
Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 1

By,

Harsh Kininge – G00543747

Naveen Paidipalli – G00456650

Raghavendra Parsi – G00455771

Abstract

ReSource Reservation Protocol (RSVP)

indicates that evry node needs to send a

sporadic control messages to maintain

active RSVP sessions. These sporadic

messages increase lineraly with number of

RSVP sessions. To reduce this overhead, we

can make use of longer refresh intervals. But

these lead to larger delay in re-

synchronizing RSVP state. In our paper, we

introduce a new state compression approach

where one can address the above mentioned

issue. This is by introducing a periodic

digest message to each neighbour node

which has a compressed version of entire

RSVP state. We also enhance the RSVP with

an aknowledgement mechanism through

which we can the avoid message losses

Introduction to RSVP

Network-control protocols that allow

internet applications to acquire different

qualities of services for their crucial data

flow. One such protocol is Resource

Reservation Protocol. Each application in a

network has various network performance

requirements. RSVP is basically developed

to provide IP networks with capacity to

support varied performance requirements of

different applications. It is crucial to know

that RSVP is not an routing protocol but

RSVP works in compliance with routing

protocols and installs the equivalent of

dynamic access lists along the routes that

routing protocols calculate.

RSVP is used by hosts or routers to request

or deliver specific levels of quality of

service (QoS) for the application data

streams. RSVP states the protocol for how

applications place reservations and how they

can handover the reserved resources once

the requirement for them has ended. RSVP

functionality will generally result in

resources being reserved in each node along

a path.

RSVP is designed to make use of the

robustness of current Internet routing

algorithms. RSVP does not perform routing

on its own, instead it uses other routing

protocols to determine where it should carry

reservations requests. As routing changes

paths to adapt to topology changes, RSVP

adapts its reservation to the new paths

wherever reservations are in place. This

modularity does not rule out it from using

other routing services. Current research

within the RSVP project is focusing on

RSVP to use routing services that provide

alternate paths and fixed paths.

Diagrammatic Representation

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 2

Quality-of-Service (QoS) offered by

RSVP:[4]

All Internet Protocol (IP)- based wireless

networks, Base stations(BSs) connect radio

system to an IP radio access network(RAN).

These Base stations use the IP protocols for

data transport and signaling in either

Wireless Local Area Networks (WLANs) or

fourth-generation networks (4G). But we see

that their coverage areas may be arranged in

any arbitrary topology. There has been

tremendous growth in the accessing of

Internet through mobile hosts through

wireless networks over the past decade.

These mobile hosts basically include mobile

phones, laptops, PDA’s etc…Due to this

substantial growth it’s been a big challenge

for the servers to deliver the same Quality-

Of-Service (QoS) to these mobile users as

done in the case of the fixed hosts.

A communication network forms the

backbone of any successful organization.

These networks transport many applications

which include various magnitudes of data

and its respective classification. These also

include some high quality video and delay

sensitive data such as in the case of real time

conversation between two mobile or fixed

hosts which require Quality-of-Service. The

bandwidth intensive applications stretch

network capabilities and resources, but also

complement, add value, and enhance every

business process. Networks must provide

secure, predictable, measurable, and

sometimes guaranteed services. Achieving

this required Quality-of Service by properly

managing the delay factor, delay variation,

bandwidth, and packet loss parameters on a

network becomes the secret to successful

end-to-end business solution. In order to

achieve such important tasks the Quality of

Service plays a vital role in the

Communication. In a way, the Quality-of-

Service in exact words can be referred to

provide different priority to different

applications, users, or data flows or to

guarantee a certain level of performance

which involves a flow of a data.

Today Internet has revolutionized in the

fields of business, entertainment, education

and many other aspects. Specifically, when

we consider the commercial world which

uses the Internet and Web related

technologies to establish Intranets and

Extranets that help streamline business

processes and new business models. The

increasing popularity of IP and have shifted

the paradigm from “IP over everything,” to

“everything over IP.” But if we take look all

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 3

the way, the internet did not guarantee any

kind of service that is considered to be the

“best effort service”. There are many

reasons why this was not merely possible as

there are several factors which affect the

packet transfer from one host to another.

Some of the factors include propagation

delay, queuing delay, dropping of some

packets when routers reach the maximum

size. All these have considerable effect on

the quality of the communication like for

instance a real-time telephonic conversation

over a network. Other factors include

corruption due to bit errors and the noise in

the transport channel. In order to avoid all

these error and provide a quality

communication the Quality of Service (QoS)

has been introduced which we discuss

further below.

Factors affecting Quality-of-Service

(QoS):[5]

The Quality of Service plays a very crucial

role in the delay sensitive voice

communication and bandwidth intense video

communication, especially when the

network resources are limited and the best

effort service fails to work. A network that

agrees to provide a certain level of QoS is in

contract or agreement in providing that level

of performance known as SLA (Service

Level Agreement). When we particularly

discuss the various crucial factors that affect

the QoS, they can be classified into two

major categories:

 Human Factors: Stability of Service,

Availability of Service, Various

kinds of delays and User

information.

 Technical Factors: Reliability,

Scalability, Effectiveness,

Maintainability, Grade of Service,

etc.

Below we describe some of the main

problems which affect the QoS, considering

two hosts where we suppose one host to be a

Sender and the other being the receiver. So,

there is a considerable scope leading to these

problems when a packet of information

travels from Sender to the receiver:

 Dropped Packets: The routers

sometimes might fail to deliver

(drop) some packets if they arrive

when the buffers are already full or

buffers reaches the maximum size.

Some, none or all of the packets

night be dropped due to this reason,

depending on the state of the

network and sometimes it’s hardly

possible to determine this in

advance. The receiving application

may ask for retransmitting this

information possibly causing severe

delays in overall transmission.

 Delay: This basically occurs when

the packet holds up in long queues or

when the packet takes a less direct

route to avoid congestion. The affect

of this would be the delay in packet

reaching the destination. Also, in

some cases, excessive delay can

render an application, such as VoIP,

unusable.

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 4

 Jitter: Packets from the source will

reach the destination with different

delays. A packet’s delay varies with

its position in the queues of the

routers along the path between the

source and the destination and this

position can vary unpredictably. This

variation in delay is called Jitter,

which seriously affects the quality of

streaming (Audio/Video).

 Out-of-Order delivery: When a

collection of related packets is routed

through the Internet, different

packets tend to take different

directions or routes, each resulting in

a different delay. The result is that

the packets arrive in a different order

than they were sent. This problem

necessitates special additional

protocols responsible for re-

arranging out-of-order packets to an

isochronous state once they reach

their destination. This is especially

important for video and VoIP

streams where the Quality is severely

affected by both latency and lack of

isochronicity.

When a collection of related packets is

routed through the Internet, different

packets may take different routes, each

resulting in a different delay. The result

is that the packets arrive in a different

order than they were sent. This problem

necessitates special additional protocols

responsible for rearranging out-of-order

packets to an isochronous state once

they reach their destination. This is

especially important for video and VoIP

streams where quality is dramatically

affected by both latency and lack of

isochronicity.

 Error: Sometimes packets are

misdirected, or combined together,

or corrupted in the process of their

travel from the source to the

destination. This should be detected

by the receiver and ask the sender to

resend the information.

Functionality of RSVP [4,5]

RSVP is a soft-state protocol, RSVP

reserves with a limited lifetime for the

reservation state. The end points of RSVP

data flows maintain reservation by sending

sporadic refresh messages along the data

paths, once the life time expire, the session

state is automatically deleted. Hence the

network has no more orphaned reservations.

The sporadic refresh messages help in

assuring the correct protocol operations.

Following are the important functions of

refresh messages:

 Modifying routes: Change in routes

cause data flows to switch to

different paths. By method RSVP

refresh messages follow the data

paths, thus the first RSVP messages

along the new paths will establish

requested reservations, while the

state along the old paths is either

explicitly cut down or timed out.

 Continuous refresh messages repairs

the state inconsistencies: Since

RSVP messages are sent as IP

datagrams which may be lost on the

way. RSVP state can change due to

unexpected causes such as

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 5

undetected bit errors etc. These

factors can cause momentary

inconsistency in RSVP state along

the data paths. Sporadic refreshes

serve as a simple repair technique

that would verify all state

inconsistencies in RSVP state for

active sessions.

 Simple to change value in refresh

message: When sender or receiver

wants to modify its reservation

parameters during the session, it

simply changes to the modified

parameter values in refresh

messages.

Related Performance Issues:

 Augmented Protocol Overhead: As

the number of active RSVP

sessions increases the protocol

overhead grows linearly. Even in

the absence of latest control

information produced by source and

destination as RSVP node sends to

its neighbor one message per active

sender session pair per refresh

period.

 Teardown Delay: This delay is

caused losses in RSVP control

messages. Although sporadic RSVP

refreshes eventually recover any

previous loss, the recovery delay

which is directly proptional to the

refresh period can be unacceptable

in a number of circumstances.

Operations and Terminologies used

in RSVP:

As we know RSVP is a receiver driven

protocol, hence to provide receiver driven

functionality, a data source sends PATH

messages towards the receivers, leaving a

trace of path state at each router that was

visited. Receivers that request for the

reservation send RESV messages that follow

the path state traces upstream towards the

data source reserving resources at each

intermediate node in the path. The states that

are set up by PATH and RESV messages is

called path and reservation states. These

states are deleted if no matching refresh

message occur before expiration. The state

may also be deleted by using PathTear or

ResvTear messages. PATH and RESV

messages do not change, when a route

changes, the next path message will

initialize the PATH state on a new route and

RESV messages will establish reservation

states there, the states on the now unused

segment of the route will time out. Thus

whether a message is new or a refresh is

determined at each node depending on

existence of state at that node. Before

moving on with the topic let us discuss with

some of the basic definitions used later in

our paper:

 RSVP state: A RSVP reservation or

path state.

 Regular/RAW RSVP messages:

Consisting of RESV, PATH,

PathTear and ResvTear messages.

 MD5 Signatures: The result of

computation of MD5 algorithm

 Digest: Set of MD5 signatures that

represent a compressed version of

RSVP.

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 6

As we know RSVP is a receiver driven

protocol, hence to provide receiver driven

functionality, a data source sends PATH

messages towards the receivers, leaving a

trace of path state at each router that was

visited. Receivers that request for the

reservation send RESV messages that follow

the path state traces upstream towards the

data source reserving resources at each

intermediate node in the path. The states that

are set up by PATH and RESV messages are

called path and reservation states. These

states are deleted if no matching refresh

message occurs before expiration. The state

may also be deleted by using PathTear or

ResvTear messages. PATH and RESV

messages do not change, when a route

changes, the next path message will

initialize the PATH state on a new route and

RESV messages will establish reservation

states there, the states on the now unused

segement of the route will time out. Thus

whether a message is new or a refresh is

determined at each node depending on

existence of state at that node.

RSVP: Data Flow

RSVP is designed to manage flows of data

rather than make decisions for each

individual datagram. Data flows consist of

discrete sessions between specific source

and destination machines. A session is more

specifically defined as a simplex flow of

datagrams to a particular destination and

transport layer protocol. Thus, sessions are

identified by the following data: destination

address, protocol ID, and destination port.

RSVP supports both unicast and multicast

simplex sessions.

RSVP: Soft State

Implementation[1]

In the context of an RSVP-enabled network,

a soft state refers to a state in routers and

end nodes that can be updated by certain

RSVP messages. The soft state characteristic

permits an RSVP network to support

dynamic group membership changes and

adapt to changes in routing. In general, the

soft state is maintained by an RSVP-based

network to enable the network to change

states without consultation with end points.

This contrast with a circuit-switch

architecture, in which an endpoint places a

call and, in the event of a failure, places a

new call.

RSVP protocol mechanisms provide a

general facility for creating and maintaining

a distributed reservation state across a mesh

of multicast and uncast delivery paths.

To maintain a reservation state, RSVP tracks

a soft state in router and host nodes. The

RSVP soft state is created and must be

periodically refreshed by path and

reservation-request messages. If no

matching refresh messages arrive before the

expiration of a cleanup timeout interval, the

state is deleted. The soft state also can be

deleted as the result of an explicit teardown

message. RSVP periodically scans the soft

state to build and forward path and

reservation-request refresh messages to

succeeding hops. When a route changes, the

next path message initializes the path state

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 7

on the new route. Future reservation-request

messages establish a reservation state. The

state on the now-unused segment is timed

out. (The RSVP specification requires

initiation of new reservations through the

network 2 seconds after a topology change.)

When state changes occur, RSVP propagates

those changes from end to end within an

RSVP network without delay. If the

received state differs from the stored state,

the stored state is updated. If the result

modifies the refresh messages to be

generated, refresh messages are generated

and forwarded immediately.

Solution to the above defined

problem:

To resolve the problem between protocol

overhead and responsiveness we present a

new approach to RSVP overhead reduction.

The importance of our scheme is to replace

all the refresh messages sent between two

neighboring nodes for each of the RSVP

sessions with the digest message that

contains a compressed snap-shot of all the

shared RSVP sessions between two

neighbors. When RSVP nodes for each of

the RSVP node receive a digest from a

neighbor node, it compares the value carried

in the digest message with the value

computed from local RSVP state. If 2 values

agree node refreshes all the corresponding

local state otherwise node starts a state re-

synchronization process to discover and

repair the inconsistency. To assure quick

state synchronization in face of packet losses

we also enhance RSVP with an

acknowledgement option so that instead of

waiting for next refresh, any lost RSVP

message can be quickly transmitted. The

goal of our proposal is to improve RSVP’s

scalability allowing efficient operation with

large number of sessions. More specifically,

we aim at reducing the number of refresh

messages while still preserving the soft-state

paradigm of RSVP. As in current method we

send a refresh message per sender-session

pair to neighbor, our approach is to allow

each RSVP node send a digest message

which is a compact way of representing all

the RSVP session state that is shared

between two neighboring nodes. In this way,

number of sessions are directly proportional

to the number of neighboring nodes. These

RSVP messages are sent either when

triggered by state changes that are detected

to re-synchronize the state shared between

two nodes. As we infer, these benefits can

come only with the overhead. Generally the

protocol overhead can be categorized into

bandwidth overhead for message

transmission and computation overhead for

processing these messages.

As we have to compress RSVP state into a

digest, we have to concatenate the state of

all the RSVP sessions into a long byte

stream and compute digest. However this

technique suffers from a high overhead of

re-computing the whole digest again

whenever any change happens. To scale the

digest computation we compute the digest in

a structured way. First, we hash all the

RSVP sessions into a table of fixed size. We

then compute the signature of each session

as an outcome, and for each slot in the hash

table we compute the slot signature from the

signatures of all the sessions hashed to that

slot. On top of this set of signatures, we

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 8

build an N-ary tree to compute the final

digest

We used tree structure to compute the digest

because:

 Whenever the digests computed at

two neighboring nodes differ, the

two nodes can efficiently locate the

portion of inconsistent state by

walking down the digest tree.

 When an RSVP session state is

added/deleted/modified, an RSVP

node only needs to update the

signatures along one specific branch

of the digest tree, i.e. the branch with

the leaf node where the changed

session resides.

MD5 Algorithm:[2]

MD5 is a Message Digest Algorithm

developed by Ron Rivest at MIT. MD5 is

secure version, though little slower,

compared to his previous algorithm MD4.

The MD5 has been widely used secure hash

algorithm particularly in Internet-Standard

message authentication. The algorithm takes

as input a message of arbitrary length and

produces as output a 128-bit message digest

of the input. This is mainly intended in the

applications where digital signatures are

involved. This involves compressing, where

a large file is compressed in a secure manner

before being encrypted with a private key

and a public key. In our design, we use the

MD5 algorithm to compute state signatures.

We will briefly describe about MD5 in this

particular section. MD5 (Message-Digest

algorithm 5) is used widely, as a partially

insecure cryptographic hash function with a

128-bit hash value. As an Internet standard ,

MD5 has been employed in a wide variety

of security applications, and is also

commonly used to check the integrity of

files. An MD5 hash is typically expressed as

a 32 digit hexadecimal number. MD5

digests have been widely used in the

software world to provide some assurance

that a transferred file has arrived intact.

MD5 is widely used to store passwords. To

mitigate against the vulnerabilities

mentioned above, one can add a salt to the

passwords before hashing them. Some

implementations may apply the hashing

function more than once—see key

strengthening. MD5 processes a variable-

length message into a fixed-length output of

128 bits. The input message is broken up

into chunks of 512-bit blocks (sixteen 32-bit

little endian integers); the message is padded

so that its length is divisible by 512. The

padding works as follows: first a single bit,

1, is appended to the end of the message.

This is followed by as many zeros as are

required to bring the length of the message

up to 64 bits fewer than a multiple of 512.

The remaining bits are filled up with a 64-bit

integer representing the length of the

original message, in bits.

The main MD5 algorithm operates on a 128-

bit state, divided into four 32-bit words,

denoted A, B, C and D. These are initialized

to certain fixed constants. The main

algorithm then operates on each 512-bit

message block in turn, each block modifying

the state. The processing of a message block

consists of four similar stages, termed

rounds; each round is composed of 16

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 9

similar operations based on a non-linear

function F, modular addition, and left

rotation. There are four possible functions F;

a different one is used in each round:

F(X,Y,Z) = (X^Y) V (~X^Z)

G(X,Y,Z) = (X^Z) V (Y^~Z)

H(X,Y,Z) = X Y Z

I(X,Y,Z) = Y (X V ~Z)

Where , ^, V, ~ denote, AND, OR and NOT

operations respectively

We can say with a high level of assurance

that no two sets of different RSVP states

will result in the same signatures. However

it should be noted that our state compression

scheme can work well with any hash

function that has a low collision probability

such as CRC-32 as long as two neighbor

nodes agree upon their choice of the hash

function. As another optimization, we also

add an acknowledgment option (ACK) to

the RSVP protocol. The ACK is used to

minimize the re-synchronization delay after

an explicit state change request. A node can

request an ACK for each RSVP message

that carries state-change information, and

promptly retransmit the message until an

acknowledgment is received. It is important

to note the difference between a soft-state

protocol with ACKs and a hard-state

protocol. A hard-state protocol relies solely

on reliable message transmission to assume

synchronized state between entities. A soft-

state protocol, on the other hand, uses ACKs

simply to assure quick delivery of messages;

it relies on periodic refreshes to correct any

potential state inconsistency that may occur

even when messages are reliably delivered,

for example state inconsistency due to

undetected bit errors, or due to undetected

state changes.

State Organization

Refresh efficiency comes with a price. Due

to the need of storing the neighbor states

because separate digests which need to be

sent to different neighbor. Consequently

computation costs are inflated since we have

to compute the per neighbor digests and we

have to operate on per neighbor data

structure.

Neighbor Data Structure Design

Current RSVP structure the state inside a

node as a common pool of sessions, without

considering their destinations. Whereas the

digest messages sent towards a particular

neighbor contain a compressed version of

the state shared with the neighbor. Hence the

need arises to further organize RSVP state

inside a node according to the neighbors

each session that comes from or goes to. To

counter this session what we do is introduce

a new data structure design called neighbor

data structure design. It will hold all the

information needed to calculate, receive and

send digests to and from a specific node. It

will be a combination of all RSVP sessions

that the current node sends to or receives

from a particular neighbor. To increase

efficiency neighbor data structures may not

actually store the sessions but contain

pointers to the common pool of sessions. In

this method a session shared with many

neighbors is not copied many times to the

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 10

neighbor structures. The neighbor structure

contains the digest computed from the

sessions shared with neighbor and even with

auxiliary information such as

retransmissions and clean up timers. A node

needs to compute two digests for each

neighbor, one for the state refreshed by

messages received from that neighbor and

one for the state the local node is responsible

for refreshing towards that neighbor. We

call these two digests InDigest and

OutDigest is sent in place of raw refreshes

while InDigest is used for comparison when

the receiving a Digest message from that

neighbor.

Session State to Signature:

To compress a session state into a signature,

we first need to identify which session

parameters need to be constantly

synchronized between neighbors. The state

representation in this implementation is

based on the design is significantly modified

and broken down into a more fine-grained

layout. All state is stored as objects

containing relationships to other objects.

The main entry point into the state

representation is given by Session objects,

which are stored in a global, hash-based

container. Starting from a Session object, the

full state for each session can be traversed to

access specific state blocks. Some of the

RSVP message type fields are provided

below:

� Path

� Reservation-request

� Path-error

� Reservation-request error

� Path-teardown

� Reservation-teardown

� Reservation-request

acknowledgment

A session is uniquely identified by a session

object which contains the IP destination

address, protocol ID and optionally a

destination port number of the associated

data packets. A Path State Block (PSB) is

comprised of a sender template (i.e. IP

address and port number of the sender), and

a Tspec that describes the sender’s traffic

characteristics and possibly objects for

policy control and advertisements. A

Reservation State Block (RSB) contains

filterspecs (i.e. sender templates) of the

senders for which the reservation is

intended, the reservation style and a

flowspec that quantifies the reservation. It

may also contain objects for policy control

and confirmation. Although PSBs and RSBs

contain some other fields such as incoming

interface and outgoing interfaces, these

fields have only local meaning to a specific

node and therefore should be excluded from

the digest computation. As to RSVP objects

defined in the future, the digest computation

can also be applied to them if necessary.

A brief Description of Mechanism:

Normal Operation

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 11

Neighboring nodes start by exchanging

regular RSVP messages as usual. Once a

node discovers a compression capable

neighbor, it creates a digest for the part of its

RSVP state that it shares with each of this

neighbors. Subsequently, the node sends

Digest messages instead of raw RSVP

refreshes at regular refresh intervals. When

an event that changes the RSVP state (e.g. a

sender changes its traffic characteristics

(Tspec)) occurs, raw RSVP messages are

sent immediately to propagate this change.

Raw RSVP messages are sent as before,

with the added option of asking for an ACK.

A sender requesting an acknowledgment,

includes in the message a timestamp object

with the ACK Requested flag turned on. The

sender also sets a retransmission timer for

the packet sent. Processing at the receiver

side includes updating the digest of the

session that the message belongs to as well

as updating the digest tree. If during

processing a condition occurs that requires

sending back an errormessage back to the

sender (e.g a ResvErr) then the receiver

sends back to the sender that error message.

This error message will cancel any pending

retransmissions of the original message.

If no ACK is received before the

retransmission timer expires, the sender

retransmits the message up to a configured

number of times. Each of the

retransmissions carries the same timestamp

contained in the original message. If an

updated message (i.e. a PATH message from

the same sender but with different Tspec) is

sent before an ACK is received, the original

message becomes obsolete and no longer

needs to be retransmitted. If no ACK arrives

even after the message has been

retransmitted for the maximum number of

times, the message is purged from the

node’s list of pending messages. Any

inconsistencies created by the possible loss

of this message will be later resolved by

digests.

Digest messages are always sent with the

ACK Requested flag turned on. Digest

messages are also retransmitted for a

maximum number of times in the absence of

ACK messages. However, following the

original RSVP design where an RSVP node

never stops sending refresh messages for

each active session, a node should not stop

sending digest refreshes even if it fails to

receive an acknowledgment in the previous

refresh interval. If the neighbor node

crashed and becomes alive again, it will find

the digest value different from its own and

the two routers will start the re-

synchronization process. When the digest

value is changed, the node needs to cancel

any pending retransmission of the obsolete

Digest message and promptly send a Digest

message with the new digest value. When a

node receives a Digest message, it checks to

see if the state reported by the Digest

message is consistent with the

corresponding state stored locally. To do so

the node does a binary comparison between

each of the MD5 signatures contained in the

digest object and the corresponding MD5

signatures in the InDigest. If all of them

agree then the state is consistent and an

ACK is sent back. Otherwise the receiver

returns a DigestErr message containing its

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 12

InDigest and the process described in the

next section begins.

Procedure for Recovery

There are many reasons for two RSVP

neighbors going out of sync. For instance, a

state-changing RSVP message got lost and

the sender did not ask for acknowledgement.

It may also happen that a node crashed and

lost part or all of its state. This process can

be made easier if the inconsistencies are

detected when they arise and immediately

does the recovery process or does the repair.

As we mentioned earlier, a node sends a

‘DigestErr’ message if the received digest

value disagrees with the local digest. The

timestamp and digest value of it help the two

neighbors localize the problem. If the

timestamp acknowledged is smaller than the

timestamp of the last Digest message sent,

this error message is for an obsolete

message. This message should be ignored

since it may not represent the current state of

the neighbor. If they are equal, the node

starts a depth-first search of the mismatching

signatures from the root of the digest tree.

When a node receives a ‘DigestErr’ message

it compares the digest value with its own to

find the states that are inconsistent. When it

finds the first mismatching signature (call it

S1), it sends a Digest message containing

the signatures used to compute S1. A

DigestErr is expected for this Digest

message since at least one of the children

signatures should not match. The node again

looks for the first mismatching signature

(S2) in the second DigestErr message and

sends the children of S2 in a Digest

message. This procedure is repeated until

the leaf signature (Sh) causing the problem

is found. Now, the node knows that one or

more of the sessions in that hash table slot

(represented by Sh) must be inconsistent

with those in the neighbor. It can then locate

these sessions by further exchanging the

session signatures with the receiver. It is

observed that there is a tradeoff between the

latency of the recovery procedure and the

transmission efficiency. For example, if the

tree has many levels, many RTTs are needed

to exchange the digests at all the tree levels

in order to find the leaf-level sessions that

contribute to the inconsistency. However, if

speed of convergence is more important than

efficiency, one can stop at an intermediate

tree level and refresh all the states

represented by the mismatching signature at

that level.

Time Arguments involved:

In this part we deal with the two parameters

of time, associated with digest messages,

mentioned below:

 The refresh period between

successive digest refreshes (R).

 The retransmission timeout (T).

The implementation part starts with a node

sending digests at intervals of r (r, randomly

chosen in the range [0:5*R; 1:5*R]). This is

done so to avoid the synchronization of the

digest messages. The retransmission time

(T) is basically used when an

acknowledgement is not received after a

time interval of T, and node will be held up

in the work of retransmitting that digest

message. To be consistent, the digest

Resource Reservation Protocol (RSVP) – Ensuring Quality of Service (QoS)

INFS 612 Page 13

refreshes are also sent every thirty seconds

by default and this interval should be made

configurable. The digest messages are

explicitly acknowledged and there would be

no necessity to decrease the value of ‘R’ to

avoid lost digest messages, but smaller

values of ‘R’ would be efficient, as it affects

frequency, in the environments where

prolonged periods of inconsistency are

undesirable. Also, the retransmission time

(T) should be proportional to the round-trip-

time (RTT) between any two connected

neighbors.

Summary:

Our focus in this paper was to mainly bring

two new changes to the implementation of

the RSVP. We have let each node compress

aggregate RSVP state to a digest that can be

efficiently carried in a single packet, which

can further be exchanged between neighbor

RSVP nodes. The digest computation using

the MD5 algorithm is done in a structured

way so that, any inconsistency between two

neighbors can be easily identified and

located for repair. In doing so, this state

compression drastically reduces the message

overhead of the RSVP. Secondly, we focus

on the enhancement of RSVP providing it

with an acknowledgement option. In doing

so, the signal can be quickly re-transmitted

if necessary, when the sender receives an

acknowledgement from the receiver.

Although, reliable delivery of control

messages cannot be used to replace soft-

state refreshes, use of acknowledgement

definitely speeds up the state

synchronization in the case of message

losses. We are also planning to explore the

feasibility of this approach to some other

soft-state protocols, in achieving the same

kind of efficiency by using a soft-state

approach with state compression instead of a

hard-state protocol such as Transmission

Control Protocol (TCP).Lastly, one of our

future objectives is to calculate the

computational costs in determining how

expensive the operation of inserting or

deleting nodes would be, applying the MD5

algorithmic analysis. This would require us

some more time.

References:

[1] Refreshing Mechanism in RSVP, An

adaptive and dynamic Timer Design to

maintain soft state in RSVP,

http://ieeexplore.ieee.org/xpl/freeabs_all.js

p?arnumber=934897

[2] Information about MD5 algorithm,

FPGA implementation of MD5 Hash

Algorithm,

http://www.engr.mun.ca/~howard/PAPERS

/ccece_2001.pdf

 [4] RSVP and QoS, Extending RSVP for

Quality of Secure Service,

http://portal.acm.org/citation.cfm?id=1128

677

[5] QoS mechanisms in all IP Wireless

Access Networks,

http://ieeexplore.ieee.org/xpl/freeabs_all.js

p?arnumber=1303757

