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Abstract 
 

This paper presents research in the area of 

improving Network Anomaly Detection effectiveness 

by using Network Anomaly Detection Methods in 

combination with Intelligent Sampling. The paper 

researches the impact of Intelligent Sampling on 

Anomaly Detection. The Intelligent Flow sampling 

can both reduce the data for processing and improve 

the effectiveness of anomaly detection. The research 

proposes the use of the Principal Component Analysis 

(PCA) Anomaly Detection Method in combination 

with Selective Sampling and Smart Sampling Flow 

sampling techniques. Principal Component Analysis 

(PCA) is used in a variety of domains to reduce the 

number of dimensions in input sets without losing the 

“information” contained in them.  PCA is particularly 

helpful in anomaly detection since it can reduce the 

data dimensionality into a smaller set of independent 

variables. At its core, PCA produces a set of principal 

components, which are orthonormal Eigen 

value/eigenvector pairs. In other words, it projects a 

new set of axes which best suit the data. These set of 

axes represent the normal connection data. 

Anomaly/Outlier detection occurs by mapping live 

network data onto these ‘normal’ axes and calculating 

the distance from the axes. If the distance is greater 

than a certain threshold, then the connection is 

classified as an attack. The team evaluated the 

different types of existing Sampling techniques 

(Packet Sampling and Flow Sampling) and the 

different existing Anomaly Detection Methods and 

came to the conclusion that Principal Component 

Analysis (PCA) Anomaly Detection Method in 

combination with Flow Sampling is more effective 

than other combinations of Sampling and Anomaly 

Detection Methods. The team also researched the type 

of Flow Sampling (Selective Sampling and Smart 

Sampling) that is suitable for detecting particular 

types of anomalies. 

 

1. Introduction 
 

Network anomaly detection techniques rely on the 

analysis of network traffic and the characterization of 

the dynamic statistical properties of traffic normality 

in order to accurately and timely detect network 

anomalies. Anomaly detection is based on the concept 

that perturbations of normal behavior suggest the 

presence of anomalies and/or attacks/faults. 

Today traffic measurement, anomaly detection and 

analysis have become more complicated with the 

continuously increasing network traffic. It has become 

difficult to store and process all network traffic flow 

information with limited number of resources and as a 

result sampling becomes an essential component of 

scalable Internet monitoring. 

Sampling is the process of making partial 

observations of a system of interest, and drawing 

conclusions about the full behavior of the system from 

these limited observations. It is important to minimize 

information loss while reducing the volume of 

collected data in order to make the corresponding 

processes realizable. The way in which the partial 

information is transformed into knowledge of the 

system is of high research and practical importance for 

developing efficient and effective anomaly detection 

techniques. In this article we have researched on using 

intelligent sampling techniques for anomaly detection. 

Intelligent sampling is required to obtain a reliable 

estimate of detailed information from only a subset of 

flow records. It exploits [2] the fact that for specific-

purpose applications such as anomaly detection, a 

large fraction of information is contained in a small 

fraction of flows. Hence, by using sampling techniques 

that opportunistically/intelligently and preferentially 

sample traffic data, we can achieve “magnification” of 

the appearance of anomalies within the sampled data 

set and therefore improve their detection. Choosing 

the right sampling techniques and effectiveness of the 



chosen technique on the anomaly detection is 

important. 

There are various Anomaly Detection Methods that 

can be used in combination with different types of 

Sampling. This paper suggests the Anomaly Detection 

Method and the Sampling Type combination that it 

finds is more effective than other combinations. 

 

 

2. Research problem 
 

Network performance [2] and traffic monitoring 

has become essential for managing a network 

efficiently and ensuring reliable operation. However, 

due to the large number of flows on a high-capacity 

link and the corresponding difficulty in storing and 

processing all flow information with a limited amount 

of resources, sampling has attracted a great deal of 

attention as a way to collect statistical information 

about flows. Several studies have been devoted to 

analyzing and evaluating the tradeoffs between 

sampling accuracy and efficiency, which essentially 

refer to the issues of minimizing information loss 

while reducing the volume of collected data in order to 

make the corresponding processes realizable.  

Anomaly detection is based on the concept that 

perturbations of normal behavior suggest the presence 

of anomalies and/or attacks. Network anomaly 

detection techniques rely on the analysis of network 

traffic and the characterization of the dynamic 

statistical properties of traffic normality in order to 

accurately and quickly detect network anomalies. In 

this article, we have researched the impact of 

sampling on anomaly detection. 

This paper researches the two different types of 

Sampling techniques, Flow-based Sampling and 

Packet-based sampling to find out which is more 

effective and at the same time less resource intensive. 

It also researches the two types of Flow Sampling 

techniques- Selective Sampling and Smart Sampling 

and lays out which technique should be used for 

detecting specific anomalies. 

This paper also researches the various Anomaly 

Detection Methods and suggests the Principal 

Component Analysis (PCA) Anomaly Detection 

Method that it finds is more effective in Anomaly 

Detection than other methods.  

The paper explores the usage of Anomaly Detection 

Methods in combination with sampling techniques in 

order to increase Anomaly Detection effectiveness and 

decrease the resource overhead required to implement 

Anomaly Detection Solutions. The paper suggests first 

using Selective Flow Sampling and Selective Smart 

Sampling and then using Principal Component 

Analysis (PCA) Method on the sampled data, to detect 

anomalies. This improves the accuracy of anomaly 

detection and at the same time this approach is not 

resource intensive. This paper also researches which 

Flow Sampling technique (Selective Sampling or 

Smart Sampling) should be used for particular types of 

anomalies. 

 

3. Related research works 
 

     In this section we present two different anomaly 

detection techniques that represent most commonly 

used anomaly detection strategies. Firstly, we present 

a Sequential Non-Parametric Change-Point Detection 

Method and then Entropy-based Algorithm for 

Anomaly Detection. 

 

3.1 Sequential Non-Parametric Change-Point 

Detection Method [10] 
The objective of Change-Point Detection (CPD) is 

to determine if the observed time series is statistically 

homogeneous and, if not, to find the point in time 

when the change happens. The attack detection 

algorithm that is described below belongs to the 

sequential category of Change Point Detection in 

which tests are done online with the data presented 

sequentially and the decisions are made on-the-fly. 

Since non-parametric methods are not model-

specific, they are more suitable for analyzing systems 

like the Internet which is dynamic and complex. The 

nonparametric CUSUM (Cumulative Sum) method is 

applied for the detection of attacks. The main idea of 

the non-parametric CUSUM algorithm is that the 

mean value of a random sequence  is negative 

during normal operation and becomes positive when a 

change occurs. 

Thus, we can consider as a stationary random 

process which under the normal conditions, the mean 

of , . A parameter  is chosen to be an 

upper bound of c, i.e.,  > c, and another random 

process is defined so that , which has a 

negative mean during normal operation. The purpose 

of introducing  is to offset the possible positive 

mean in  caused by small network anomalies so 

that the test statistic , which is described below, will 

be reset to zero frequently and will not accumulate 

with time. 

When an attack takes place,  will suddenly 

increase and become a large positive number. 

Suppose, during an attack, the increase in the mean 



of , can be lower-bounded by h. The change 

detection is based on the observation of h>>c. 

More specifically, let 

 

 
Where x+ is equal to x if x > 0 and 0 otherwise. 

The decision function can be described as follows: 

 
Where  is the decision at time n: '0' stands 

for normal operation and '1' for attack (a change 

occurs), while N represents the attack threshold. This 

anomaly detection technique has been used with 

different type of metrics, like the SYN/FIN packet 

ratio or the percentage of new source IP addresses in a 

time in order to detect Denial of Service attacks. 

 

3.2 Entropy-based Algorithm for Anomaly 

Detection [2] 
    An entropy-based anomaly detection method 

identifies network anomalies by examining some 

characteristic traffic feature distributions, and 

represents a wide class of commonly used anomaly 

detection strategies. This method is independent of 

network topology and traffic characteristics, and can 

be applied to monitor every type of network. 

The entropy H(X) of a data set X = {x1, x2, xn} is 

defined as, 

                         (1) 

Where N is the number of elements contained in data 

set X, pi is the probability P[X = xi].  

 

Entropy measures the randomness of a data set. High 

entropy values signify a more dispersed probability 

distribution, while low entropy values denote 

concentration of a distribution. Entropy values, as 

defined in Eq. 1, range between 0 and log2N. In order 

to have a metric independent of the number of distinct 

values of the data set, we normalize the entropy by 

dividing H(X) with the maximum entropy value 

log2N. The normalized entropy is given by the 

following while its values range in (0, 1). 

  (2) 

 

Entropy has been extensively used for anomaly 

detection purposes. Some common traffic feature 

distributions that are valuable in network anomaly 

detection are: 

• The source IP address (srcIP) 

• The destination IP address (dstIP) 

• The source port (srcPort) 

• The destination port (dstPort) 

• The flow size (flow-size) 

 

For example, an anomaly such as an infected host that 

tries to infect other hosts in the Internet (worm 

propagation) results in decrease of the entropy of the 

source IP addresses. The infected machine produces a 

large number of flows, causing the same source IP 

address to dominate in the flow distribution of source 

IP addresses. On the other hand, during a port 

scanning activity, the entropy of the destination port 

increases due to the scan of random destination ports. 

Based on these alterations, the network operator can 

identify the presence of an anomaly using predefined 

thresholds on the changes in the corresponding 

entropy values. 

 

4. Solutions/Analysis 
 

4.1 Network Traffic Anomalies 
      In this article we focus on three well-known 

malicious anomalies that could be characterized as 

network attacks — distributed denial of service 

(DDoS), worm propagation, and port scan — and two 

other common anomalies that are caused by legitimate 

network usage: flash crowd and alpha flow. 

 

DDoS attack: A DDoS attack is characterized by an 

explicit attempt to prevent the legitimate use of a 

service. In general, DoS attacks exploit known 

vulnerabilities of a communication protocol in order to 

disable the victim’s ability to service requests. One 

frequent type of DDoS attack is SYN flooding, where 

malicious sources send a large number of TCP SYN 

packets to the victim’s service, thus making the target 

machine unable to handle all these requests. Other 

types of DDoS attacks are UDP and ICMP flooding 

attacks where a very high number of UDP or ICMP 

packets are sent toward the victim’s network from 

multiple sources. 

 

Worm propagation: The term worm defines a 

malicious self-replicating program that tries to infect 

other machines by exploiting a specific vulnerability. 

During the propagation phase, the infected machine 



sends a small number of packets per target to a large 

number of machines on the Internet. 

Port scan activity: Port scan activity includes traffic 

caused by a single machine that sends probe packets to 

a wide range of ports toward a specific host to check 

which services are available. 

Flash crowd: A flash crowd event consists of a large 

legitimate demand for a specific service (i.e., many 

clients simultaneously downloading the new release of 

a Linux distribution or a security patch from an 

HTTP/FTP server). This type of event results in the 

increase of both inbound (requests) and outbound 

traffic (responses) from the HTTP/FTP server. 

Alpha flows: Alpha flows compose a network 

anomaly in which traffic increases from just a few 

high-volume connections between two hosts. Alpha 

traffic is usually caused by large file transmissions 

over high-bandwidth links or network experiments 

between different domains. 

4.2 Intelligent Sampling 
       We now discuss the impact of sampling on 

anomaly detection. Anomaly detection is based on the 

concept that perturbations of normal behavior suggest 

the presence of anomalies and/or attacks. Network 

anomaly detection techniques rely on the analysis of 

network traffic and the characterization of the 

dynamic statistical properties of traffic normality in 

order to accurately and quickly detect network 

anomalies.  

       Based on the observation that for specific-purpose 

applications such as anomaly detection, a large 

fraction of information is contained in a small fraction 

of flows, by using intelligent sampling techniques, we 

achieve “magnification” of the appearance of 

anomalies within the sampled data set by 

preferentially selecting the appropriate data. This way 

we achieve further improvement of the detection 

effectiveness and in some cases reveal anomalies that 

would have been invisible in the unsampled case.  

       Contrary to common practice and belief, where 

sampling is considered an inherently lossy process that 

negatively impacts the fidelity of the sampled stream 

with reference to most network management and 

monitoring processes, we argue that sampling not only 

does not harm the anomaly detection process, but in 

several cases facilitates and improves its effectiveness. 

Therefore, a whole new class of sampling schemes, 

opportunistic sampling/intelligent sampling, may 

emerge, which aim at turning the inherent in principle 

drawback of information loss in sampling to a 

significant beneficial feature for anomaly detection. 

Sampling techniques can be divided in two major 

categories: packet-based and flow-based sampling.  

Packet-based sampling 

 

In packet-based sampling packets are selected using a 

deterministic or nondeterministic method. After 

observing raw packets, it extracts the signature of the 

offending packets. Then it specifically blocks only the 

offending traffic, leaving the legitimate traffic 

untouched. Often, large-scale attack tools initialize 

packet headers or content with certain, nonrandom 

data. For example, the TCP window size or sequence 

number, which is advertised in a TCP-SYN packet, 

could be fixed. Packet-based anomaly detection 

observes raw packets as they traverse the network 

links. 

 

Observation of network traffic can be done in several 

ways. One is to configure a spanning port. A router or 

switch then makes a copy of every packet that is sent/ 

received on one or more of its interface ports, and 

sends this copy out on the span port. Another method 

is the use of network taps. Those are passive devices, 

which allow the fully transparent observation of 

packets on a network link. The advantage of network 

taps is that they can be used even when no network 

device is available to provide traffic via spanning 

ports. 

 

Advantages 

� Lots of detailed information- Precise timing 

information, information in packet headers 

Disadvantages 

� Overhead 

o Hard to keep up with high-speed 

links 

o Often requires a separate monitoring 

device 



Flow-based sampling [2] 

 

In flow-based sampling packets are first classified into 

flows. A flow is defined as a set of packets that have in 

common the following packet header fields: source IP 

address, source port, destination IP address, 

destination port, and protocol. In this case sampling is 

performed in flows, which results in the selection of 

all packets that make up a particular flow. 

 

Application of packet sampling on network traffic 

measurements has been extensively studied in the 

literature, mainly for traffic analysis, planning, and 

management purposes. Researchers have proposed 

schemes that follow an adaptive packet sampling 

approach in order to achieve more accurate 

measurements of network traffic. 

 

Recent research results demonstrated that flow 

sampling improves estimation accuracy of flow 

statistics. This fact makes flow sampling more suitable 

for anomaly detection purposes. In the following we 

describe two well-known preferential flow-based 

sampling techniques. The first, referred to as selective 

sampling, targets small flows (in terms of number of 

packets), while the second, referred to as smart 

sampling, selects large flows. Both present an 

opportunistic character in their operation, as they aim 

to exploit the fact that, with reference to the 

occurrence of anomalies, a large fraction of 

information is contained within a small fraction of 

flows. Therefore, anomalies usually indicated by the 

occurrence of outliers can be more easily revealed 

within an appropriately selected data set such as the 

one that may result from intelligent sampling. 

 

It has been demonstrated that small flows are usually 

the source of many network attacks (e.g., DDoS, port 

scans, worm propagation); therefore, they should be 

preferentially selected in order to achieve high 

anomaly detection effectiveness. Selective sampling 

follows this paradigm, and the selection of an 

individual flow is based on the following expression: 

 

 
 

Where x is the flow size in packets, 0 < c £ 1, n ³ 1 

and z is a threshold (measured in packets). As we can 

observe from expression, flows that are smaller than z 

are sampled with a constant probability c, while flows 

that are larger in size than z are sampled with 

probability inversely proportional to their size. With 

the appropriate value for parameter c a significant 

proportion of small flows can be selected without 

decreasing anomaly detection effectiveness. The 

selection of large flows can be further reduced by 

increasing the value of parameter n. 

 

On the other hand, smart sampling is a type of flow 

based sampling that focuses on the selection of large 

flows. More specifically, in smart sampling a flow of 

size x is selected with probability p(x) according to the 

following expression: 

 

 
 

Where x is the flow size in bytes and z is a threshold. 

In our study we consider x as the flow size in packets. 

As we can observe from Eq. 2, flows that are larger in 

size than z are sampled with probability 1, while flows 

that are smaller than z are sampled with probability 

proportional to their size. This sampling scheme is 

suitable for detecting anomalies that are caused by 

large flows, like flash crowd events and alpha flows. 

 

Advantages 

� Accurate Anomaly Detection 

Disadvantages 

� Resource Intensive 

4.2.1 Intelligent Sampling Method Proposed 
 

We choose to use the flow-based sampling in our 

solution. We choose to use both the Selective 

Sampling and Smart Sampling flow-based sampling 

techniques depending on the type of anomaly to be 

detected. The anomaly detection effectiveness for a 

particular type of anomaly can be increased by 

selecting the appropriate flow sampling technique. 

The table below shows the type of flow-based 

sampling technique to be used for the five types of 

network anomalies mentioned in the section “Network 

Traffic Anomalies”- 

 

Anomaly Description Flow 

Sampling 

Type 



Distributed 

denial of 

service (DDoS) 

attack 

An attack on a 

specific service, 

making the resource 

unavailable to its 

users 

Selective 

Sampling 

Worm 

propagation 

A self-replicating 

program that tries 

to infect other 

machines by  

exploiting a specific 

vulnerability 

Selective 

Sampling 

Port scan A self-replicating 

program that tries 

to infect other 

machines by 

exploiting a specific 

vulnerability 

Selective 

Sampling 

Flash crowd A large demand for 

a specific service 

(i.e., many clients 

downloading a 

specific file from an 

HTTP/FTP server) 

Smart 

Sampling 

Alpha flows A small number of 

flows that have a 

very large quantity 

of packets (data 

transferred between 

two specific hosts) 

Smart 

Sampling 

 
Table 1: Flow Sampling Type suitable for different 
types of Anomalies 

 
Thus network anomaly detection effectiveness can be 

improved and anomaly classification can be done 

using opportunistic flow sampling. For specific-

purpose applications such as anomaly detection, a 

large fraction of information is contained in a small 

fraction of flows. Therefore, observing the network 

traffic characteristics of various classes of anomalies, 

we can select the appropriate sampling method to 

preferentially sample the traffic data in order to 

enhance anomaly detection effectiveness. Even with 

small rates of anomalous traffic, intelligent sampling 

techniques significantly improve anomaly detection 

effectiveness and in several cases reveal anomalies 

that would otherwise be untraceable. 

We suggest the Principal Component Analysis (PCA) 

method in combination with opportunistic flow-based 

sampling for the effective detection of network 

anomalies. The PCA method is described in section 

“Network Anomaly Detection Method”. 

 

4.2.2 Flow-based Sampling Implementation 

Issues and Challenges [2] 
 

The application of flow-based sampling poses several 

challenging implementation issues. More specifically, 

flow sampling needs to make a decision on whether or 

not to sample a flow record that has already been 

collected and stored in memory at the end of a time-

moving window. Flow sampling can be implemented 

using a hash table with a five-tuple object identifying a 

flow (i.e., source and destination IP addresses, source 

and destination ports, and protocol) as the key, and a 

value for the counter of packets belonging to the 

specific flow. A new hash table is created periodically, 

and the flows are sampled at the end of the time 

window, replacing the previous hash table. For each 

arriving packet the hash table is traversed, increasing 

the counter of the corresponding flow if it already 

exists, or creating a new entry in case of a new flow 

within the time window. 

 

Such a procedure can be implemented with the use of 

a network processor card, which can be deployed 

either within enhanced future routers or at specific 

network measurement points. Modern network 

processor cards are able to conduct passive monitoring 

at speeds starting from 1 Gb/s and possibly up to 10 

Gb/s. Every entry in the hash table requires 8 bytes for 

both the source and destination IP addresses 4 bytes 

for both the source and destination ports, 1 byte for the 

protocol, and 3 bytes for the counter, resulting in 16 

bytes per entry. In a 1 Gb/s link, there are about 

100,000 packets/s; thus, in the worst case scenario 

where every packet belongs to a different flow, we 

would need 16 × 100,000 = 1,600,000 bytes (less than 

1.6 Mbytes of memory). In the case where a time 

window of 10 s is utilized, approximately 16 Mbytes 

of memory would be required. 

 

4.3 Network Anomaly Detection Method- 

Principal Component Analysis (PCA) [6] 
 

Principal Component Analysis is used in a variety of 

domains to reduce the number of dimensions in input 

sets without losing the “information” contained in 

them.  PCA is particularly helpful in anomaly 

detection since it can reduce the data dimensionality 

into a smaller set of independent variables. 



 

At its core, PCA produces a set of principal 

components, which are orthonormal   Eigen 

value/eigenvector pairs. In other words, it projects a 

new set of axes which best suit the data. In our 

implementation, these set of axes represent the normal 

connection data. Anomaly/Outlier detection occurs by 

mapping live network data onto these ‘normal’ axes 

and calculating the distance from the axes. If the 

distance is greater than a certain threshold, then the 

connection is classified as an attack. This section 

introduces PCA and describes how it is used in 

anomaly detection. 

 

4.3.1 PCA Methodology 
 

Anomaly detection systems typically require more data 

than is available at the packet level. Using 

preprocessing and feature extraction methods, the data 

available for anomaly detection is high dimensional in 

nature. The computational cost of processing massive 

amounts of data in real time is immense. Therefore, 

applying Principal Component Analysis as a data 

reduction tool while retaining the important properties 

of the data is useful. PCA works to explain the 

variance-covariance structure of a set of variables 

through a new set of orthonormal projection values 

which are linear combinations of the original 

variables. Principal components are particular linear 

combinations of p random variables X1, X2, ... , Xp. 

These variables have three important properties: 

 

1. X1, X2, ..., Xp are uncorrelated, 

2. X1, X2, ... , Xp are sorted in descending order, and 

3. , the total variance is equal to 

the sum of the individual variances. 

 

These variables are found from Eigen analysis of the 

covariance or correlation matrix of the original 

variables Xo1, Xo2, ... , Xop. 

 

Let the original data, in this case the training data, X 

be an n x p data matrix of n observations with each 

observation composed of p fields (or dimensions) X1, 

X2,...,Xp. 

 

Let R be a p x p correlation matrix of X1, X2,...,Xp. If 

(λ1, e1), (λ2, e2), ..., (λp, ep) are the p Eigen 

value/eigenvector pairs of the correlation matrix R, 

then the ith principal component is 

 

 
 

Where 

 

λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0, 

 

ei’ = ei1, ei2,...,eip is the ith eigenvector, 

 

x = (x1, x2, ..., xp) is the observed data along the 

variables X1, X2,...,Xp, 

 

 is the sample mean vector of 

the observation data. 

 

The principal components derived from the covariance 

matrix are usually different from the principal 

components generated from the correlation matrix. 

When some values are much larger than others, then 

their corresponding Eigen values have larger weights. 

 

4.3.2 Distance Calculation 
 

Calculating distance from a point is a fundamental 

operation in anomaly detection techniques. Methods 

include nearest-neighbor, kth nearest neighbor, Local 

Outlier Factor, etc. In general, the distance metric 

used is Euclidean distance. This is the primary 

calculation in the nearest neighbor approach. Let x = ( 

x1, x2, ... , xp) and y = (y1, y2, ... , yp ) be two p-

dimensional observations. The Euclidean distance is 

defined as: 

 

 
 

In Equation 1, each feature carries the same weight in 

calculating the Euclidean distance. However, when 

features have a varied weight distribution or are 

measured on different scales, then the Euclidean 

distance is no longer adequate. The distance metric 

needs to be modified to reflect the distribution and 

importance of each field in the data. One of these 

metrics is known as the Mahalanobis distance 

 



Where is the sample covariance matrix. In our 

work, we replaced with the correlation matrix, 

, since many fields in the training set were 

measured on different scales and ranges.  

Using the correlation matrix more effectively 

represents the relationships between the data fields. 

 

4.3.3 Applying PCA to Anomaly/Outlier 

Detection 
 

In applying PCA, there are two main issues: how to 

interpret the set of principal components, and how to 

calculate the notion of distance. 

First, each Eigen value of a principal component 

corresponds to the relative amount of variation it 

encompasses. The larger the Eigen value, the more 

significant its corresponding projected eigenvector. 

Therefore, the principal components are sorted from 

most to least significant. If a new data item is 

projected along the upper set of the significant 

principal components, it is likely that the data item 

can be classified without projecting along all the 

principal components. 

Secondly, eigenvectors of the principal components 

represent axes which best suit a data sample. If the 

data sample is the training set of normal network 

connections, then those axes are considered normal. 

Points which lie at a far distance from these axes 

would exhibit abnormal behavior. Using a threshold 

value (t), any network connection with Mahalanobis 

distance greater than the threshold is considered an 

outlier, and hence in our case an attack. 

Consider the sample principal components, y1, y2, ... , 

yp of an observation x where: 

 
The sum of squares of the partial principal component 

scores is equal to the principal component score: 

 
 

Equates to the Mahalanobis distance of the 

observation X from the mean of the normal sample 

data set. 

 

4.3.4 PCA Framework 
 

All anomaly detections require an offline training or 

learning phase whether those methods are outlier 

detection, statistical models, or association rule 

mining. Many times, the mechanisms applied in the 

online and offline phases are tightly coupled. Principal 

component analysis, however, clearly separates the 

offline and online detection phases. This property is 

an advantage for hardware implementation. Figure 1 

outlines the steps involved in PCA. 

 

 
  
Figure 1: PCA for Network Intrusion Detection 

 
In the offline phase, labeled training data is taken as 

input and a mean vector of the whole sample is 

computed. Ideally these data sets are a snapshot of 

activity in a real network environment. 

  

Secondly, a correlation matrix is computed from the 

training data. A correlation matrix normalizes all the 

data by calculating the standard deviation. 

 

Next, Eigen analysis is performed on the correlation 

matrix to extract independent orthonormal Eigen 

value/eigenvector pairs. These pairs make up the set of 

principal components used in online analysis. 

 

Lastly, the sets of principal components are sorted by 

Eigen value in descending order. The Eigen value is a 

relative measure of the variance of its corresponding 

eigenvectors. Using PCA to extract the most 

significant principal components is what makes it a 

dimensionality reducing method because only a subset 

of the most important principal components are 

needed to classify any new data. 

 

To increase the detection rate of PCA, we use a 

modified version of PCA. In addition to using the 

most significant principal components (q) to find 



intrusions, it is helpful to look for intrusions along a 

number of least significant components (r) as well. 

The most significant principal components are part of 

the major principal component score (MajC) and the 

least significant components belong to calculating a 

minor principal component score (MinC). MajC is 

used to detect extreme deviations with large values on 

the original features. These observations follow the 

correlation structure of the sample data. 

However, some attacks may not follow the same 

correlation model. MinC is used to detect those 

attacks. As a result, two thresholds are needed to 

detect attacks. If the principal components are sorted 

in descending order, then q is a subset of the highest 

values and r is a subset of the smallest components. 

The MajC threshold is denoted tM while theMinC 

threshold is referred to as tm. An observation x is an 

attack if: 

 

 
 

The online portion takes q major principal 

components and r minor principal components and 

maps online data into the Eigen space of those 

principal components. There are two parallel 

pipelines, one for calculating the major component 

variability score (MajC) and one for the minor 

(MinC). The simulations show that adding the MinC 

pipeline increases the detection ability and decreases 

the false alarm rate of using PCA for anomaly 

detection. 

 

For hardware design, the most computationally 

expensive portion of PCA is performing eigenvector 

calculations and sorting. The process of calculating 

eigenvectors is sequential and difficult to parallelize. 

Fortunately, this task is part of the offline phase.  

 

We are primarily concerned with accelerating online 

intrusion detection using PCA. For this segment, the 

most important bottleneck is computing the PC score. 

This can be overcome by using hardware parallelism 

and extensive pipelining in the implementation. 

 

5. Summary 
 

In this article the problem of improving network 

anomaly detection effectiveness through the 

application of intelligent flow sampling is researched. 

We concluded that Flow Sampling more accurately 

detects Network Anomalies than Packet Sampling. We 

also concluded that for effective detection of different 

types of anomalies, different types of Flow Sampling 

(Selective Sampling and Smart Sampling) techniques 

should be used. We found that Selective Sampling is 

more suited for DDOS, Worm propagation and port 

scan anomalies while Smart Sampling is more suited 

for Flash crowd and Alpha flows anomalies. 

The key motivation and principle of the approach 

presented in the paper is the exploitation of the fact 

that for specific-purpose applications such as anomaly 

detection, a large fraction of information is contained 

in a small fraction of flows. Hence, by using sampling 

techniques that opportunistically/intelligently and 

preferentially sample traffic data, we can achieve 

“magnification” of the appearance of anomalies within 

the sampled data set and therefore improve their 

detection. By observing the network traffic 

characteristics of various classes of anomalies, we can 

select the appropriate sampling method to 

preferentially sample the traffic data in order to 

enhance anomaly detection effectiveness. Even with 

small rates of anomalous traffic, intelligent sampling 

techniques significantly improve anomaly detection 

effectiveness and in several cases reveal anomalies 

that would otherwise be untraceable. 

We also researched various Anomaly Detection 

Methods including Sequential Non-Parametric 

Change-Point Detection Method, Entropy-based 

Algorithm for Anomaly Detection and Principal 

Component Analysis (PCA) based Method. We found 

the PCA method is more accurate and effective in 

detecting network anomalies than the other methods. 

PCA reduces [6] the data dimensionality into a 

smaller set of independent variables. At its core, PCA 

produces a set of principal components, which are 

orthonormal Eigen value/eigenvector pairs. In other 

words, it projects a new set of axes which best suit the 

data. These set of axes represent the normal 

connection data. Anomaly/Outlier detection occurs by 

mapping live network data onto these ‘normal’ axes 

and calculating the distance from the axes. If the 

distance is greater than a certain threshold, then the 

connection is classified as an attack.  

We concluded that PCA Method of Anomaly 

Detection along with Flow Sampling can prove to be a 

powerful combination for detecting Network 

Anomalies. 

 

6. Future works 
 



Future research in this area can focus on doing a 

practical implementation of Flow-based sampling 

along with PCA Anomaly Detection Method. 

 

Also, it can focus on further reducing the amount of 

sampled data using the principle of two-stage 

sampling, where in the first stage sampling is 

performed at the flow level, and in the second stage 

packets are sampled from the already selected flows. 

Utilizing intelligent sampling at the first stage, the 

final output would be a significantly reduced data set 

containing a great part of the anomalous traffic. 
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