
Dynamic Cloud Management System for Monitoring and Managing Services

Trevor Wright, Scott Fuller, Ashwin Reddi

tlw@cknowledge.com, wfuller@hotmail.com, msg2ash@gmail.com

Abstract

As cloud computing becomes more widely adopted,

the size of cloud systems will necessarily become

larger. In recent years, large companies, such as

Google and Amazon, have become reliant on resources

and services provided by cloud computing

environments. While these large corporations have

most likely implemented efficient, dynamic, and

scalable systems for managing their cloud

infrastructure, they are highly protected corporate

secrets, and very few (if any) publicly-available cloud

management systems exist that are easily configurable

and offer a high degree of scalability. This paper

proposes an innovative architecture for an extremely

scalable cloud management system that provides

dynamic management of cloud services with minimal

configuration.

1. Introduction

 Cloud computing systems are becoming more and

more common in a large variety of organizations. The

recent boom in popularity comes into focus only when

you think about what the IT department of any

organization requires: a way to increase capacity or

modify capabilities on the fly without investing in new

infrastructure, training new employees, or licensing

new software [1]. Cloud computing is maturing at a

rapid rate as a result of the low-cost scalability and

availability it provides, but there is a lack of tools

available which are designed to manage a highly

dynamic cloud environment. Modern organizations

require fast-paced distributed systems which can add ,

remove, start, or stop services automatically. Because

of the sheer number of computers in an organization's

cloud, it is no longer acceptable for the organization to

waste man-hours manually configuring each node in

the cloud to work with a cloud management system .

Manual configuration, when the organization has

hundreds or thousands of nodes in the cloud, does not

scale well and is far too expensive.

 The cloud management system (CMS) proposed in

this paper addresses the problem of manual

configuration of cloud management systems by

outlining an architecture and implementation that

provides dynamic node discovery and automatic

configuration.

2. Existing Cloud Management Tools

2.1 Nagios

 Nagios is a popular, open-source cloud management

system that provides the ability to monitor IT

infrastructure within an organization. The creators of

Nagios claim that it is “designed with scalability and

flexibility in mind” [2]. Although Nagios provides a

reliable platform for monitoring the state (detecting if a

service is on or off) of a remote service, it does not

provide functionality to turn the services on or off, and

it does not provide scalability or flexibility. The

shortcomings of Nagios are apparent in cloud

environments with more than a few nodes, because it

requires manual configuration on both the monitoring

server and each client to setup a service to be

monitored.

2.2 Ganglia

 Ganglia is another popular cloud management utility

which was originally intended for use in clusters, grids,

and high-performance computing, but has been adopted

in cloud computing as well. Ganglia relies on a

hierarchical structure of the cloud using multicast

discovery and announcements, but it requires

significant amount of configuration and setup to work

as desired, and it does not provide functionality to turn

services on or off [3].

3. Main Features of the Proposed CMS

3.1 Monitoring Service State

 The system will monitor the state of services

registered with the CMS. A service can exist in three

possible states: RUNNING, STOPPED, or

UNKNOWN. A service is in an UNKNOWN state if a

network error occurs between the CMS monitoring

server and the client on which the service is running.

3.2 Starting and Stopping Services

 The CMS will allow an end-user to issue start or stop

requests through a user interface on the head node to

remote services. For example, a system administrator

may wish to stop a database instance on one node and

start it on another – the user will simply issue the

request and the CMS will handle the starting and

stopping of the service.

3.3 Dynamic Service Registration

 The drawback to almost all other cloud monitoring

solutions is that they require manual configuration of

services on the monitoring server and on the client.

The proposed CMS only requires configuration of a

very simple file on each client. When the CMS client

is started, it automatically registers its services with the

monitoring head node.

4. Components of the CMS

4.1 Basic Technologies

 Our CMS is built upon core components of the Java

programming language, including Java Management

Extensions (JMX) and Remote Method Invocation

(RMI). Details about these technologies are not

addressed in this paper, but more can be read about

them in the official Java online documentation [4] [5].

4.2 Broker

 The broker is the head node of the CMS. Without

the broker, the CMS will not function – it is

responsible for maintaining a view of the entire cloud,

which includes the state of all services running, and the

capability to start or stop any of these services.

Although the broker can be seen as the “controller”, it

essentially just acts as a notification listener and a

request issuer between the user and all nodes in the

cloud, referred to as agents.

4.3 Agent

 An agent is the CMS component which is installed

on a node that has services to be monitored. The agent

requires a properties file to be set which points to the

IP address or URL of the machine on which the broker

is running. The agent is responsible for notifying the

broker of any services it is running, and updates the

status of those services with the broker at a regular

interval. Each agent discovers services it should check

by looking for new service definitions in a specified

folder on the local file system.

4.4 Service

 A service is any process (or combination of

processes) that are running on a node where an agent is

installed. Services are loaded into an agent through

service definitions, which are simple text files that have

the following attributes:

 Service Name - name of the service

 Check Interval – how often the agent should

 check to see if this service is running

 Check Command – the command to execute

 which will verify whether or not the

 service is running or stopped

 Start Command – the command to execute

 when this service should be started

 Stop Command – the command to execute

 when this service should be stopped

 The local agent monitors the folder where the service

definitions are placed, and any time a new definition is

found, it registers the service with the broker. Once a

service is successfully registered with the broker, the

agent executes the check command at a regular

interval, and reports the result to the broker. The

broker can also issue start or stop commands, which the

agent executes on demand.

4.4 Commands

 A command can be any operating system level

command that returns an exit status. The CMS makes

the assumption that any command executed will return

0 on success, 1 on failure, or any other number on an

unknown state. The commands can be a simple shell

command (for example, on Linux, a user can issue the

command “service tomcat status” to see if Tomcat is

running), or it can run any executable that returns 0 on

success and 1 on failure.

 For example, we have created a simple Java

application that wraps the Windows System Controller,

and executes a query, start, or stop command for a

specified service. The check command is set in the

service definition as “java -jar cms-windows-

controller.jar <service-name> query”. The Jar file

takes the input arguments, and calls the Windows

command “sc query <service-name>”, and returns 0 or

1, depending on whether or not the service is running.

 A visual depiction of how the components interact is

outlined in Figure 1, below:

5. Unresolved Problems

 Although our CMS architecture enables an

administrator to create a highly-dynamic and easily

manageable cloud, there is one major unresolved issue

that is essential to managing a cloud is dependencies

between services.

 In many environments, it is necessary for a

service to be available on one machine before a service

on another can start. For example, if a web site uses a

load balancer to forward requests to a cluster of web

servers, the web servers have a dependency on the load

balancer – the web servers will not work if the load

balancer is not running. Therefore, it would be useful

to allow the user to define service dependencies. The

service dependency is a basic rule-set or workflow.

Using the previous example, the service dependencies

between the load balancer and the web servers would

read:

 if user attempts to start the web server

 then

 if load balancer is running

 then start web server

 else do not start web server

6. Summary

 The proposed implementation of a CMS achieves

flexibility, scalability, and ease of configuration. The

various components are highly decoupled from each

other and the underlying operating system by using a

three-tiered architecture – the broker runs entirely

operating system and implementation independent; the

agent is operating system independent, as it only calls

the commands specified in the service definitions.

Although service definitions might not be portable to

other systems, they are very simple to understand and

can be ported to different environments quickly.

 In addition, the service definitions provide the

flexibility for a system administrator to define a service

as a grouping of processes on one machine. For

example, a service definition for “Web Server” could

be created, where the checkCommand executes a

custom script to verify that Apache, SSH, and FTP are

all running on the same machine. The checkCommand

would return 0 only if all of these services are running.

 The proposed architecture is also extremely dynamic

since each agent is responsible for checking its own

services and reporting to the broker. The broker does

not need to be configured to look at specific nodes –

the broker just listens for status messages, and displays

those messages to the user.

7. References

[1] Eric Knorr and Galen Gruman, “What cloud

computing really means”, Info World,

http://www.infoworld.com/d/cloud-computing/what-

cloud-computing-really-means-031

[2] Nagios, http://www.nagios.org/about/overview

[3] Ganglia, http://ganglia.sourceforge.net/

[4] Java JMX,

http://java.sun.com/javase/technologies/core/mntr-

mgmt/javamanagement/

[5] Java RMI,

http://java.sun.com/javase/technologies/core/basic/rmi/i

ndex.jsp

