascript volatile
java enabled javascript Semi-

stable
java support javascript Semi-

stable
js support javascript Semi-

stable
no script support javascript stable
js version support javascript Semi-

stable
data tainting support javascript stable
encoded Jscript support javascript stable
Jscript support javascript stable
external javascript
support

javascript stable

system language javascript stable
user language javascript stable
browser language javascript stable

JS constants/calculations
(accuracy)

javascript stable

MathML support http stable
MIME associations javascript stable
cache control
pragma
document.all support javascript stable
anchors javascript stable
forms javascript stable
getElementById javascript stable
getElementsByTagName javascript stable
documentElement javascript stable
images support javascript stable
layers support javascript stable
links support javascript stable
frames support javascript stable
regex support javascript stable
option support javascript stable
Security.getProviders() java stable
crypto. “hash algo” javascript stable
crypto.algorithms javascript stable
open office installed Semi-

stable
available plugins volatile
helper components volatile
prefetch support stable
security manager version javascript Semi-

stable
quicktime installed javascript Semi-

stable
quicktime version javascript volatile
realplayer installed javascript Semi-

stable
realvideo installed javascript Semi-

stable
real jukebox installed javascript Semi-

stable
realOne installed javascript Semi-

stable
screen dpi javascript stable
screen resolution javascript Semi-

stable
pixel depth javascript stable
color depth javascript Semi-

stable
font smoothing javascript stable
buffer depth javascript stable
update interval javascript Semi-

stable
shockwave installed javascript Semi-

stable
silverlight installed javascript Semi-

stable
silverlight version javascript volatile
supports silverlight javascript stable
soundcard javascript stable
svg feature support javascript stable

WAP support stable
windows media player
installed

 stable

