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Abstract

A protocol  for  managing  deadlock  in  Distributed  
Discrete  Event  Simulation  (DDES,  which  is  also  
known  by  the  name  Parallel  Discrete  Event  
Simulation,   or PDES) is  described.   DDES may be  
one  of  the  keys  to  simulating  complex  living  
organisms,  among many other interesting  simulation  
goals.   The  new  protocol  is  named  the  Deadlock  
Management Protocol (DMP) and is developed under  
the  approach  of  minimizing  system  lifetime  cost  
primarily  through  software  engineering  principles.  
The  main  idea  is  to  take  the  simplest  possible  
approach,  but  also  to  ensure  that  the  solution  is  
robust.   As  such,  only  DDES is  considered;  solving  
deadlock  in  a  manner  that  would also  benefit  other  
systems such  as  general-purpose  Internet  computing  
or  database  management  systems  would  only  add  
complexity  to  the  solution.   Previous  methods  of  
maintaining  causal  relationships  in  DDES  are  
researched  to  find  the  strengths  and  weaknesses  of  
each in an attempt to take the best strengths without  
the weaknesses.  A framework approach and layered  
architecture is suggested to prevent re-work once an  
implementation is developed.  Within the framework,  
any approach to maintaining causality could be used.  
Deadlock management is suggested as the method of  
choice given current trends in hardware capabilities.

1. Introduction

Consider advances in biology research made in the 
last  decade  that  have  been  made  possible  by 
computing.   One  widely  publicized  example  is  the 
Human Genome project, which has enabled researchers 
to determine the locations of genes responsible for a 
variety of  diseases,  down to  a  precise  location  on  a 
specific chromosome, and even to know the exact DNA 
sequence  of  these  genes  [1].   Now  consider  lesser 
known  examples,  such  as  the  simulation  of  the 
biochemical  reaction  pathways in  a  single  yeast cell 
[2,3,5].  One might ask, "why should I care about the 
simulation of a yeast cell?"  This question would arise 
naturally, because the typical use of yeast is for baking. 
However,  in terms of cell  simulation,  it  is a proving 
ground for much loftier goals.  The really interesting 
goal is the simulation of human cells [4,6].  Being able 
to  simulate  human  cells  would  mean  that  many 
potential  drugs  [5]  (maybe someday even a  cure  for 
cancer) could be tested in simulation before ever going 
to trials in living specimens, saving time, money, and 
the lives of animals.  At this point, it's just a matter of 
time and computing resources, for the correct models 
to be developed.  The ultimate goal would of course be 
to simulate the biochemical system that  composes an 
entire living organism.

Discrete  Event  Simulation  (DES)  is  an  important 
tool in modeling complex systems such as living cells. 
DES is usually done by maintaining in a priority queue 
a set of events that are to occur.  Events are pulled off 
the queue in chronological order.  The simulation as a 
whole works by using causality of events.  Each event 
is caused by a preceding event.  Some calculation is 
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performed to  see when the caused event(s)  will  take 
place.   New  events  are  placed  into  the  queue  for 
eventual processing.  When these events are pulled off 
the  queue,  they  might  cause  additional  events,  thus 
perpetuating the simulation [7].

For  the  introductory  example,  there  are  ways  to 
simulate  biological  systems  (for  example,  metabolic 
cycles) completely as systems of differential equations 
of chemical reaction rates [5].  However, when protein 
synthesis,  mRNA,  tRNA,  and  DNA  interaction  are 
considered in the system, chemical reaction rates are a 
poor way to do the simulation.  The latter interactions 
are more event-based than anything else, so DES is the 
method of choice [23].  When the problems get large 
enough  in  size  and  fine  in  granularity,  Distributed 
Discrete Event Simulation (DDES) is the next logical 
step,  because  it  enables  the  simulation  to  run  in  a 
reasonable  amount  of  time  on  multiple  computers, 
through the speedup associated with parallel processing 
[21,24].  When the simulation is distributed, there are 
multiple  event  queues  that  need  to  synchronize  with 
each other, and message passing is used to place events 
in  remote  queues.   Because  of  the  synchronization 
requirement,  there  is  potential  (and  likelihood)  of 
deadlock  [7,9].   The  simulation  on  each  computer 
cannot be allowed to move forward until it is certain it 
will receive no more messages for events that could be 
earlier than the event being processed.  The reason for 
this  is  that  there  could  be  some  causal  link  that  is 
missed if events are processed out of order.  This need 
for synchronization is the underlying cause of deadlock 
in these systems.  There are two major problems with 
transitioning  from DES  to  DDES.   First  is  actually 
detecting deadlock, when (or if) it occurs.  The second 
problem is finding the way to resume the simulation if 
it is stuck in deadlock.

There  are  a  few viable  solutions  to  the  deadlock 
problems  [8,9,10,11,12,21].   One  is  to  do  advanced 
analysis  and  design  to  ensure  that  deadlock  is 
impossible.  (This is extremely difficult in practice.)  A 
second  solution  is  to  prevent  deadlock  by  being 
optimistic in the synchronization, assuming that there 
will  never  be  out-of-order  events.   Since  it  is  still 
possible for out-of-order events to occur, this solution 

must include a method of rolling the simulation back to 
where the violation occurred, so that the events can be 
replayed in the correct order [11].  (Can be costly in 
time  and  memory  depending  on  the  rollback 
probability.)  Another method is to allow deadlock, but 
to  find  occurrences  of  deadlock  with  a  distributed 
algorithm [8,9,10], and then resume the simulation by 
kick-starting it with the single earliest possible message 
in the queues.  (This is conceptually very simple.)  A 
more complicated method is to do the same, but kick-
start the simulation with a maximal set of the earliest 
possible  messages  [9].   (This  is  conceptually  very 
difficult.)   The last solution is to insert messages for 
events very far in the future into the system that force 
the  simulation  to  continue.   (This  is  primarily 
applicable  to  terminal  deadlock,  which  is  when  the 
simulation reaches the end of events to be processed, 
although it can apply to other situations where a limit 
can be place on the earliest time of the next message 
that  will  be  sent.)   This  last  solution  is  typically 
referred to as the passing of null messages.

2. Problem statement

Simply put:  What is the best overall DDES solution 
method?

To answer this, some other questions must be asked. 
First,  how does  one  objectively  determine  what  the 
ideal method solution should be?  Next, what metrics 
should  be  used  to  measure  against  this  ideal?   My 
argument  is  that  the  ideal  would  be  the  optimistic 
solution described above, if the possibility of rollback 
was zero.  However, this is not achievable in practice, 
so the various solutions must be weighed against each 
other to see which is best in a given situation, possibly 
compared to the ideal.  I propose using system lifetime 
cost as the performance metric.

System lifetime cost.  This should include the cost of 
time, hardware costs, and software costs.  The time it 
takes  to run a given solution is  obviously important. 
The whole idea  of going to a distributed simulation, 
besides being able to conquer larger-sized problems, is 
speedup  [21],  and  both  really  go  hand-in-hand.   A 
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small  problem  that  takes  too  long  would  be  cost 
prohibitive, and so would a problem that is fast when 
small, but takes too long when size of the problem is 
increased.  Hardware maintenance can be a big issue 
over  the  lifetime  of  a  product.   Volatile  memory is 
cheap and fairly reliable these days, so it is not much of 
an  issue,  but  non-volatile  storage  requirements  can 
impact  lifetime  costs  greatly.   For  example,  the 
reliability of a system worsens, in terms of Mean Time 
Between Failure (MTBF),  dramatically as  more non-
redundant storage systems are introduced.  Depending 
upon  the  system complexity,  failures  in  non-volatile 
storage can lead to lengthy down time, which leads to 
costly project delays in addition to adding maintenance 
cost.

Software maintenance is probably one of the most 
overlooked items in these considerations [13].   Often 
the  most  complex  solution  to  a  problem  is  chosen 
because it has been proven to be the fastest in actual 
execution time.  However, if it take months to program 
and debug, it might be a waste compared to a solution 
that is inefficient in execution but only takes a day to 
program.   In  addition,  code  maintenance  is  often 
overlooked.  Most software code is used much longer 
than it  was ever  intended or  expected.   It  is  usually 
inadequate over time, requiring periodic upgrades.  The 
difficulty  of  distributed  programming in  general  and 
salary cost due to DDES being a niche programming 
area  mean  that  developing  and  maintaining  DDES 
projects is very costly.

3. Related research work

The typical approach to creating a DDES starts with 
the normal way of creating any DES.  First, the system 
to be simulated is analyzed and decomposed into a set 
of physical processes, the action of which can produce 
the predicted (or  perhaps observed)  system behavior. 
Each  physical  process  is  represented  by  a  logical 
process (LP) in a message-passing system that can be 
executed as a combination of a sequence of events and 
sequence  of  messages  passed  between  LPs  on  a 
computer [7].  In the DES, all of the LPs are run with a 
single event queue, and messages are treated as a sub-

type  of  events.   The  single  event  queue  handles 
synchronization  and  causality  automatically,  because 
events are always processed from the queue in order.

To make a DDES from a given DES, the set of LPs 
for  the  system simulation  is  partitioned  into  smaller 
disjoint sets of LPs, the union of which is the original 
set of LPs for the entire system.  In the DDES, some 
degree  of  message-passing  takes  place  over  the 
interconnection network.  Typically, the choice is made 
to  have  a  one-to-one  relation  between  LPs  and 
processors.  That is, each LP has its own processor, and 
every processor is used for just one LP.  In this case, 
every message that is not self-directed must travel over 
the  interconnection network.   The  possible  incoming 
lines  of  communication  from  which  each  LP  can 
receive messages are termed "dependencies" and vary 
with the decomposition of the system being simulated. 
To  maintain  causality  in  the  system,  as  explained 
before, each LP must ensure that it will not receive any 
messages which have a time stamp earlier than the time 
of the next event to process.  This is done by tracking 
the times of messages for each dependency.  If all of 
the dependency times are greater than or equal to the 
lowest event time in an LP's queue (the event at the top 
of the queue), then the next event is safe to process. 
This  dependency  of  event  processing  on  incoming 
messages is one area for potential deadlock.  The other 
is that an LP may be trying to transmit a message to 
another  LP  but,  for  some  reason  or  another,  the 
destination LP is not able to receive any messages due 
to finite buffer size limitations [9].

The earliest work on deadlock in distributed systems 
is  by K.  M. Chandy and  J.  Misra  [8].   Chandy and 
Misra worked out the basic conservative solutions to 
any  deadlock  problem  that  can  be  encountered, 
including terminal deadlock, building on the work of 
Dijkstra  and  Scholten  [18].   Their  solutions,  as 
presented by them, have a couple of flaws, which will 
be highlighted later.

It is worth noting that they studied these problems at 
a  time  where  processors  and  memory  were  fairly 
limited  but  interconnection  networks  were   fast  by 
comparison.  In this situation, the minimum amounts of 
processing  and  storage  were  strict  requirements  of 
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whatever solution was chosen.   As such, the optimistic 
approach  was  rejected  because  it  requires  check-
pointing  (thus  requiring  large  amounts  of  storage  of 
some kind)  and will  inevitably have  to  implement  a 
rollback  mechanism,  which  takes  processing  time. 
Also,  Chandy  and  Misra  were  approaching  the 
problems from the typical distributed  applications  of 
the time, which were databases.  In actuality, this is still 
the  predominant  distributed  application  today, 
especially given that every major software application 
today is effectively a database application.  Optimistic 
methods  don't  even  make  sense  in  database 
applications.

More  recently,  the  processing,  memory,  and 
interconnection rate situation was reversed from when 
Chandy and Misra started their work on deadlock.  The 
interconnection network speeds of today (in commodity 
networks) are well behind what processors are capable 
of in terms of bandwidth.   Memory also lags behind 
processors in these terms, but still outdoes the typical 
computer-to-computer  interconnection.   So,  the 
accepted solution today is different from what Chandy 
and Misra chose, and is somewhat based on technology 
from  a  few  years  back.   The  generally  accepted 
solution  today  is  to  use  the  optimistic  method, 
implement  check-pointing,  and  implement  rollback 
mechanisms.

This solution has many attractive points [11].  First, 
through  check-pointing,  the  simulation  state  can  be 
saved and restored.   This can be useful  not  only for 
rollback  mechanisms,  but  for  recovery  from  system 
failure.  Also, if rollback can be implemented in each 
processor  individually,  without  requiring 
interconnection  utilization,  it  can  be  very  fast. 
Unfortunately, rollback usually requires use of message 
-passing  between processors  because  some messages 
may have been sent out speculatively, requiring some 
sort  of  communicated  "undo"  feature  (sending  a 
message to another process indicating "some messages 
you received were sent  out  by accident")  when it  is 
determined  that  a  synchronization  violation  has 
occurred [12].

The details of the optimistic methods of DDES are 
left to the reader.  There are many references to date, 

and the optimistic methods seem to be the standard way 
of doing any type of DDES in recent years [11,12,19]. 
The references included in this paper  all  indicate  the 
same drawbacks of a large memory footprint and time-
consuming, complicated,  garbage  collection schemes. 
As  noted  earlier,  the  optimistic  methods  have  their 
merits  as  well,  so  they are  not  to  be  ignored.   The 
answer is perhaps not in the pessimistic method or in 
the optimistic method, but somewhere in between.

On  the  horizon,  faster  and  faster  interconnection 
networks are on the way, possessing bandwidth (10 and 
100 G-bits per second) greater than a single processor 
(typically 2 to 6 GB/s) can utilize.  It appears that the 
times are returning to the situation for which Chandy 
and Misra had originally devised their solutions.  Given 
this  scenario  and  because  of  rollback  mechanism 
complexity, the focus of this paper is where the least 
attention  seems  to  be  devoted:  the  conservative 
solution.  What follows is an explanation of the best-
known  conservative  approaches  to  deadlock 
management.

4. Deadlock detection and recovery

Chandy and Misra [8] realized that the first step is 
to  devise  a  distributed  algorithm  for  detecting 
deadlock.   As an indicator  of the importance of this 
first step, many papers have been written on the subject 
of  deadlock  detection  alone.   To  state  the  obvious, 
nothing can be done to recover from deadlock unless it 
is  known  that  deadlock  exists,  or  many  recovery 
attempts would be wasteful in the least.  A distributed 
algorithm for this is key, because having a centralized 
algorithm gives a single point of failure, and as stated 
earlier, as the amount of hardware increases, the system 
MTBF decreases, making component failure likely in a 
distributed system.  The next step is an algorithm to 
recover  from deadlock,  which  again  is  a  distributed 
algorithm.

4.1 Deadlock detection

The basic system of Chandy and Misra for detecting 
deadlock requires some description to understand the 
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development of my solution.  Rather than require the 
reader  to  find  their  paper  and review it  side-by-side 
with this one, a full description of everything necessary 
to  understand their  analyses is  included here.   Their 
method  is  devised  where  the  distributed  processing 
system is  viewed  as  the  set  of  vertices  and  colored 
edges of a directed graph [8].  The vertices represent 
processes, identified by a process index number.  The 
directed edges represent wait-for relationships.

The dashed lines show possible locations for edges 
where  edges  currently  do  not  exist.   The  edges 
(identified by two values,  the first  being the waiting 
process, and the second being the waited-for process) 
go from the waiting process to the waited-for process. 
For  Chandy  and  Misra,  these  wait-for  relationships 
were explicit request/reply channels, where one process 
requests data from another process, and then waits for a 
reply with the requested data.  In our DDES, the wait-
for relationships are implicit:  they are the inter-process 
dependencies for which the time-stamp is less than the 
time of the top event in the queue.  The graph colors of 
Chandy and Misra are as follows:

● Grey: if process i has sent a request to process 
j which process j has not received (yet).

● Black: if process j has received a request from 
process i  and has not sent the corresponding 
reply to process i.

● White: if process j has sent a reply to process i 
which process i has not received (yet).

Their  color  scheme  is  valid  for  distributed 
databases,  but  for  generalized  systems,  it  doesn't 
account  for  cases  like  our  DDES,  which  can  have 
implicit  (unrequested)  responses  for  which a process 

must wait.   In particular,  the black coloring must be 
extended to cover this case.  Also, for our DDES, there 
is  no need for using the grey coloring because there 
will not be any explicit requests for messages.

There are also sets of axioms for operations on the 
graph,  and  operations  on  processes.   These  are  the 
graph axioms used by Chandy and Misra:

● G1  (Creation):   A  grey  edge  (i,j)  may  be 
created if edge (i,j) does not exist.

● G2 (Blackening):  A grey edge will turn black 
after an arbitrary, finite time.

● G3 (Whitening):  A black edge (i,j) may turn 
white only if process j has no outgoing edges. 
(Only active processes may reply).

● G4 (Deletion):  A white edge will disappear 
after an arbitrary, finite time.

The set of graph axioms (G1 through G4) all apply 
to our DDES.  For a complete generalization, this set 
should  include in G2 that a black edge can be created 
black in addition to being recolored from an originally 
grey edge.

As  stated  before,  all  messages  in  the  DDES  are 
implicit.  As such, there needs to be a determination of 
when a black edge should be created.  Here, a process 
is truly waiting for another process when any one of the 
input dependencies has a last-message time that's less 
than the time of the next event to process.  In fact, each 
input dependency with a last-message time less than the 
time of the event at the top of the queue corresponds to 
the existence of a black outgoing edge.

After they describe the graph axioms, Chandy and 
Misra introduce the concept of "probes" and describe 
the basic solution to the deadlock detection problem. 
The  detection  problem  amounts  to  detecting  dark 
cycles  in  the  wait-for  graph,  where  a  dark  cycle  is 
defined as "a cycle in which all edges are grey or black 
(some may be grey and others black)."  They also state 
that  a  dark  cycle  "will  persist  forever  because,  it 
follows from the  graph axioms that  edges  in  a  dark 
cycle cannot be whitened or deleted."
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This is their probe description: "The algorithm by 
which [process] i determines if it is part of a dark cycle 
is called a probe computation.  In probe computations 
vertices send messages, called probes, to one another; 
probes  are  concerned  with  deadlock  detection 
exclusively and are distinct from requests and replies." 
This project uses the same form of probe computations. 
One important point is that the following assumptions 
are  made:  it  is  assumed that  messages  sent  between 
processes arrive in finite  time and  in  the order  sent, 
indicating the requirement of some sort of reliable data 
transport protocol like TCP.

Next are  the process axioms used by Chandy and 
Misra:

● P1:  If a probe is sent by process i to process j 
when edge  (i,j)  is  grey,  edge  (i,j)  will  turn 
black  sometime after  this  probe  is  sent  and 
before it is received.  If a probe from process i 
is  received  by  process  j  when  edge  (i,j)  is 
black  then  edge  (i,j)  existed  and  was  dark 
(grey or black) at all times from the instant at 
which the probe  was sent,  to the instant  the 
probe was received.

● P2:  If a probe is sent by process j to process i 
when (i,j)  is  white,  then  (i,j)  will  disappear 
sometime after this probe is sent and before it 
is received.

● P3:   A process  i  can  determine  (locally)  if 
there is an outgoing edge (i,j) to any process j, 
though it cannot determine its color (locally). 
A process j can determine (locally) if there is 
an incoming black edge (i,j) from any process 
i.

● P4:   Every probe  will  be  received  in  some 
arbitrary finite time after it is sent.

The process axioms (P1 through P4) all apply to a 
fully generalized system and to our DDES.  Axiom P3 
may seem strange in that a process can't tell the color of 
an outgoing edge, even though it was responsible for 
the  creation  of  the  edge.   Given  that  there  is  an 
outstanding request from process i to process j, process 
i can only know if the edge is not grey.  The unknown 
is,  once the edge has turned black, whether the edge 
has turned white.  Because the color is dependent upon 
whether process j has sent a reply (which may not have 
reached the process i yet), process i doesn't know the 
color until after the reply actually reaches process i.

Finally  is  the  deadlock-detection  algorithm. 
According  to  Chandy  and  Misra,  "To  determine 
whether  it  is  on  a  dark  cycle,  a  vertex  i  initiates  a 
computation  called  a  probe  computation.   Several 
vertices may initiate probe computations and the same 
vertex  may initiate  several  probe  computations.   To 
distinguish each probe computation, the messages and 
variables  used  in  the  n-th  computation  initiated  by 
vertex i are tagged (i,n)."

To  help  explain  the  algorithm, they introduce the 
concept of "meaningfulness" with: "A vertex j will send 
at  most  one  probe  to  any  vertex  k  in  one  probe 
computation.  The probe is said to be meaningful if and 
only if edge (j,k) exists and is black at the time that 
vertex k receives the probe.   From P3,  vertex k can 
determine if a probe is meaningful."  The summary of 
their  algorithm  is  that  the  initiator  of  a  probe 
computation  sends  probes  along  all  outgoing  edges, 
and upon receiving the first meaningful probe declares 
that it is on a dark cycle, and therefore that deadlock 
exists.  For non-initiator processes, their job is to send 
probes along all outgoing edges upon receiving the first 
meaningful probe.

The Chandy/Misra deadlock-detection algorithm is 
insufficient  for  determining deadlock.   Granted,  if  a 
dark cycle is detected,  it  is  guaranteed that deadlock 
exists.  However, there are cases where deadlock can 
exist but not every probe computation will not detect it, 
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depending  upon  the  location  of  the  initiator  or  the 
nature of the deadlock.

One  configuration  (Illustration  3)  where  their 
algorithm doesn't detect deadlock is where the initiator 
is dependent on a node that is in a dark cycle.  Here, 
the initiator  will send a probe into the cycle,  but  the 
probe will never get back to the initiator.   Deadlock 
will only be declared in this case if one of the nodes in 
the cycle becomes an initiator.

The  other  configuration  (Illustration  4)  is  where 
there  is  no  cycle  at  all,  but  instead  there  is  a 
dependency  (node  A)  that  will  never  produce  any 
messages because it has terminated.  Note that this is 
not  always  an  indicator  that  the  entire  simulation 
should be terminated.  On the contrary, the rest of the 
simulation may still be alive and well.  It may just need 
to  sever  or  bypass  the  dependency  link(s)  to  the 
terminated  node.   One  real-world  example  of  this 
would be when a grocery checker in the supermarket 
goes  home for  the  day.   Just  because  the  particular 
check stand the checker was using is no longer ringing 
up groceries doesn't mean that the store is (or should 
be) closed.

4.2 Deadlock recovery

In  "Asynchronous  Distributed  Simulation  via  a 
Sequence  of  Parallel  Computations",  Chandy  and 
Misra describe a complicated computation mechanism 
to determine the optimal way to resume computations 
from  a  deadlocked  distributed  discrete  event 
simulation.  Sufficiently, an alternative simple method 
of resumption is to find the queue with the lowest time 
tag for its top-most event, and to find the process that 
has  this  queue  [9].   Because  of  the  assumption  that 
messages arrive in order and because of the nature of 
the event queues, all events must be processed in order, 
it follows that there can never be a message sent that 
will have a time lower that the global  minimum top-
most event time.  Therefore, it is safe for the process 
that has this queue to resume by processing the queue's 
top-most  event.   It  can  do  this  by setting  all  of  its 
dependencies' last-message times, if lower than the top-
of-queue time, to the top-of-queue time, thus allowing 
the next event to execute.

Now we have  seen the  basic  methods  of  discrete 
event  simulation.   In  particular,  the  mechanisms  for 
detecting  and  recovering  from  deadlock  have  been 
explained.  The next step is to find an overall optimal 
solution that uses the best parts of all of the available 
methods,  but  is  as  simple  as  possible  to  minimize 
system lifetime cost.

5. Solutions and analysis

To help describe the potential solutions and analyze 
the  results,  the  reader  will  benefit  from  a  common 
example.   The car wash simulation (Illustration 5)  is 
one  of  the  simplest  models  that  has  all  of  the 
complications that a DDES will encounter.
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A variation of this was first described by Birtwistle 
and later modified to its current form by Misra [7] to 
illustrate DDES in a paper  where Misra develops an 
early form of  deadlock management.   Arrows in  the 
illustration  show the  message  passing  scheme.   The 
description  of  the  car  was  system  is:  "A  car  wash 
system consists  of  an attendant  and  two car  washes, 
abbreviated CW1 and CW2.  Cars [generated by the 
source] arrive at random times at the attendant.  The 
attendant directs cars to CW1 or CW2 according to the 
following rule:  If  both  car  washes  are  busy,  that  is, 
washing  cars,  any  arriving  car  is  queued  at  the 
attendant; if exactly one car wash is idle, the car at the 
head of the queue, if any, is sent to that idle car wash; if 
both  car  washes are  idle,  the car  at  the head of  the 
queue, if any, is sent to CW1."  Once cars are finished 
at  the washing station, they proceed to the exit  node 
(which  could  log  a  "Car  Complete!"  message)  and 
disappear from the simulation.

Two  of  the  cases  not  handled  by  Chandy  and 
Misra's deadlock detection algorithm can be illustrated 
in the car wash example.  The first is where there is a 
dark cycle and the initiator is outside of the cycle.  As 
an example,  the exit  could  be waiting for a message 
from CW1 to process its next event.   CW1 could be 
waiting  on  the  attendant  to  send  another  car.   The 
attendant could be waiting on the the source, or another 
message from CW2 in  order  to  process  the  "station 
CW1  is  free"  message  on  the  queue,  and  thus  the 
simulation is in deadlock.  If the exit is the initiator of a 
probe  computation,  it  will  never  receive  a  message 
back with the same probe  computation, because it  is 
not a dependency of any of the other nodes.

The second case could be that CW1 is waiting on 
the attendant for a car, and the attendant is waiting on 
the source for  a  car.   However,  the source could be 
stopped from producing any more cars as a way to end 
the simulation.  But cars that are still in the simulation 
should continue.  Because the attendant and CW1 have 
no  knowledge  of  how  the  simulation  is  being  shut 
down, the only thing they see is a deadlock condition. 
However, there is no dark cycle in the wait-for graph in 
this case, only a dark path. 

The optimistic methods are so well-developed that 
an entire book could be written on the subject, so the 
reader  is  directed  to  other  sources  for  more 
information.  Instead, this paper will focus on making a 
fully-developed  solution  using  the  conservative 
method,  compare  this  solution  to  the  existing 
(optimistic) methods, and then pick the best pieces of 
each  to  recommend  the  final  solution.   The  overall 
approach  is  to  create  a  simulation  framework,  upon 
which anyone (with sufficient  knowledge of  DES in 
general)  can  create  a  simulation  of  anything  (within 
reason).   This  way,  the  implementation  details  are 
hidden  from  the  DES  "programmer",  freeing  this 
person to think about the really important things in the 
simulation.   It  is  a  layered  approach  in  which  the 
simulation framework provides a set of services (those 
of  running  event  queues,  passing  messages,  and 
managing  deadlock)  to  a  higher  layer  that  is  only 
concerned  with  event  content,  message  content,  and 
creation of new events and/or messages.  It also allows 
analysis  of  the  solution  independent  of  any  specific 
simulation types [13].

5.1 Deadlock management.

The  complete  conservative  method  involves 
detecting deadlock and then determining the method of 
recovery.   Because  it  never  avoids  deadlock,  but 
instead works around it,  I  call  this  method deadlock 
management.   Development  of  this  solution  will 
proceed in two phases.  First, a protocol is developed 
for  a  theoretical  system  where  there  are  separate 
simulation and management messages, that are always 
delivered in-order and in finite time.  Afterwards, the 
protocol is examined to determine how it can be made 
a reality in a system where processes do not fail, which 
would  be  the  limit  of  the  capabilities  brought  by 
deadlock  management  alone.   (This  is  explained  in 
Section 5.3.)

The  ideal  deadlock  management  protocol  is  as 
follows.  The DDES uses simulation message-passing 
as  described  before,  but  includes  management-only 
messages that are out-of-band and are always processed 
by the  simulation  framework,  even if  the  simulation 
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itself is deadlocked.  In previous DDES descriptions a 
computing node  consisted  of  a  processor  and an  LP 
running  on  that  processor.   For  the  deadlock 
management solution, a computing node consists of a 
processor that runs both an LP and an LP manager.  All 
simulation and management messages go through the 
manager.   This  protocol  implements fully distributed 
algorithms,  except  in  that  the  simulation  requires  a 
single  external  input  to  start  the  simulation  once  all 
nodes are up and running.  (Note that using the same 
techniques  in  this  protocol,  that  startup  can  be 
implemented  in  a  fully  distributed  manner  as  well. 
This is left as an exercise for the reader.)   There are 
seven different types of management messages:

● Start Simulation Message: this is the type of 
message that is sent to each node to trigger the 
execution of  the simulation.   It  is  sent  by a 
controller  process once each node is up and 
running.  For example, a controller could be a 
computer from which an operator runs all of 
the  remote-procedure  calls  which  cause 
background execution the LP/manager code in 
each  computer  in  a  cluster.   The  start 
messages would be sent to each node once all 
of the remote procedure calls return.

● Probe Computation Message:  this is the same 
as  the  probe  computation  message  used  by 
Chandy and Misra.  It  includes the initiating 
node  identifier  and  the  computation  number 
for  the initiating node.   In addition to those 
parameters identified explicitly by Candy and 
Misra, it must also include the last simulation 
message  time  for  the  dependency  that 
determines  the  destination  of  the  particular 
Probe Computation message.

● Poll Query Message:  this is a message used to 
implement  a  distributed  algorithm that  finds 
the global minimum top-of-queue event time. 
This message communicates to each node that 
the minimum-finding algorithm is in progress.

● Poll Flood Message:  this is another message 
used in the minimum-finding algorithm.  The 

purpose  of  this  message  is  to  ensure  that  a 
globally consistent  minimum value is  found, 
regardless of in-transit messages [14].

● Poll  Reply Message: this message is used to 
communicate  the  results  of  the  minimum-
finding  algorithm  to  the  originator  of  the 
query.

● Break-Lock  Command  Message:   this 
message  causes  a  node  to  process  its  next 
event.  Once a determination has been made 
as to which node LP holds the minimum top-
of-queue  time,  this  message  is  sent  to  that 
node to trigger resumption of the simulation.

● Termination Message:  this message is sent to 
terminate the simulation.  A specific type of 
deadlock, terminal deadlock is distinguishable 
from the deadlock previously described.  It is 
where there  is  no LP in the system with an 
event to process.  When terminal deadlock is 
detected, a termination message is sent to each 
node  to  indicate  that  the  simulation  is 
complete.   There  may be  simulations  which 
have no end, so this message is useful for the 
controller  to  dictate  an  arbitrary  stopping 
point.

All  of  the  management  messages  necessary  to 
implement deadlock detection, deadlock recovery, and 
overall simulation management are given above.  Once 
the simulation is running, the event queue is processed 
independent  of  any  management  messages.   The 
message time of each outgoing message is tracked by 
destination node.  This will be used to determine probe 
computation  meaningfulness.   The  special  value  of 
positive  infinity  is  used  as  the  top-of-queue  time  if 
there are no messages in the queue.

As  done  with  Chandy  and  Misra,  the  manager 
implements a watchdog timer that will time-out when 
no events have been processed from the queue recently, 
for example due to unsatisfied dependency times.  The 
timeout  action  is  to  initiate  a  probe  computation. 
Nodes also implement a state machine that changes in 
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response to the different management messages.  The 
three possible states are:

● Not  Started:   the  node  has  no  events  to 
process and is ready to receive messages but 
will not have a running watchdog timer.  This 
is the initial node state.

● Running:   the  node  may  or  may  not  have 
events  to  process  and  will  initiate  a  probe 
computation when the watchdog timer expires.

● Deadlocked:  the node has determined through 
the  distributed  deadlock  detection  algorithm 
that deadlock has occurred and therefore it no 
longer  needs  to  operate  the  watchdog  timer 
because deadlock is a (locally) stable property 
[15].  The node is ready to receive messages, 
but will not resume running until a message is 
received along the right input channel or until 
commanded to break lock.  It is necessary to 
distinguish between deadlock existing in  the 
simulation  and  the  node  being  in  the 
deadlocked  state.   Note  that  the  node  not 
being  in this state doesn't mean that deadlock 
doesn't exist.  Being in this state doesn't even 
mean that  there  is  currently deadlock in  the 
simulation.   But  if  the  node  is  in  the 
deadlocked  state,  then  deadlock  definitely 
existed at one time and may persist  into the 
future if further actions are not taken.

Many of  the  node  behaviors  are  dependent  more 
upon  the  message  type  than  the  node  state,  so  the 
overall protocol is described in the manner of Chandy 
and Misra, by describing what a node does in response 
to receiving each different management message type 
or to watchdog timer expiration.

Upon receiving a simulation message, the node adds 
this message to the event queue and updates the last 
message  time  for  the  dependency  from  which  the 
message came.  It also restarts the watchdog timer and 
transitions  to  the  running  state.   The  node  then 
processes  any  events  on  the  queue  that  are  safe  to 
process.

Upon receiving a Start Simulation message, for at 
least one of the nodes in the cluster, the manager posts 
an initial  (kick-off) message into its simulation event 
queue and transitions to the running state.  The exact 
implementation  is  irrelevant,  but  it  would  likely  be 
through a callback function.

Upon receiving a Probe Computation message, the 
manager  stops  the  watchdog  timer.   The  manager 
rejects the message if already in the deadlocked state or 
if the Probe Computation message time is less than the 
time of  last  message received  along the  given  input 
channel.   Next,  if  the  message  computation  number 
matches the computation number last recorded for the 
initiator, then the manager declares deadlock (the node 
transitions to the deadlocked state).  This handles the 
case  of  the  first  of  the  car  wash  examples.   (See 
Illustrations  3  and  5.)   Otherwise,  if  the  message 
computation  number  is  greater  than  the  computation 
number last recorded for the initiator,  then the probe 
computation is meaningful,  so the manager saves the 
new  computation  number  and  continues  the  probe 
computation process.

The  preceding  account  is  the  old  algorithm 
described by Chandy and Misra [8] with the exception 
that the node doesn't need to be the initiator to declare 
deadlock.  Another difference in the new algorithm is 
that  at  this  point,  once  the  computation  has  been 
determined to be meaningful, if there are no events on 
the queue and there are no dependencies for this node, 
the manager immediately declares  deadlock.   This  is 
because this node is a dependency for some other node 
(the node that sent it the Probe Computation message) 
and  because  it  will  never  generate  another  outgoing 
simulation  message.   This  handles  the  case  of  the 
second car wash example which the previous algorithm 
would not have handled.  (See Illustrations 4 and 5.)

If  the  probe  computation  is  meaningful  and 
deadlock hasn't been declared at this point, the manager 
forwards the Probe Computation message to all of the 
dependencies  for  which  the  last  simulation  message 
time is  less  than the  top  event  time.   As mentioned 
before  for  the Probe  Computation message type,  the 
last  simulation  message  time  for  a  dependency  is 
included  in  the  Probe  Computation  message  to  that 

DMP for DDES, CSCI 232, GWU, April 2009 Page 10 of 17



dependency.   Note  that  the  only way for  a  node  to 
reach the deadlocked state is through the receipt of a 
Probe Computation message.

If not  previously in the deadlocked state  but  now 
deadlock  is  declared,  the  manager  sends  Poll  Query 
messages to all other nodes in the system.  The current 
node  is  recorded  as  the  initiator,  and  a  new  query 
number  is  generated.   The  query  number  must  be 
greater than the last query number used by this node as 
the initiator.  At this time, this node must create a data 
structure to record the status of replies to this query. 
Also, this node's top-of-queue time is used to seed the 
minimum time value computation, which is stored with 
the data structure that tracks the replies to the query.

Upon  receiving  a  Poll  Query message,  the  query 
number is checked against the last number recorded for 
the given initiator.  If the message query number is the 
greater  of  the  two,  this  is  a  new query.   The  new 
number is saved.  At this time the manager initializes a 
data  structure  to  record  flood  messages.   This  data 
structure must be specific to the initiator, because there 
could  potentially  be  several  queries  initiated  by 
different nodes all at the same time.  Also at this time, 
the manager sends Poll Flood messages (which include 
the query initiator identifier and the query number) to 
all nodes besides itself and the initiator.  The initiator 
doesn't  need  to  receive  flood  messages  because  it 
knows its own top-of-queue time, and only needs the 
minimum-time query responses from the other nodes.

If the message number is greater than or equal to the 
last  number recorded for the initiator,  then the flood 
status  structure  is  checked  to  see  if  there  are  any 
outstanding flood (or query) messages left to process 
for this query (as identified by the initiator and query 
number).   If  all  outstanding  messages  have  been 
received, the current top-of-queue time is sent in a Poll 
Reply message back to the initiator.

Upon receiving a Poll Flood message, the manager 
handles  it  the  same way as  the Poll  Query message. 
The only difference between these messages is that the 
query is sent by the initiator, while the flooding is done 
by  the  non-initiator  participants  of  the  query.   An 
implementation  of  this  algorithm could  merge  these 

two types into a single message type, but they are kept 
separate here to clarify the steps of the algorithm.

Upon receiving a Poll Reply message, the manager 
checks the query number for the reply.  If it is equal to 
the number of the most recent query sent by this node, 
then  the  manager  records  the  reply  and  updates  the 
running minimum (if the new top-of-queue time in the 
reply is lower than the lowest so far), also tracking the 
node  from which this  reply came.   If  all  replies  are 
accounted  for,  the  manager  checks  the  running 
minimum.  A minimum value of positive infinity means 
that no nodes anywhere had events to process.   This 
signals  terminal  deadlock.   The  response to  terminal 
deadlock is to immediately send Termination messages 
to  all  other  nodes.   There  is  no  additional  state  to 
handle terminal deadlock, and no transition takes place, 
because the state doesn't matter at this point.  If there is 
a minimum value less than infinity, then the manager 
sends  a  Break-Lock Command  message  to  the  node 
which replied with this minimum value and transitions 
to  the  running  state,  but  does  not  yet  re-enable  the 
watchdog timer.   The  destination  of  the  Break-Lock 
Command could be the same node as the initiator.

Upon receiving a Break-Lock Command message, 
the manager checks all of the last simulation message 
times for the input dependencies.  Any times lower than 
the top-of-queue event time are set to the top-of-queue 
event time.  The manager then triggers the simulation 
to resume, transitioning the node to the Running state. 
Also,  it  restarts  the  watchdog  timer,  regardless  of 
whether there are any events in the queue to process.

Upon  receiving  a  Termination  message,  the  node 
frees  any  allocated  data  structures  used  for  tracking 
flood  or  reply messages,  flushes the  event  queue (if 
there are any events left), and stops execution of any 
processes or threads used to implement the simulation 
or management functions.

Finally,  in  response  to  timeout  of  the  watchdog 
timer, if the node has any dependencies, the manager 
initiates  a  probe  computation.   For  the  probe 
computation,  it  generates a  new computation number 
and  sends  out  Probe  Computation  messages  to  any 
dependencies  for  which  the  time  of  last  simulation 
message is less than the top-of-queue event time.
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That is the basic description of the new algorithm as 
it applies to an ideal communication system where the 
simulation and management messages always arrive in 
the order sent and within finite time of being sent.  The 
next step is to describe how this could be implemented 
over a currently existing (realistic) transport protocol, 
but under the assumption that the processing elements 
themselves are not susceptible to corruption.

5.2 Deadlock Management Protocol (DMP)

The  obvious  approach  is  to  start  with  existing 
protocols,  see  which  protocol  offers  most  of  the 
services  we need,  and  then  tailor  the  protocol  from 
there.   The  transport  services  required  (for  both 
simulation and management message types) by a DDES 
framework  with  deadlock  management  are  in-order 
message delivery, reliable data transport, finite delivery 
time,  and  the  ability to  send  simulation messages of 
variable  length.   The  framework  also  requires  the 
ability to transport management messages at any time 
without any buffers getting full or causing blocking of 
message  delivery,  while  keeping  receipt  of 
management and simulation messages in-order [14].  It 
also  requires  the  prevention  of  more  simulation 
messages  from arriving  than  it  can handle.   A final 
suggestion (not necessarily a hard requirement) is that 
the service-providing protocol should be available on 
multiple  operating  systems  for  cross-platform 
simulation capability.

At first glance, it seems that most, if not all, of these 
requirements  are  met  by  the  Transmission  Control 
Protocol  (TCP)  [25].   TCP definitely offers in-order 
deliver,  reliable  data  transport,  finite  delivery  time, 
flow control,  and  even  allows  for  some  out-of-band 
data  for  management  messages  by  using  the  (non-
standard)  urgent  data  capability.   One  possible 
implementation  would  be  to  send  all  message  types 
directly over a single TCP byte stream and to apply the 
urgent data flag for management messages.  This would 
require the simulation to flush the input buffer in order 
to access the management messages, thus negating the 
ability to ensure in-order reliable delivery.  Perhaps a 
separate  connection  could  be  used  to  send  the 

management messages?  Unfortunately, this would not 
work  directly  because  the  probe  and  poll  messages 
need to be synchronized with the simulation messages 
for the distributed algorithms to work properly [14].

Another possible  implementation with TCP would 
be to send simulation messages directly over TCP and 
then to use the TCP header options fields as a method 
of passing management messages.  There are a couple 
of problems with using the protocol  this way.  First, 
there are no guarantees that the options (management 
messages)  and  data  (simulation  messages)  will  be 
synchronized, because packet transport isn't tied to any 
particular  bytes  in  the  byte  stream.   In  addition,  it 
would  not  allow  for  reliable  data  transport  of  the 
management  messages.  Any dropped  packets  would 
mean dropped management messages.  A reliable data 
transport  mechanism  (with  sequence  numbers,  a 
separate watchdog timer callback, etc.) would have to 
be built on top of the options fields.

Obviously,  TCP  would  require  extensive 
modification to meet all of the service needs.   There 
might be other protocols that are more ideally suited to 
the needs of the DDES framework, but their obscurity 
makes  them choices  that  would  be  very  difficult  to 
implement in practice.  The only choice left is UDP. 
Obviously,  it  lacks  reliability,  in-order  delivery,  and 
flow control, so these would have to be programmed in 
at  the  framework  level.   A  wrapper  around  UDP 
supplying  services  to  the  framework  layer  could 
essentially mirror all of the TCP functionality by using 
connection setup, sequence numbers, a send window, a 
simulation  message receive  window, a  message type 
field,  other  fields  that  would  be  required  by  the 
management messages, and a simulation message data 
field.  However, unlike TCP, it could work on more of 
a message level instead of as a byte stream.  This UDP 
wrapper  would  also  require  access  to  the  same 
watchdog timer used by the manager to do the deadlock 
detection processing.  The management watchdog timer 
could serve a dual purpose for these.

5.3 Deadlock management in the real world
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From the  above discussion,  it  should  be  apparent 
that a deadlock management protocol could be made to 
work in a situation where the underlying data transport 
is unreliable, but where processes (such as the DDES 
framework) never fail.  If a simulation needs to run for 
a  long  period  of  time  in  a  cluster  environment,  it's 
basically asking for trouble.  Given the considerations 
of MTBF, the simulation is likely to run into some sort 
of  hardware  glitch  that  causes  one  or  more  of  the 
processes  to  malfunction.   As alluded  to  earlier,  the 
limitation of  applying only deadlock management  as 
the method of dealing with the difficulties of DDES is 
that it cannot handle this situation.

The  method  that  can  handle  malfunctioned 
processes  is  the  optimistic  method,  so  long  as  a 
malfunction-detection  algorithm can  be  applied.   As 
luck would have it,  for  the optimistic method,  using 
check-pointing prepares for  such situations.   When a 
malfunction is detected, the node can be restarted.  If 
the  node  check-points  are  saved  into  some  sort  of 
redundant non-volatile memory, the node state can be 
recovered during restart and the simulation can resume 
where it left off.

So, now it seems that we're back to the optimistic 
method  and  check-points.   But,  this  isn't  the  entire 
story.   A  compromise  can  be  made.   With  a  full 
deadlock  management  scheme  in  place,  the  check-
pointing  method  doesn't  need  to  be  as  robust  as  it 
would be for a fully-optimistic method.  The interval 

between saving check-points could be extended, since 
they would no longer be  used for rollback recovery. 
The only requirement for the check-points is that they 
should represent a globally consistent state.  This can 
be  done  using  the  method  of  distributed  snapshots 
outlined by Chandy and Lamport [14].  When a failure 
in  any  one  of  the  processes  is  detected,  the  entire 
simulation can be rolled-back in a distributed manner 
to the most recent global snapshot.  The algorithm used 
to record a global snapshot uses similar mechanisms to 
the  minimum-time  polling  algorithm  used  in  the 
deadlock recovery method, so there is opportunity for 
combining these algorithms.

5.4 The final solution

My recommended final solution for DMP is to use a 
TCP-like connection-oriented protocol over UDP with 
a fixed-size protocol header that includes some built-in 
security  features.   It  uses  sequence  numbers, 
acknowledgment  numbers,  and  receive  window  size 
that  correspond  to  units  of  discrete  messages.   The 
receive  window  is  used  specifically  for  preventing 
event queue overflows due to receipt of simulation-type 
(event) messages.  (See Table 1.)

The DMP header has 13 fields as follows:
 1. MD5 Sum:  a message digest [26].  It is the least-

significant six bytes of the MD5 message digest (the 
digest[]  array indices 10-15) of the concatenation of 

DMP for DDES, CSCI 232, GWU, April 2009 Page 13 of 17

Field Mnemonic Size Offset Bit Offset
MD5 Sum md5Sum 6 bytes 0 0
Flags flags 1 byte 6 0
Synchronization Flag SYNC 1 bit 6 4
Acknowledgment Flag ACK 1 bit 6 5
Finis Flag FIN 1 bit 6 6
Destination Flag DEST 1 bit 6 7
Message Type 4 bytes 7 0
Sequence Number 4 bytes 8 0
Acknowledgment Number 4 bytes 12 0
Receive Window 4 bytes 16 0
Source Node 4 bytes 20 0
Initiator Node 4 bytes 24 0
Computation Number 4 bytes 28 0
Minimum Time 8 bytes 32 0
Message Time 8 bytes 40 0
Destination Node 4 bytes 48 0
Message Data data 4 bytes 52 0

msgType
seqNum
ackNum

rcvWindow
srcNode
initNode

compNum
minTime
msgTime
destNode

Table 1: DMP Header



the DMP header,  any data following the header (for 
simulation  messages),  and  any  shared  key  that  is 
desired to create a message authentication code from 
the digest.  The key can be any length and can be left 
out if the simulation is in a local (trusted) cluster that 
doesn't allow external (Internet) communication.  How 
a key would be determined is left to the user and/or 
the  implementation.   The  purpose  of  using  a  key 
would  be  to  help  prevent  tampering  with  the 
simulation.

 2. Flags:  a one-byte bit  field with a reduced set of 
TCP flags and a destination flag.  The SYN flag is for 
connection creation.  The ACK flag is to indicate that 
the acknowledgment field is valid.   The FIN flag is 
used to indicate that it is the final message, for closing 
a  connection,  and  would  likely  be  used  with  the 
termination type of management message.  The DEST 
flag is  to  indicate  that  the  destination  node  field  is 
valid.

 3. Message Type:  uses the following types:
0 - Simulation Message
1 - Probe Computation Message
2 - Termination Message
3 - Poll Query Message
4 - Poll Reply Message
5 - Break-Lock Command Message
6 - Poll Flood Message
7 - Start Simulation Message
255 - Rollback Message

 4. Sequence Number:  a 4-byte number (in units of 
discrete messages) used for reliable data transport and 
in-order delivery of messages.

 5. Acknowledgment  Number:   a  4-byte number  (in 
units of discrete messages) used to indicate the next 
message expected in the connection.

 6. Receive Window:  a 4-byte number indicating the 
amount  of  space  (in  units  of  discrete  messages) 
available in the event queue.

 7. Source  Node:   the  4-byte identifier  of  the  node 
sending this message.

 8. Initiator Node:   the 4-byte identifier  of  the node 
that is the initiator of a probe computation (for Probe 
Computation  Message types) or  of  a  minimum-time 

query  (for  Poll  Query,  Flood,  and  Reply  Message 
types) for implementing distributed computations.

 9. Computation  Number:   a  4-byte number  used  to 
specify  the  distributed  computation  number  for  the 
initiator  for  tracking  the  processing  of  distributed 
computations.

 10. Minimum Time:  an 8-byte field used to store the 
minimum-time  replies  of  minimum-time  query 
computations.   This  is  a  user-definable  format  that 
must allow for values of +INF and presumably could 
be an IEEE-754 double-precision floating point value.

 11. Message Time:  an 8-byte field used to indicate the 
logical clock value of the sending simulation node, for 
simulation-type  messages.   This  is  a  user-definable 
format  that  must  allow  for  values  of  +INF  and 
presumably could  be  an  IEEE-754  double-precision 
floating point value.

 12. Destination Node:  an optional 4-byte identifier of 
the node which is the destination of this message.

 13. Message Data:  the event data for a simulation-type 
message.  It can be any length (up to the limitations of 
UDP  packets  as  further  limited  by  the  link-layer 
technology in  use),  allowing for  user-definable data 
types.

Connection  setup  should  follow  the  same  basic 
procedures as TCP.  There must be a manager process 
for each network interface that is to be involved in the 
simulation  on  the  host  computer.   Each  manager 
process acts as both a client and a server.  Each process 
binds  to  UDP  port  DMP_PORT,  a  number  which 
would  be  determined  in  an  actual  implementation. 
Server  sequence  numbers  are  generated  using  SYN 
cookies based on the node identifier numbers used in 
the  actual  connection  creation,  or  randomly  by  the 
client.  The receive window size must be valid for each 
message.

Once  the  connection  is  operating  and  each  node 
manager has  received Start  Simulation messages,  the 
simulation  runs  as  described  previously  for  DDES. 
Messages  sent  using  DMP  are  processed  by  the 
receiver,  as  long  as  received  in  order. 
Acknowledgments  are  cumulative.   Out  of  order 
packets (in addition to packets with invalid checksums 
or md5sum fields) are rejected.  In-order management 
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messages are processed immediately and as previously 
described.  When an in-order simulation message (type 
0)  is received, the manager attempts to add it  to the 
node's event queue.  If this fails, the message must be 
saved in an input line receive buffer,  but  the receive 
window size must be set  to zero.   When the receive 
window size is zero,  management messages may still 
be sent to the node, but simulation messages must not 
be  sent.   When the  node  state  is  saved  for  rollback 
recovery,  messages  in  the  input  line  receive  buffers 
must also be accounted for.  Once events in the queue 
have  been  processed,  the  events  from the  input  line 
buffer can be accessed and added to the queue.  Once 
the input line queue size is down to zero and there is 
more room on the queue for messages, then the receive 
window size can be increased again.

The  information  above  is  enough  to  create  a 
protocol  over  UDP  that  does  only  deadlock 
management.   To  include  the  benefits  of  rollback-
recovery techniques,  the  managers  should  piggyback 
the  query computations  with saving the  global  state. 
Saving  the  global  state  for  every query computation 
would probably be prohibitive and unnecessary, so a 
user-definable  parameter  for  the  manager  should  be 
how many query computations should be done between 
save.  How often they should be done would depend 
upon reliability considerations of the computing cluster 
(or grid) being used to run the simulation.  The more 
likely failures are expected, the more often state-saving 
should be done.  The user-definable parameter should 
be tuned so that state-saves are done at least more often 
than the MTBF.  The Poll Flood messages are used as 
marker messages [14] to ensure that the global state is 
consistent.  When a component fails, the simulation on 
the host needs to be restarted, once repairs are made. 
Once it  is  up  and  running,  it  needs  to  load  the  last 
saved node state(s) for the simulation on that host, and 
then broadcast Rollback messages to all  other nodes. 
The Rollback messages include the initiator and query 
number  of  the  the  query computation  that  was done 
when the state was saved.  All other nodes will respond 
by rolling-back to the last saved state as identified by 
the initiator and query number.

6. Summary

The  subject  of  deadlock  management  and  other 
techniques  for  maintaining  causality  while  still 
allowing  the  simulation  to  move  forward  is  in  its 
infancy.   Much  work  has  been  done  in  the  area  of 
optimistic  methods,  but  these  methods  are  mostly 
plagued with overly-complicated rollback mechanisms. 
The conservative methods have largely been ignored. 
This paper  merely hits  the surface of  what might be 
possible  with  conservative  methods.   The  solution 
presented  here  is  only  an  incremental  improvement 
over  previous  versions  through  improved  deadlock 
detection  (handling  all  possible  cases  regardless  of 
which  node  is  the  probe  computation  initiator)  and 
through recovery that noes not require null messages, 
instead using explicit  resumption commands based on 
real-time analysis of the deadlock situation.

There is much more work that needs to be done in 
determining  the  optimal  methods.   A  quantitative 
comparison needs to be done in real implementations 
of  the  latest  techniques  and  more  methods  could  be 
developed  that  use  combinations  of  techniques  not 
previously used.  The conservative method proposed in 
this  paper  has been made as  simple as  possible.   In 
doing so, there are other deadlock recovery techniques 
that have the potential to cause more than one node to 
resume  operation  simultaneously,  that  have  been 
ignored  because  of  the  degree  of  complexity  they 
would add [9].  This solution presented here, however, 
should  be  a  good  starting  point  for  further 
improvement.
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