
Deadlock Management Protocol for Distributed Discrete Event Simulation

Maxim Jovanovich
CSCI 232, Computer Science Department, George Washington University

mdjovano@gwmail.gwu.edu

Abstract

A protocol for managing deadlock in Distributed
Discrete Event Simulation (DDES, which is also
known by the name Parallel Discrete Event
Simulation, or PDES) is described. DDES may be
one of the keys to simulating complex living
organisms, among many other interesting simulation
goals. The new protocol is named the Deadlock
Management Protocol (DMP) and is developed under
the approach of minimizing system lifetime cost
primarily through software engineering principles.
The main idea is to take the simplest possible
approach, but also to ensure that the solution is
robust. As such, only DDES is considered; solving
deadlock in a manner that would also benefit other
systems such as general-purpose Internet computing
or database management systems would only add
complexity to the solution. Previous methods of
maintaining causal relationships in DDES are
researched to find the strengths and weaknesses of
each in an attempt to take the best strengths without
the weaknesses. A framework approach and layered
architecture is suggested to prevent re-work once an
implementation is developed. Within the framework,
any approach to maintaining causality could be used.
Deadlock management is suggested as the method of
choice given current trends in hardware capabilities.

1. Introduction

Consider advances in biology research made in the
last decade that have been made possible by
computing. One widely publicized example is the
Human Genome project, which has enabled researchers
to determine the locations of genes responsible for a
variety of diseases, down to a precise location on a
specific chromosome, and even to know the exact DNA
sequence of these genes [1]. Now consider lesser
known examples, such as the simulation of the
biochemical reaction pathways in a single yeast cell
[2,3,5]. One might ask, "why should I care about the
simulation of a yeast cell?" This question would arise
naturally, because the typical use of yeast is for baking.
However, in terms of cell simulation, it is a proving
ground for much loftier goals. The really interesting
goal is the simulation of human cells [4,6]. Being able
to simulate human cells would mean that many
potential drugs [5] (maybe someday even a cure for
cancer) could be tested in simulation before ever going
to trials in living specimens, saving time, money, and
the lives of animals. At this point, it's just a matter of
time and computing resources, for the correct models
to be developed. The ultimate goal would of course be
to simulate the biochemical system that composes an
entire living organism.

Discrete Event Simulation (DES) is an important
tool in modeling complex systems such as living cells.
DES is usually done by maintaining in a priority queue
a set of events that are to occur. Events are pulled off
the queue in chronological order. The simulation as a
whole works by using causality of events. Each event
is caused by a preceding event. Some calculation is

DMP for DDES, CSCI 232, GWU, April 2009 Page 1 of 17

performed to see when the caused event(s) will take
place. New events are placed into the queue for
eventual processing. When these events are pulled off
the queue, they might cause additional events, thus
perpetuating the simulation [7].

For the introductory example, there are ways to
simulate biological systems (for example, metabolic
cycles) completely as systems of differential equations
of chemical reaction rates [5]. However, when protein
synthesis, mRNA, tRNA, and DNA interaction are
considered in the system, chemical reaction rates are a
poor way to do the simulation. The latter interactions
are more event-based than anything else, so DES is the
method of choice [23]. When the problems get large
enough in size and fine in granularity, Distributed
Discrete Event Simulation (DDES) is the next logical
step, because it enables the simulation to run in a
reasonable amount of time on multiple computers,
through the speedup associated with parallel processing
[21,24]. When the simulation is distributed, there are
multiple event queues that need to synchronize with
each other, and message passing is used to place events
in remote queues. Because of the synchronization
requirement, there is potential (and likelihood) of
deadlock [7,9]. The simulation on each computer
cannot be allowed to move forward until it is certain it
will receive no more messages for events that could be
earlier than the event being processed. The reason for
this is that there could be some causal link that is
missed if events are processed out of order. This need
for synchronization is the underlying cause of deadlock
in these systems. There are two major problems with
transitioning from DES to DDES. First is actually
detecting deadlock, when (or if) it occurs. The second
problem is finding the way to resume the simulation if
it is stuck in deadlock.

There are a few viable solutions to the deadlock
problems [8,9,10,11,12,21]. One is to do advanced
analysis and design to ensure that deadlock is
impossible. (This is extremely difficult in practice.) A
second solution is to prevent deadlock by being
optimistic in the synchronization, assuming that there
will never be out-of-order events. Since it is still
possible for out-of-order events to occur, this solution

must include a method of rolling the simulation back to
where the violation occurred, so that the events can be
replayed in the correct order [11]. (Can be costly in
time and memory depending on the rollback
probability.) Another method is to allow deadlock, but
to find occurrences of deadlock with a distributed
algorithm [8,9,10], and then resume the simulation by
kick-starting it with the single earliest possible message
in the queues. (This is conceptually very simple.) A
more complicated method is to do the same, but kick-
start the simulation with a maximal set of the earliest
possible messages [9]. (This is conceptually very
difficult.) The last solution is to insert messages for
events very far in the future into the system that force
the simulation to continue. (This is primarily
applicable to terminal deadlock, which is when the
simulation reaches the end of events to be processed,
although it can apply to other situations where a limit
can be place on the earliest time of the next message
that will be sent.) This last solution is typically
referred to as the passing of null messages.

2. Problem statement

Simply put: What is the best overall DDES solution
method?

To answer this, some other questions must be asked.
First, how does one objectively determine what the
ideal method solution should be? Next, what metrics
should be used to measure against this ideal? My
argument is that the ideal would be the optimistic
solution described above, if the possibility of rollback
was zero. However, this is not achievable in practice,
so the various solutions must be weighed against each
other to see which is best in a given situation, possibly
compared to the ideal. I propose using system lifetime
cost as the performance metric.

System lifetime cost. This should include the cost of
time, hardware costs, and software costs. The time it
takes to run a given solution is obviously important.
The whole idea of going to a distributed simulation,
besides being able to conquer larger-sized problems, is
speedup [21], and both really go hand-in-hand. A

DMP for DDES, CSCI 232, GWU, April 2009 Page 2 of 17

small problem that takes too long would be cost
prohibitive, and so would a problem that is fast when
small, but takes too long when size of the problem is
increased. Hardware maintenance can be a big issue
over the lifetime of a product. Volatile memory is
cheap and fairly reliable these days, so it is not much of
an issue, but non-volatile storage requirements can
impact lifetime costs greatly. For example, the
reliability of a system worsens, in terms of Mean Time
Between Failure (MTBF), dramatically as more non-
redundant storage systems are introduced. Depending
upon the system complexity, failures in non-volatile
storage can lead to lengthy down time, which leads to
costly project delays in addition to adding maintenance
cost.

Software maintenance is probably one of the most
overlooked items in these considerations [13]. Often
the most complex solution to a problem is chosen
because it has been proven to be the fastest in actual
execution time. However, if it take months to program
and debug, it might be a waste compared to a solution
that is inefficient in execution but only takes a day to
program. In addition, code maintenance is often
overlooked. Most software code is used much longer
than it was ever intended or expected. It is usually
inadequate over time, requiring periodic upgrades. The
difficulty of distributed programming in general and
salary cost due to DDES being a niche programming
area mean that developing and maintaining DDES
projects is very costly.

3. Related research work

The typical approach to creating a DDES starts with
the normal way of creating any DES. First, the system
to be simulated is analyzed and decomposed into a set
of physical processes, the action of which can produce
the predicted (or perhaps observed) system behavior.
Each physical process is represented by a logical
process (LP) in a message-passing system that can be
executed as a combination of a sequence of events and
sequence of messages passed between LPs on a
computer [7]. In the DES, all of the LPs are run with a
single event queue, and messages are treated as a sub-

type of events. The single event queue handles
synchronization and causality automatically, because
events are always processed from the queue in order.

To make a DDES from a given DES, the set of LPs
for the system simulation is partitioned into smaller
disjoint sets of LPs, the union of which is the original
set of LPs for the entire system. In the DDES, some
degree of message-passing takes place over the
interconnection network. Typically, the choice is made
to have a one-to-one relation between LPs and
processors. That is, each LP has its own processor, and
every processor is used for just one LP. In this case,
every message that is not self-directed must travel over
the interconnection network. The possible incoming
lines of communication from which each LP can
receive messages are termed "dependencies" and vary
with the decomposition of the system being simulated.
To maintain causality in the system, as explained
before, each LP must ensure that it will not receive any
messages which have a time stamp earlier than the time
of the next event to process. This is done by tracking
the times of messages for each dependency. If all of
the dependency times are greater than or equal to the
lowest event time in an LP's queue (the event at the top
of the queue), then the next event is safe to process.
This dependency of event processing on incoming
messages is one area for potential deadlock. The other
is that an LP may be trying to transmit a message to
another LP but, for some reason or another, the
destination LP is not able to receive any messages due
to finite buffer size limitations [9].

The earliest work on deadlock in distributed systems
is by K. M. Chandy and J. Misra [8]. Chandy and
Misra worked out the basic conservative solutions to
any deadlock problem that can be encountered,
including terminal deadlock, building on the work of
Dijkstra and Scholten [18]. Their solutions, as
presented by them, have a couple of flaws, which will
be highlighted later.

It is worth noting that they studied these problems at
a time where processors and memory were fairly
limited but interconnection networks were fast by
comparison. In this situation, the minimum amounts of
processing and storage were strict requirements of

DMP for DDES, CSCI 232, GWU, April 2009 Page 3 of 17

whatever solution was chosen. As such, the optimistic
approach was rejected because it requires check-
pointing (thus requiring large amounts of storage of
some kind) and will inevitably have to implement a
rollback mechanism, which takes processing time.
Also, Chandy and Misra were approaching the
problems from the typical distributed applications of
the time, which were databases. In actuality, this is still
the predominant distributed application today,
especially given that every major software application
today is effectively a database application. Optimistic
methods don't even make sense in database
applications.

More recently, the processing, memory, and
interconnection rate situation was reversed from when
Chandy and Misra started their work on deadlock. The
interconnection network speeds of today (in commodity
networks) are well behind what processors are capable
of in terms of bandwidth. Memory also lags behind
processors in these terms, but still outdoes the typical
computer-to-computer interconnection. So, the
accepted solution today is different from what Chandy
and Misra chose, and is somewhat based on technology
from a few years back. The generally accepted
solution today is to use the optimistic method,
implement check-pointing, and implement rollback
mechanisms.

This solution has many attractive points [11]. First,
through check-pointing, the simulation state can be
saved and restored. This can be useful not only for
rollback mechanisms, but for recovery from system
failure. Also, if rollback can be implemented in each
processor individually, without requiring
interconnection utilization, it can be very fast.
Unfortunately, rollback usually requires use of message
-passing between processors because some messages
may have been sent out speculatively, requiring some
sort of communicated "undo" feature (sending a
message to another process indicating "some messages
you received were sent out by accident") when it is
determined that a synchronization violation has
occurred [12].

The details of the optimistic methods of DDES are
left to the reader. There are many references to date,

and the optimistic methods seem to be the standard way
of doing any type of DDES in recent years [11,12,19].
The references included in this paper all indicate the
same drawbacks of a large memory footprint and time-
consuming, complicated, garbage collection schemes.
As noted earlier, the optimistic methods have their
merits as well, so they are not to be ignored. The
answer is perhaps not in the pessimistic method or in
the optimistic method, but somewhere in between.

On the horizon, faster and faster interconnection
networks are on the way, possessing bandwidth (10 and
100 G-bits per second) greater than a single processor
(typically 2 to 6 GB/s) can utilize. It appears that the
times are returning to the situation for which Chandy
and Misra had originally devised their solutions. Given
this scenario and because of rollback mechanism
complexity, the focus of this paper is where the least
attention seems to be devoted: the conservative
solution. What follows is an explanation of the best-
known conservative approaches to deadlock
management.

4. Deadlock detection and recovery

Chandy and Misra [8] realized that the first step is
to devise a distributed algorithm for detecting
deadlock. As an indicator of the importance of this
first step, many papers have been written on the subject
of deadlock detection alone. To state the obvious,
nothing can be done to recover from deadlock unless it
is known that deadlock exists, or many recovery
attempts would be wasteful in the least. A distributed
algorithm for this is key, because having a centralized
algorithm gives a single point of failure, and as stated
earlier, as the amount of hardware increases, the system
MTBF decreases, making component failure likely in a
distributed system. The next step is an algorithm to
recover from deadlock, which again is a distributed
algorithm.

4.1 Deadlock detection

The basic system of Chandy and Misra for detecting
deadlock requires some description to understand the

DMP for DDES, CSCI 232, GWU, April 2009 Page 4 of 17

development of my solution. Rather than require the
reader to find their paper and review it side-by-side
with this one, a full description of everything necessary
to understand their analyses is included here. Their
method is devised where the distributed processing
system is viewed as the set of vertices and colored
edges of a directed graph [8]. The vertices represent
processes, identified by a process index number. The
directed edges represent wait-for relationships.

The dashed lines show possible locations for edges
where edges currently do not exist. The edges
(identified by two values, the first being the waiting
process, and the second being the waited-for process)
go from the waiting process to the waited-for process.
For Chandy and Misra, these wait-for relationships
were explicit request/reply channels, where one process
requests data from another process, and then waits for a
reply with the requested data. In our DDES, the wait-
for relationships are implicit: they are the inter-process
dependencies for which the time-stamp is less than the
time of the top event in the queue. The graph colors of
Chandy and Misra are as follows:

● Grey: if process i has sent a request to process
j which process j has not received (yet).

● Black: if process j has received a request from
process i and has not sent the corresponding
reply to process i.

● White: if process j has sent a reply to process i
which process i has not received (yet).

Their color scheme is valid for distributed
databases, but for generalized systems, it doesn't
account for cases like our DDES, which can have
implicit (unrequested) responses for which a process

must wait. In particular, the black coloring must be
extended to cover this case. Also, for our DDES, there
is no need for using the grey coloring because there
will not be any explicit requests for messages.

There are also sets of axioms for operations on the
graph, and operations on processes. These are the
graph axioms used by Chandy and Misra:

● G1 (Creation): A grey edge (i,j) may be
created if edge (i,j) does not exist.

● G2 (Blackening): A grey edge will turn black
after an arbitrary, finite time.

● G3 (Whitening): A black edge (i,j) may turn
white only if process j has no outgoing edges.
(Only active processes may reply).

● G4 (Deletion): A white edge will disappear
after an arbitrary, finite time.

The set of graph axioms (G1 through G4) all apply
to our DDES. For a complete generalization, this set
should include in G2 that a black edge can be created
black in addition to being recolored from an originally
grey edge.

As stated before, all messages in the DDES are
implicit. As such, there needs to be a determination of
when a black edge should be created. Here, a process
is truly waiting for another process when any one of the
input dependencies has a last-message time that's less
than the time of the next event to process. In fact, each
input dependency with a last-message time less than the
time of the event at the top of the queue corresponds to
the existence of a black outgoing edge.

After they describe the graph axioms, Chandy and
Misra introduce the concept of "probes" and describe
the basic solution to the deadlock detection problem.
The detection problem amounts to detecting dark
cycles in the wait-for graph, where a dark cycle is
defined as "a cycle in which all edges are grey or black
(some may be grey and others black)." They also state
that a dark cycle "will persist forever because, it
follows from the graph axioms that edges in a dark
cycle cannot be whitened or deleted."

DMP for DDES, CSCI 232, GWU, April 2009 Page 5 of 17

B CA D

Illustration 1: Wait-for graph

This is their probe description: "The algorithm by
which [process] i determines if it is part of a dark cycle
is called a probe computation. In probe computations
vertices send messages, called probes, to one another;
probes are concerned with deadlock detection
exclusively and are distinct from requests and replies."
This project uses the same form of probe computations.
One important point is that the following assumptions
are made: it is assumed that messages sent between
processes arrive in finite time and in the order sent,
indicating the requirement of some sort of reliable data
transport protocol like TCP.

Next are the process axioms used by Chandy and
Misra:

● P1: If a probe is sent by process i to process j
when edge (i,j) is grey, edge (i,j) will turn
black sometime after this probe is sent and
before it is received. If a probe from process i
is received by process j when edge (i,j) is
black then edge (i,j) existed and was dark
(grey or black) at all times from the instant at
which the probe was sent, to the instant the
probe was received.

● P2: If a probe is sent by process j to process i
when (i,j) is white, then (i,j) will disappear
sometime after this probe is sent and before it
is received.

● P3: A process i can determine (locally) if
there is an outgoing edge (i,j) to any process j,
though it cannot determine its color (locally).
A process j can determine (locally) if there is
an incoming black edge (i,j) from any process
i.

● P4: Every probe will be received in some
arbitrary finite time after it is sent.

The process axioms (P1 through P4) all apply to a
fully generalized system and to our DDES. Axiom P3
may seem strange in that a process can't tell the color of
an outgoing edge, even though it was responsible for
the creation of the edge. Given that there is an
outstanding request from process i to process j, process
i can only know if the edge is not grey. The unknown
is, once the edge has turned black, whether the edge
has turned white. Because the color is dependent upon
whether process j has sent a reply (which may not have
reached the process i yet), process i doesn't know the
color until after the reply actually reaches process i.

Finally is the deadlock-detection algorithm.
According to Chandy and Misra, "To determine
whether it is on a dark cycle, a vertex i initiates a
computation called a probe computation. Several
vertices may initiate probe computations and the same
vertex may initiate several probe computations. To
distinguish each probe computation, the messages and
variables used in the n-th computation initiated by
vertex i are tagged (i,n)."

To help explain the algorithm, they introduce the
concept of "meaningfulness" with: "A vertex j will send
at most one probe to any vertex k in one probe
computation. The probe is said to be meaningful if and
only if edge (j,k) exists and is black at the time that
vertex k receives the probe. From P3, vertex k can
determine if a probe is meaningful." The summary of
their algorithm is that the initiator of a probe
computation sends probes along all outgoing edges,
and upon receiving the first meaningful probe declares
that it is on a dark cycle, and therefore that deadlock
exists. For non-initiator processes, their job is to send
probes along all outgoing edges upon receiving the first
meaningful probe.

The Chandy/Misra deadlock-detection algorithm is
insufficient for determining deadlock. Granted, if a
dark cycle is detected, it is guaranteed that deadlock
exists. However, there are cases where deadlock can
exist but not every probe computation will not detect it,

DMP for DDES, CSCI 232, GWU, April 2009 Page 6 of 17

Illustration 2: Dark cycle

B CA D

depending upon the location of the initiator or the
nature of the deadlock.

One configuration (Illustration 3) where their
algorithm doesn't detect deadlock is where the initiator
is dependent on a node that is in a dark cycle. Here,
the initiator will send a probe into the cycle, but the
probe will never get back to the initiator. Deadlock
will only be declared in this case if one of the nodes in
the cycle becomes an initiator.

The other configuration (Illustration 4) is where
there is no cycle at all, but instead there is a
dependency (node A) that will never produce any
messages because it has terminated. Note that this is
not always an indicator that the entire simulation
should be terminated. On the contrary, the rest of the
simulation may still be alive and well. It may just need
to sever or bypass the dependency link(s) to the
terminated node. One real-world example of this
would be when a grocery checker in the supermarket
goes home for the day. Just because the particular
check stand the checker was using is no longer ringing
up groceries doesn't mean that the store is (or should
be) closed.

4.2 Deadlock recovery

In "Asynchronous Distributed Simulation via a
Sequence of Parallel Computations", Chandy and
Misra describe a complicated computation mechanism
to determine the optimal way to resume computations
from a deadlocked distributed discrete event
simulation. Sufficiently, an alternative simple method
of resumption is to find the queue with the lowest time
tag for its top-most event, and to find the process that
has this queue [9]. Because of the assumption that
messages arrive in order and because of the nature of
the event queues, all events must be processed in order,
it follows that there can never be a message sent that
will have a time lower that the global minimum top-
most event time. Therefore, it is safe for the process
that has this queue to resume by processing the queue's
top-most event. It can do this by setting all of its
dependencies' last-message times, if lower than the top-
of-queue time, to the top-of-queue time, thus allowing
the next event to execute.

Now we have seen the basic methods of discrete
event simulation. In particular, the mechanisms for
detecting and recovering from deadlock have been
explained. The next step is to find an overall optimal
solution that uses the best parts of all of the available
methods, but is as simple as possible to minimize
system lifetime cost.

5. Solutions and analysis

To help describe the potential solutions and analyze
the results, the reader will benefit from a common
example. The car wash simulation (Illustration 5) is
one of the simplest models that has all of the
complications that a DDES will encounter.

DMP for DDES, CSCI 232, GWU, April 2009 Page 7 of 17

Illustration 5: Car Wash Simulation

Attendant

CW1

CW2

ExitSource

Illustration 3: No return path to initiator

B CA
D

probe

Probe follows wait-for path from initiator D

Illustration 4: Linear wait-for deadlock

B CA
D

A variation of this was first described by Birtwistle
and later modified to its current form by Misra [7] to
illustrate DDES in a paper where Misra develops an
early form of deadlock management. Arrows in the
illustration show the message passing scheme. The
description of the car was system is: "A car wash
system consists of an attendant and two car washes,
abbreviated CW1 and CW2. Cars [generated by the
source] arrive at random times at the attendant. The
attendant directs cars to CW1 or CW2 according to the
following rule: If both car washes are busy, that is,
washing cars, any arriving car is queued at the
attendant; if exactly one car wash is idle, the car at the
head of the queue, if any, is sent to that idle car wash; if
both car washes are idle, the car at the head of the
queue, if any, is sent to CW1." Once cars are finished
at the washing station, they proceed to the exit node
(which could log a "Car Complete!" message) and
disappear from the simulation.

Two of the cases not handled by Chandy and
Misra's deadlock detection algorithm can be illustrated
in the car wash example. The first is where there is a
dark cycle and the initiator is outside of the cycle. As
an example, the exit could be waiting for a message
from CW1 to process its next event. CW1 could be
waiting on the attendant to send another car. The
attendant could be waiting on the the source, or another
message from CW2 in order to process the "station
CW1 is free" message on the queue, and thus the
simulation is in deadlock. If the exit is the initiator of a
probe computation, it will never receive a message
back with the same probe computation, because it is
not a dependency of any of the other nodes.

The second case could be that CW1 is waiting on
the attendant for a car, and the attendant is waiting on
the source for a car. However, the source could be
stopped from producing any more cars as a way to end
the simulation. But cars that are still in the simulation
should continue. Because the attendant and CW1 have
no knowledge of how the simulation is being shut
down, the only thing they see is a deadlock condition.
However, there is no dark cycle in the wait-for graph in
this case, only a dark path.

The optimistic methods are so well-developed that
an entire book could be written on the subject, so the
reader is directed to other sources for more
information. Instead, this paper will focus on making a
fully-developed solution using the conservative
method, compare this solution to the existing
(optimistic) methods, and then pick the best pieces of
each to recommend the final solution. The overall
approach is to create a simulation framework, upon
which anyone (with sufficient knowledge of DES in
general) can create a simulation of anything (within
reason). This way, the implementation details are
hidden from the DES "programmer", freeing this
person to think about the really important things in the
simulation. It is a layered approach in which the
simulation framework provides a set of services (those
of running event queues, passing messages, and
managing deadlock) to a higher layer that is only
concerned with event content, message content, and
creation of new events and/or messages. It also allows
analysis of the solution independent of any specific
simulation types [13].

5.1 Deadlock management.

The complete conservative method involves
detecting deadlock and then determining the method of
recovery. Because it never avoids deadlock, but
instead works around it, I call this method deadlock
management. Development of this solution will
proceed in two phases. First, a protocol is developed
for a theoretical system where there are separate
simulation and management messages, that are always
delivered in-order and in finite time. Afterwards, the
protocol is examined to determine how it can be made
a reality in a system where processes do not fail, which
would be the limit of the capabilities brought by
deadlock management alone. (This is explained in
Section 5.3.)

The ideal deadlock management protocol is as
follows. The DDES uses simulation message-passing
as described before, but includes management-only
messages that are out-of-band and are always processed
by the simulation framework, even if the simulation

DMP for DDES, CSCI 232, GWU, April 2009 Page 8 of 17

itself is deadlocked. In previous DDES descriptions a
computing node consisted of a processor and an LP
running on that processor. For the deadlock
management solution, a computing node consists of a
processor that runs both an LP and an LP manager. All
simulation and management messages go through the
manager. This protocol implements fully distributed
algorithms, except in that the simulation requires a
single external input to start the simulation once all
nodes are up and running. (Note that using the same
techniques in this protocol, that startup can be
implemented in a fully distributed manner as well.
This is left as an exercise for the reader.) There are
seven different types of management messages:

● Start Simulation Message: this is the type of
message that is sent to each node to trigger the
execution of the simulation. It is sent by a
controller process once each node is up and
running. For example, a controller could be a
computer from which an operator runs all of
the remote-procedure calls which cause
background execution the LP/manager code in
each computer in a cluster. The start
messages would be sent to each node once all
of the remote procedure calls return.

● Probe Computation Message: this is the same
as the probe computation message used by
Chandy and Misra. It includes the initiating
node identifier and the computation number
for the initiating node. In addition to those
parameters identified explicitly by Candy and
Misra, it must also include the last simulation
message time for the dependency that
determines the destination of the particular
Probe Computation message.

● Poll Query Message: this is a message used to
implement a distributed algorithm that finds
the global minimum top-of-queue event time.
This message communicates to each node that
the minimum-finding algorithm is in progress.

● Poll Flood Message: this is another message
used in the minimum-finding algorithm. The

purpose of this message is to ensure that a
globally consistent minimum value is found,
regardless of in-transit messages [14].

● Poll Reply Message: this message is used to
communicate the results of the minimum-
finding algorithm to the originator of the
query.

● Break-Lock Command Message: this
message causes a node to process its next
event. Once a determination has been made
as to which node LP holds the minimum top-
of-queue time, this message is sent to that
node to trigger resumption of the simulation.

● Termination Message: this message is sent to
terminate the simulation. A specific type of
deadlock, terminal deadlock is distinguishable
from the deadlock previously described. It is
where there is no LP in the system with an
event to process. When terminal deadlock is
detected, a termination message is sent to each
node to indicate that the simulation is
complete. There may be simulations which
have no end, so this message is useful for the
controller to dictate an arbitrary stopping
point.

All of the management messages necessary to
implement deadlock detection, deadlock recovery, and
overall simulation management are given above. Once
the simulation is running, the event queue is processed
independent of any management messages. The
message time of each outgoing message is tracked by
destination node. This will be used to determine probe
computation meaningfulness. The special value of
positive infinity is used as the top-of-queue time if
there are no messages in the queue.

As done with Chandy and Misra, the manager
implements a watchdog timer that will time-out when
no events have been processed from the queue recently,
for example due to unsatisfied dependency times. The
timeout action is to initiate a probe computation.
Nodes also implement a state machine that changes in

DMP for DDES, CSCI 232, GWU, April 2009 Page 9 of 17

response to the different management messages. The
three possible states are:

● Not Started: the node has no events to
process and is ready to receive messages but
will not have a running watchdog timer. This
is the initial node state.

● Running: the node may or may not have
events to process and will initiate a probe
computation when the watchdog timer expires.

● Deadlocked: the node has determined through
the distributed deadlock detection algorithm
that deadlock has occurred and therefore it no
longer needs to operate the watchdog timer
because deadlock is a (locally) stable property
[15]. The node is ready to receive messages,
but will not resume running until a message is
received along the right input channel or until
commanded to break lock. It is necessary to
distinguish between deadlock existing in the
simulation and the node being in the
deadlocked state. Note that the node not
being in this state doesn't mean that deadlock
doesn't exist. Being in this state doesn't even
mean that there is currently deadlock in the
simulation. But if the node is in the
deadlocked state, then deadlock definitely
existed at one time and may persist into the
future if further actions are not taken.

Many of the node behaviors are dependent more
upon the message type than the node state, so the
overall protocol is described in the manner of Chandy
and Misra, by describing what a node does in response
to receiving each different management message type
or to watchdog timer expiration.

Upon receiving a simulation message, the node adds
this message to the event queue and updates the last
message time for the dependency from which the
message came. It also restarts the watchdog timer and
transitions to the running state. The node then
processes any events on the queue that are safe to
process.

Upon receiving a Start Simulation message, for at
least one of the nodes in the cluster, the manager posts
an initial (kick-off) message into its simulation event
queue and transitions to the running state. The exact
implementation is irrelevant, but it would likely be
through a callback function.

Upon receiving a Probe Computation message, the
manager stops the watchdog timer. The manager
rejects the message if already in the deadlocked state or
if the Probe Computation message time is less than the
time of last message received along the given input
channel. Next, if the message computation number
matches the computation number last recorded for the
initiator, then the manager declares deadlock (the node
transitions to the deadlocked state). This handles the
case of the first of the car wash examples. (See
Illustrations 3 and 5.) Otherwise, if the message
computation number is greater than the computation
number last recorded for the initiator, then the probe
computation is meaningful, so the manager saves the
new computation number and continues the probe
computation process.

The preceding account is the old algorithm
described by Chandy and Misra [8] with the exception
that the node doesn't need to be the initiator to declare
deadlock. Another difference in the new algorithm is
that at this point, once the computation has been
determined to be meaningful, if there are no events on
the queue and there are no dependencies for this node,
the manager immediately declares deadlock. This is
because this node is a dependency for some other node
(the node that sent it the Probe Computation message)
and because it will never generate another outgoing
simulation message. This handles the case of the
second car wash example which the previous algorithm
would not have handled. (See Illustrations 4 and 5.)

If the probe computation is meaningful and
deadlock hasn't been declared at this point, the manager
forwards the Probe Computation message to all of the
dependencies for which the last simulation message
time is less than the top event time. As mentioned
before for the Probe Computation message type, the
last simulation message time for a dependency is
included in the Probe Computation message to that

DMP for DDES, CSCI 232, GWU, April 2009 Page 10 of 17

dependency. Note that the only way for a node to
reach the deadlocked state is through the receipt of a
Probe Computation message.

If not previously in the deadlocked state but now
deadlock is declared, the manager sends Poll Query
messages to all other nodes in the system. The current
node is recorded as the initiator, and a new query
number is generated. The query number must be
greater than the last query number used by this node as
the initiator. At this time, this node must create a data
structure to record the status of replies to this query.
Also, this node's top-of-queue time is used to seed the
minimum time value computation, which is stored with
the data structure that tracks the replies to the query.

Upon receiving a Poll Query message, the query
number is checked against the last number recorded for
the given initiator. If the message query number is the
greater of the two, this is a new query. The new
number is saved. At this time the manager initializes a
data structure to record flood messages. This data
structure must be specific to the initiator, because there
could potentially be several queries initiated by
different nodes all at the same time. Also at this time,
the manager sends Poll Flood messages (which include
the query initiator identifier and the query number) to
all nodes besides itself and the initiator. The initiator
doesn't need to receive flood messages because it
knows its own top-of-queue time, and only needs the
minimum-time query responses from the other nodes.

If the message number is greater than or equal to the
last number recorded for the initiator, then the flood
status structure is checked to see if there are any
outstanding flood (or query) messages left to process
for this query (as identified by the initiator and query
number). If all outstanding messages have been
received, the current top-of-queue time is sent in a Poll
Reply message back to the initiator.

Upon receiving a Poll Flood message, the manager
handles it the same way as the Poll Query message.
The only difference between these messages is that the
query is sent by the initiator, while the flooding is done
by the non-initiator participants of the query. An
implementation of this algorithm could merge these

two types into a single message type, but they are kept
separate here to clarify the steps of the algorithm.

Upon receiving a Poll Reply message, the manager
checks the query number for the reply. If it is equal to
the number of the most recent query sent by this node,
then the manager records the reply and updates the
running minimum (if the new top-of-queue time in the
reply is lower than the lowest so far), also tracking the
node from which this reply came. If all replies are
accounted for, the manager checks the running
minimum. A minimum value of positive infinity means
that no nodes anywhere had events to process. This
signals terminal deadlock. The response to terminal
deadlock is to immediately send Termination messages
to all other nodes. There is no additional state to
handle terminal deadlock, and no transition takes place,
because the state doesn't matter at this point. If there is
a minimum value less than infinity, then the manager
sends a Break-Lock Command message to the node
which replied with this minimum value and transitions
to the running state, but does not yet re-enable the
watchdog timer. The destination of the Break-Lock
Command could be the same node as the initiator.

Upon receiving a Break-Lock Command message,
the manager checks all of the last simulation message
times for the input dependencies. Any times lower than
the top-of-queue event time are set to the top-of-queue
event time. The manager then triggers the simulation
to resume, transitioning the node to the Running state.
Also, it restarts the watchdog timer, regardless of
whether there are any events in the queue to process.

Upon receiving a Termination message, the node
frees any allocated data structures used for tracking
flood or reply messages, flushes the event queue (if
there are any events left), and stops execution of any
processes or threads used to implement the simulation
or management functions.

Finally, in response to timeout of the watchdog
timer, if the node has any dependencies, the manager
initiates a probe computation. For the probe
computation, it generates a new computation number
and sends out Probe Computation messages to any
dependencies for which the time of last simulation
message is less than the top-of-queue event time.

DMP for DDES, CSCI 232, GWU, April 2009 Page 11 of 17

That is the basic description of the new algorithm as
it applies to an ideal communication system where the
simulation and management messages always arrive in
the order sent and within finite time of being sent. The
next step is to describe how this could be implemented
over a currently existing (realistic) transport protocol,
but under the assumption that the processing elements
themselves are not susceptible to corruption.

5.2 Deadlock Management Protocol (DMP)

The obvious approach is to start with existing
protocols, see which protocol offers most of the
services we need, and then tailor the protocol from
there. The transport services required (for both
simulation and management message types) by a DDES
framework with deadlock management are in-order
message delivery, reliable data transport, finite delivery
time, and the ability to send simulation messages of
variable length. The framework also requires the
ability to transport management messages at any time
without any buffers getting full or causing blocking of
message delivery, while keeping receipt of
management and simulation messages in-order [14]. It
also requires the prevention of more simulation
messages from arriving than it can handle. A final
suggestion (not necessarily a hard requirement) is that
the service-providing protocol should be available on
multiple operating systems for cross-platform
simulation capability.

At first glance, it seems that most, if not all, of these
requirements are met by the Transmission Control
Protocol (TCP) [25]. TCP definitely offers in-order
deliver, reliable data transport, finite delivery time,
flow control, and even allows for some out-of-band
data for management messages by using the (non-
standard) urgent data capability. One possible
implementation would be to send all message types
directly over a single TCP byte stream and to apply the
urgent data flag for management messages. This would
require the simulation to flush the input buffer in order
to access the management messages, thus negating the
ability to ensure in-order reliable delivery. Perhaps a
separate connection could be used to send the

management messages? Unfortunately, this would not
work directly because the probe and poll messages
need to be synchronized with the simulation messages
for the distributed algorithms to work properly [14].

Another possible implementation with TCP would
be to send simulation messages directly over TCP and
then to use the TCP header options fields as a method
of passing management messages. There are a couple
of problems with using the protocol this way. First,
there are no guarantees that the options (management
messages) and data (simulation messages) will be
synchronized, because packet transport isn't tied to any
particular bytes in the byte stream. In addition, it
would not allow for reliable data transport of the
management messages. Any dropped packets would
mean dropped management messages. A reliable data
transport mechanism (with sequence numbers, a
separate watchdog timer callback, etc.) would have to
be built on top of the options fields.

Obviously, TCP would require extensive
modification to meet all of the service needs. There
might be other protocols that are more ideally suited to
the needs of the DDES framework, but their obscurity
makes them choices that would be very difficult to
implement in practice. The only choice left is UDP.
Obviously, it lacks reliability, in-order delivery, and
flow control, so these would have to be programmed in
at the framework level. A wrapper around UDP
supplying services to the framework layer could
essentially mirror all of the TCP functionality by using
connection setup, sequence numbers, a send window, a
simulation message receive window, a message type
field, other fields that would be required by the
management messages, and a simulation message data
field. However, unlike TCP, it could work on more of
a message level instead of as a byte stream. This UDP
wrapper would also require access to the same
watchdog timer used by the manager to do the deadlock
detection processing. The management watchdog timer
could serve a dual purpose for these.

5.3 Deadlock management in the real world

DMP for DDES, CSCI 232, GWU, April 2009 Page 12 of 17

From the above discussion, it should be apparent
that a deadlock management protocol could be made to
work in a situation where the underlying data transport
is unreliable, but where processes (such as the DDES
framework) never fail. If a simulation needs to run for
a long period of time in a cluster environment, it's
basically asking for trouble. Given the considerations
of MTBF, the simulation is likely to run into some sort
of hardware glitch that causes one or more of the
processes to malfunction. As alluded to earlier, the
limitation of applying only deadlock management as
the method of dealing with the difficulties of DDES is
that it cannot handle this situation.

The method that can handle malfunctioned
processes is the optimistic method, so long as a
malfunction-detection algorithm can be applied. As
luck would have it, for the optimistic method, using
check-pointing prepares for such situations. When a
malfunction is detected, the node can be restarted. If
the node check-points are saved into some sort of
redundant non-volatile memory, the node state can be
recovered during restart and the simulation can resume
where it left off.

So, now it seems that we're back to the optimistic
method and check-points. But, this isn't the entire
story. A compromise can be made. With a full
deadlock management scheme in place, the check-
pointing method doesn't need to be as robust as it
would be for a fully-optimistic method. The interval

between saving check-points could be extended, since
they would no longer be used for rollback recovery.
The only requirement for the check-points is that they
should represent a globally consistent state. This can
be done using the method of distributed snapshots
outlined by Chandy and Lamport [14]. When a failure
in any one of the processes is detected, the entire
simulation can be rolled-back in a distributed manner
to the most recent global snapshot. The algorithm used
to record a global snapshot uses similar mechanisms to
the minimum-time polling algorithm used in the
deadlock recovery method, so there is opportunity for
combining these algorithms.

5.4 The final solution

My recommended final solution for DMP is to use a
TCP-like connection-oriented protocol over UDP with
a fixed-size protocol header that includes some built-in
security features. It uses sequence numbers,
acknowledgment numbers, and receive window size
that correspond to units of discrete messages. The
receive window is used specifically for preventing
event queue overflows due to receipt of simulation-type
(event) messages. (See Table 1.)

The DMP header has 13 fields as follows:
 1. MD5 Sum: a message digest [26]. It is the least-

significant six bytes of the MD5 message digest (the
digest[] array indices 10-15) of the concatenation of

DMP for DDES, CSCI 232, GWU, April 2009 Page 13 of 17

Field Mnemonic Size Offset Bit Offset
MD5 Sum md5Sum 6 bytes 0 0
Flags flags 1 byte 6 0
Synchronization Flag SYNC 1 bit 6 4
Acknowledgment Flag ACK 1 bit 6 5
Finis Flag FIN 1 bit 6 6
Destination Flag DEST 1 bit 6 7
Message Type 4 bytes 7 0
Sequence Number 4 bytes 8 0
Acknowledgment Number 4 bytes 12 0
Receive Window 4 bytes 16 0
Source Node 4 bytes 20 0
Initiator Node 4 bytes 24 0
Computation Number 4 bytes 28 0
Minimum Time 8 bytes 32 0
Message Time 8 bytes 40 0
Destination Node 4 bytes 48 0
Message Data data 4 bytes 52 0

msgType
seqNum
ackNum

rcvWindow
srcNode
initNode

compNum
minTime
msgTime
destNode

Table 1: DMP Header

the DMP header, any data following the header (for
simulation messages), and any shared key that is
desired to create a message authentication code from
the digest. The key can be any length and can be left
out if the simulation is in a local (trusted) cluster that
doesn't allow external (Internet) communication. How
a key would be determined is left to the user and/or
the implementation. The purpose of using a key
would be to help prevent tampering with the
simulation.

 2. Flags: a one-byte bit field with a reduced set of
TCP flags and a destination flag. The SYN flag is for
connection creation. The ACK flag is to indicate that
the acknowledgment field is valid. The FIN flag is
used to indicate that it is the final message, for closing
a connection, and would likely be used with the
termination type of management message. The DEST
flag is to indicate that the destination node field is
valid.

 3. Message Type: uses the following types:
0 - Simulation Message
1 - Probe Computation Message
2 - Termination Message
3 - Poll Query Message
4 - Poll Reply Message
5 - Break-Lock Command Message
6 - Poll Flood Message
7 - Start Simulation Message
255 - Rollback Message

 4. Sequence Number: a 4-byte number (in units of
discrete messages) used for reliable data transport and
in-order delivery of messages.

 5. Acknowledgment Number: a 4-byte number (in
units of discrete messages) used to indicate the next
message expected in the connection.

 6. Receive Window: a 4-byte number indicating the
amount of space (in units of discrete messages)
available in the event queue.

 7. Source Node: the 4-byte identifier of the node
sending this message.

 8. Initiator Node: the 4-byte identifier of the node
that is the initiator of a probe computation (for Probe
Computation Message types) or of a minimum-time

query (for Poll Query, Flood, and Reply Message
types) for implementing distributed computations.

 9. Computation Number: a 4-byte number used to
specify the distributed computation number for the
initiator for tracking the processing of distributed
computations.

 10. Minimum Time: an 8-byte field used to store the
minimum-time replies of minimum-time query
computations. This is a user-definable format that
must allow for values of +INF and presumably could
be an IEEE-754 double-precision floating point value.

 11. Message Time: an 8-byte field used to indicate the
logical clock value of the sending simulation node, for
simulation-type messages. This is a user-definable
format that must allow for values of +INF and
presumably could be an IEEE-754 double-precision
floating point value.

 12. Destination Node: an optional 4-byte identifier of
the node which is the destination of this message.

 13. Message Data: the event data for a simulation-type
message. It can be any length (up to the limitations of
UDP packets as further limited by the link-layer
technology in use), allowing for user-definable data
types.

Connection setup should follow the same basic
procedures as TCP. There must be a manager process
for each network interface that is to be involved in the
simulation on the host computer. Each manager
process acts as both a client and a server. Each process
binds to UDP port DMP_PORT, a number which
would be determined in an actual implementation.
Server sequence numbers are generated using SYN
cookies based on the node identifier numbers used in
the actual connection creation, or randomly by the
client. The receive window size must be valid for each
message.

Once the connection is operating and each node
manager has received Start Simulation messages, the
simulation runs as described previously for DDES.
Messages sent using DMP are processed by the
receiver, as long as received in order.
Acknowledgments are cumulative. Out of order
packets (in addition to packets with invalid checksums
or md5sum fields) are rejected. In-order management

DMP for DDES, CSCI 232, GWU, April 2009 Page 14 of 17

messages are processed immediately and as previously
described. When an in-order simulation message (type
0) is received, the manager attempts to add it to the
node's event queue. If this fails, the message must be
saved in an input line receive buffer, but the receive
window size must be set to zero. When the receive
window size is zero, management messages may still
be sent to the node, but simulation messages must not
be sent. When the node state is saved for rollback
recovery, messages in the input line receive buffers
must also be accounted for. Once events in the queue
have been processed, the events from the input line
buffer can be accessed and added to the queue. Once
the input line queue size is down to zero and there is
more room on the queue for messages, then the receive
window size can be increased again.

The information above is enough to create a
protocol over UDP that does only deadlock
management. To include the benefits of rollback-
recovery techniques, the managers should piggyback
the query computations with saving the global state.
Saving the global state for every query computation
would probably be prohibitive and unnecessary, so a
user-definable parameter for the manager should be
how many query computations should be done between
save. How often they should be done would depend
upon reliability considerations of the computing cluster
(or grid) being used to run the simulation. The more
likely failures are expected, the more often state-saving
should be done. The user-definable parameter should
be tuned so that state-saves are done at least more often
than the MTBF. The Poll Flood messages are used as
marker messages [14] to ensure that the global state is
consistent. When a component fails, the simulation on
the host needs to be restarted, once repairs are made.
Once it is up and running, it needs to load the last
saved node state(s) for the simulation on that host, and
then broadcast Rollback messages to all other nodes.
The Rollback messages include the initiator and query
number of the the query computation that was done
when the state was saved. All other nodes will respond
by rolling-back to the last saved state as identified by
the initiator and query number.

6. Summary

The subject of deadlock management and other
techniques for maintaining causality while still
allowing the simulation to move forward is in its
infancy. Much work has been done in the area of
optimistic methods, but these methods are mostly
plagued with overly-complicated rollback mechanisms.
The conservative methods have largely been ignored.
This paper merely hits the surface of what might be
possible with conservative methods. The solution
presented here is only an incremental improvement
over previous versions through improved deadlock
detection (handling all possible cases regardless of
which node is the probe computation initiator) and
through recovery that noes not require null messages,
instead using explicit resumption commands based on
real-time analysis of the deadlock situation.

There is much more work that needs to be done in
determining the optimal methods. A quantitative
comparison needs to be done in real implementations
of the latest techniques and more methods could be
developed that use combinations of techniques not
previously used. The conservative method proposed in
this paper has been made as simple as possible. In
doing so, there are other deadlock recovery techniques
that have the potential to cause more than one node to
resume operation simultaneously, that have been
ignored because of the degree of complexity they
would add [9]. This solution presented here, however,
should be a good starting point for further
improvement.

7. References

[1] Carina Dennis (Senior Editor), Richard Gallagher (Chief
Biology Editor), and Philip Campbell (Editor-in-chief), "The
Human Genome: Everyone's Genome", Nature, Volume 409,
15 Feb 2001, p. 813

[2] T. Antoine-Santoni, F. Bernardi, and F. Giamarchi,
"General Methodology for Metabolic Pathways Modeling
and Simulation using Discrete Event Approach. Example on
glycolysis of Yeast.", BIOCOMP'07, Las Vegas, Nevada,
USA, Jun 25-28, 2007

DMP for DDES, CSCI 232, GWU, April 2009 Page 15 of 17

[3] Sachie Fujita, Mika Matsui, Hiroshi Matsuno, and Satoru
Miyano, "Modeling and Simulation of Fission Yeast Cell
Cycle on Hybrid Functional Petri Net", IEICE Transaction
Fundamentals, Volume E86–A, No.5, May 2003

[4] Natsumi Shimizu, Shunsuke Yamamichi, and Hiroyuki
Kurata, "CADLIVE-Based Analysis for the Budding Yeast
Cell Cycle", The 14th International Conference on Genome
Informatics (GIW), Dec 14-17, 2003, pp. 609-610

[5] Chen Yu Zong, "Biological Pathway Simulation",
LSM3241: Bioinformatics and Biocomputing, Lecture 9,
Computational Science Department, National University of
Singapore

[6] M. L. Hines and N. T. Carnevale, "Discrete event
simulation in the NEURON environment", Neurocomputing,
Volumes 58-60, Jun 2004, pp. 1117-1122

[7] Jayadev Misra, "Distributed Discrete-Event Simulation",
ACM Computing Surveys (CSUR), Volume 18, Issue 1, Mar
1986, pp. 39-65

[8] K. M. Chandy and J. Misra, "A Distributed Algorithm for
Detecting Resource Deadlocks in Distributed Systems",
Annual ACM Symposium on Principles of Distributed
Computing, Proceedings of the first ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, Ottawa,
Canada, 1982, pp. 157-164

[9] K. M. Chandy and J. Misra, "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations",
Communications of the ACM, April 1981, Volume 24,
Number 11, Issue 4, Apr 1981, pp. 198-206

[10] K. Mani Chandy, Jayadev Misra, and Laura M. Haas,
"Distributed Deadlock Detection", ACM Transactions on
Computer Systems, Volume 1, Issue 2, May 1983, pp. 144-
156

[11] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min
Wang, and David B. Johnson, "A Survey of Rollback-
Recovery Protocols in Message-Passing Systems", ACM
Computing Surveys (CSUR), Volume 34, Issue 3, Sep 2002,
pp. 375-408

[12] Keith Marzullo, "Rollback Recovery", CSE 223A:
Principles of Distributed Computing, Winter 2009

[13] Lorin Hochstein, Forrest Shull, and Lynn B. Reid, "The
role of MPI in development time: a case study", Conference
on High Performance Networking and Computing,
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, IEEE Press, Article Number 34, 2008

[14] K. Mani Chandy and Leslie Lamport, "Distributed
Snapshots: Determining Global States of Distributed
Systems", ACM Transactions on Computer Systems, Volume
3, Number 1, Feb 1985, pp. 63-75

[15] Keith Marzullo and Laura S. Sabel, "Efficient detection
of a class of stable properties", Distributed Computing,
Volume 8, Issue 2, Oct 1994, Springer-Verlag, pp. 81-91

[16] Leslie Lamport, "Time, Clocks, and the Ordering of
Events in a Distributed System", Communications of the
ACM, Volume 21, Issue 7, Jul 1978, pp. 558-565

[17] Jayadev Misra and K. M. Chandy, "Termination
Detection of Diffusing Computations in Communicating
Sequential Processes", ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 4, Issue 1, Jan
1982, pp. 37-43

[18] Edsger W. Dijkstra and C. S. Scholten, "Termination
detection for diffusing computations", Information
Processing Letters 11, 1: 1-4, Aug 1980, The Netherlands

[19] Keith R. Bisset, "An Adaptive Synchronization Protocol
for Parallel Discrete Event Simulation", Proceedings 31st
Annual Simulation Symposium 1998, 5-9 Apr 1998, pp. 26-
33

[20] K. V. Anjan and Timothy Mark Pinkston, "An Efficient,
Fully Adaptive Deadlock Recovery Scheme: DISHA", ACM
SIGARCH Computer Architecture News, Volume 23, Issue 2,
May 1995, pp. 201-210

[21] Bruno R. Preiss, "Performance of Discrete Event
Simulation on a Multiprocessor using Optimistic and
Conservative Synchronization", Proceedings of the 3rd
International Conference on Parallel Processing, 1990, pp.
218-222

[22] Jayadev Misra and K. M. Chandy, "A Distributed Graph
Algorithm: Knot Detection", ACM Transactions on

DMP for DDES, CSCI 232, GWU, April 2009 Page 16 of 17

Programming Languages and Systems, Volume 4, Number
4, Oct 1982, pp. 678-686

[23] D. K. Reed, S. P. Levitan, J. Boles, J. A. Martinez, and
D. M. Chiarulli, "An Application of Parallel Discrete Event
Simulation Algorithms to Mixed Domain System
Simulation", Design, Automation, and Test in Europe,
Proceedings of the conference on Design, automation and
test in Europe, Volume 2, 16-20 Feb 2004, pp. 1356-1357

[24] Richard Fujimoto, Kalyan Perumalla, George Riley, and
Jean Walrand (Series Editor), Network Simulation, Synthesis
Lectures on Communication Networks, Morgan & Claypool
Publishers, 2007

[25] "Transmission Control Protocol", RFC 793, prepared
for Defense Advanced Research Projects Agency,
Information Processing Techniques Office, 1400 Wilson
Boulevard, Arlington, Virginia 22209, by Information
Sciences Institute, University of Southern California, 4676
Admiralty Way, Marina del Rey, California 90291

[26] R. Rivest, "The MD5 Message-Digest Algorithm", RFC
1321, MIT Laboratory for Computer Science and RSA Data
Security, Inc., April 1992

DMP for DDES, CSCI 232, GWU, April 2009 Page 17 of 17

