
Modifying the CSMA/CD (IEEE 802.3) Protocol to Involve a Network Queue

(CSMA/CDNQ)

Abbey Wineland

George Mason University

awinelan@gmu.edu

Abstract

 The carrier sense multiple access protocol

with collision detections (CSMA/CD) often suffers

from performance issues when it comes to

transmission collisions within a network. This paper

proposes a solution to the packet starvation effect

[3], which is similar to Ethernet capture [2] of

CSMA/CD by combining findings from previously

performed research to improve CSMA/CD. The

proposed solution, carrier sense multiple access with

collision detection and network queue

(CSMA/CDNQ) modifies the current CSMA/CD

protocol by using a network queue to avoid multiple

collisions while allowing behavior to resort back to

IEEE standard 802.3 (CSMA/CD) in the event of

queue failure, thus classifying it as a sometimes

centralized, sometimes decentralized multiple access

protocol. The Binary Exponential Backoff algorithm

is slightly modified in CSMA/CDNQ to allow the

queue dominance over the network and each node on

the channel will utilize a lock, which is also referred

to as the send variable, that controls when the node

may transmit.

1. Introduction

 The Carrier Sense Multiple Access with

Collision Detection (CSMA/CD), also referred to by

IEEE standards as 802.3, is the currently used

Ethernet multiple access protocol. CSMA/CD has an

algorithm that controls every transmitted frame of

data by every node on the network. The frame is

prepared and the adapter listens to the transmission

channel for any current transmissions. Once the node

detects a free channel, the frame is sent. If another

frame is detected on the channel during transmission

the collision detection element takes over. The first

node that detects a collision aborts frame

transmission and begins transmitting a 48 bit jam

signal instead. The jam signal notifies other current

transmitters that have not yet sensed the interference

that a collision has occurred within the channel and

thus all frames are corrupted. The nodes involved in

the collision each wait a randomly determined

amount of time based on its number of consecutive

collisions. This exponential backoff phase

implements the Binary Exponential Backoff (BEB)

algorithm [6]. During BEB, the node must wait a

random amount of time based on the number of

consecutive collisions it has been part of. Each node

has a collision counter that is incremented with each

consecutive collision, up to sixteen collisions. BEB

is exponential because each transmitters wait time is

randomly chosen between 0 and two raised to the

value of counter minus 1 [6], multiplied by 512 bit

times [5]. From now on in this paper a time slot will

be considered 512 bit times, where one bit time is .1

microsecond real time in a 10 Mbps network [5].

The exponent in the algorithm cannot exceed ten,

even if there the collision counter exceeds that, thus

limiting the wait time to 1023 time slots.

As an example, suppose a packet is sent and

becomes part of a collision. So its wait period is

randomly chosen between 0 and (2
1
 – 1) time slots,

thus having a fifty percent success chance. If upon

retransmission it collides again, it will wait a random

amount between 0 and (2
2
 -1) time slots, with a

success probability of twenty five percent. It’s during

this time that the winner of the BEB, which is the

node with the smaller waiting period, gets to

retransmit before the other(s) and thus obtains and

maintains an unfair channel monopoly referred to

often as Ethernet capture. Ethernet capture is

especially common where a node is transmitting high

volume media, such as video packets [2]. It causes

other nodes to time out by manipulating the network,

thus preventing other nodes from transmitting. This

results in packet loss by the “losing nodes”, which is

referred to as the packet starvation effect by [3].

Only once a node has waited its assigned time may it

start back into the algorithm again to try and

retransmit [5]. The CSMA/CD protocol operates

with minimal user disruption and with few aborted

transmissions under most conditions. However, the

collision detection algorithm is unfair when resulting

in Ethernet capture and packet starvation. Available

channel time is also often wasted when nodes are

waiting to transmit. This is because when multiple

nodes have frames to send, but are each waiting in

the BEB, the channel is left unoccupied.

2. Research Problem

 CSMA/CD is least efficient when the

network is busy, due to collisions wasting bandwidth

and Ethernet capture allowing one host to dominate

the channel. Many proposed modifications to

CSMA/CD would work well in a busy network, but

decrease CSMA/CDs efficiency in low to medium

traffic networks [6]. Thus the difficulty in resolving

the issues with CSMA/CD is finding the right

balance to optimally utilize the available resources in

high network occupancy while not impairing

performance during low occupancy. My solution

includes introducing a network-wide queue to and

altering the behavior of the existing CSMA/CD

protocol.

The queue is originally empty, and will

receive input only after a packet collision has

occurred. The queue acts similarly to nodes on the

network, but with precedence and authority over the

other transmitters. In current CSMA/CD, when a

node is ready to transmit a frame, it listens to the

network and if it detects the channel is empty it

begins transmitting. I propose setting a flag, or ‘send

variable,’ in each host with the default value equal to

true. When the value is true, the host can send as

soon as it senses an empty channel. The only

incident that changes the value to false is when the

queue sends out a signal similar to a jam signal. The

signal notifies all the hosts in the network that the

queue is preparing to transmit. The only time the

queue will transmit a packet is subsequent to a

collision. Once the queue finishes all its

transmissions, it sends another signal that resets the

send variable back to the default value and hosts may

once again transmit as in regular CSMA/CD.

The difference between CSMA/CD and

CSMA/CDNQ is the behavior following the

occurrence of a collision. Upon detection, the host

information from each datagram involved is stored in

the queue. The queue locks the network by changing

all send variables network wide to false. It then

sends an additional signal to the first host in the

queue changing its send variable value back to true,

at which point the host has exclusive access to the

channel and can retransmit. Once the queue senses

the channel is empty again it changes the send

variable value back to false, and the next host in the

queue’s send variable to true. Once the queue is

empty and hears that the channel is empty, it resets

all hosts’ send variables back to true. From there,

regular CSMA/CD continues.

The existing BEB will be used as a backup

if the queue goes down, with one slight change. To

simplify CSMA/CDNQ while keeping BEB, the BEB

has been modified to give the queue time to take

control of the adapters on the network. Otherwise

immediate retransmissions would prevent it from

communicating with the hosts. When the queue

gives full channel access to a node it puts a limit on

how long it may send. This is the way

CSMA/CDNQ eliminates Ethernet capture and thus

the packet starvation effect.

3. Related Research

While researching the shortcomings of the

CSMA/CD protocol, I came across different collision

handling and avoidance mechanisms. This section

briefly describes previous research performed related

to my research problem.

3.1. Frequency Division Multiplexing (FDM)

 FDM is a channel partitioning protocol that

divides the available bandwidth into smaller channels

and assigns a frequency to each node on the network

[5]. This technique avoids collisions altogether, since

each node has a chunk of the channel for its use only.

FDM is inefficient in low traffic channels. Even if

only one node in the network has something to send,

it has access to only a portion of the channel,

specifically the bandwidth of the channel divided by

the number of nodes in the network. FDM is a fair

technique, however, since no node can dominate the

network. This prevents the packet starvation effect

from occurring.

3.2. ControlNet

 The deterministic network ControlNet

passes a token around the network, allowing only the

token holder the capability to transmit if so desired

[6]. ControlNet’s sending time restriction inspired

part of my solution to provide full channel access to

one transmitter at a time when necessary to eliminate

channel domination and thus the packet starvation

effect. However, I chose not to use a token passing

mechanism in my solution as it wastes bandwidth in a

network with low-channel traffic and causes

unnecessary waiting by nodes with frames ready to

send [6]. In other words, the network is accessible to

only one host at a time and if that host has nothing to

transmit, the channel is idle and unusable by other

hosts that may be waiting to send a frame.

3.3. Distributed Queue Dual Bus protocol

(DQDB)

 The distributed queue dual bus media access

protocol uses slots and two buses to regulate

transmissions. The buses each have a slot generator

and each flow one way in opposite directions. The

slot generators send empty slots down the network.

When a node has data to transmit, it fills in an empty

slot with a reservation request. It must then wait until

all other nodes that have already requested to send

complete their transmissions. This is accomplished

by every node having a queue, a request counter, and

a countdown counter [1].

 For every slot full with a request that passes

a node, the request counter of that particular node is

incremented. The request counter is decremented for

every empty slot passing by on the opposite bus.

When a node receives data to transmit, it copies the

request counter value to the countdown counter, and

decrements the countdown counter for every empty

slot that is on the bus opposite of the bus that causes

the request counter to increment. Once the

countdown counter is zero, the node transmits using

the next available empty slot. As you can see, a node

must wait a considerable amount of time between

when it has data to send, when it puts in a request to

send, and when it can actually begin transmitting [1].

Although collisions are avoided, DQDB is

impractical for non-linear network layouts and tends

to distribute the bandwidth unfairly [4]. A very

similar protocol, the fair distributed queue (FDQ), is

described in detail in [4].

3.4. Fair Dual Distributed Queue (FDDQ)

 The Fair Dual Distributed Queue (FDDQ)

algorithm aims to eliminate the packet starvation

effect (PSE) while also attempting to accommodate

real time traffic. The authors in [3] suggest adding

two global queues to each controller on the network

that are in use only during a phase referred to as

congested mode. Each queue is priority based,

determined by whether a packet is real-time or not

[3]. Like my proposed CSMA/CDNQ, FDDQ uses

current CSMA/CD until the network enters congested

mode, triggered by a collision within the channel.

During congested mode packets are prioritized in

each controller’s queue using buckets. The top

bucket of the high priority queue is sent. When both

queues are out of buckets, the controllers exit

congested mode and terminate queue use until the

next collision [3].

4. Solutions/Analysis

 My solution aims to resolve the current

imperfections within the Ethernet’s multiple access

protocol: CSMA/CD. I’ve named my multiple access

protocol CSMA/CDNQ because it uses the existing

carrier sense multiple access protocol with the

addition of a network queue. Since CSMA/CDNQ is

partially centralized there is a need for a plan in case

of failure. For this reason the current collision

detection procedure is kept as a backup in the event

of queue failure. My goal is not to replace the

current CSMA/CD, but to enhance it.

4.1. Protocol characteristics

 CSMA/CDNQ can be considered a hybrid

multiple access protocol, since it has features of two

of the three multiple access protocol categories,

including random access and taking turns protocols

[5]. Most of CSMA/CDNQ’s behavior would lean

towards its classification as a random access

protocol, considering that CSMA already belongs to

this group and that the nodes are free to transmit

close to whenever they choose. Also, when an

adapter transmits a frame it uses the full bandwidth

available since it is not divided amongst the nodes

into different frequencies. For example, if the nodes

are connected through a 100 Mbps channel, each

transmission of every node will broadcast at a rate of

100 Mbps. CSMA/CDNQ has characteristics

belonging to the taking-turns protocol group during

the time when the network queue has control. This is

because only one adapter is able to transmit at a time,

even if other nodes have frames ready to transmit.

4.2. Normal Behavior

 CSMA/CDNQ’s behavior when there are no

collisions is just like regular CSMA, with the

addition of a send variable that acts like a lock.

Figure 1 shows the behavior of an adapter in

CSMA/CDNQ without the details of how the

collision handling is implemented. Section 4.3 and

4.4 go into more detail of the behavior in different

situations.

Figure 1: Normal adapter behavior

When an adapter has a frame to transmit, it first

listens to the channel. If busy, it waits until it’s

empty. Otherwise, it checks its send variable. If the

send variable is equal to false, the adapter begins

timing the empty channel while simultaneously

listening for action in the channel (see section 4.4).

However, if the send variable is true, the adapter

sends the frame. The whole time while transmitting

the adapter is also listening for any interference, or

change in frequency, that would indicate a collision.

As soon as a collision is sensed, the transmitter aborts

and sends out a 48 bit jam signal to notify other

adapters there has been interference and that their

frames may also be corrupted.

4.3. Network Queue

The network queues behavior can be

described as passive most of the time. It is more of

an observer until an event triggers it to act otherwise.

The network queue, which is actually another node in

the network that has a transmitter and also a queue,

constantly monitors the network channel for activity.

It also regulates the send variable of every node in

the network. The instant the network queue is

connected to the network it sends out a signal that

sets each node’s send variable value to true. This

allows them to send whenever the channel is empty.

Similarly, each time it senses a new node in the

network it ensures its send variable is initialized to

true.

The queue recognizes collisions very

similarly to how regular nodes in the network do, but

in addition to sensing its own frequency it senses

others. Figure 2 shows how the queue monitors the

network and at what point it takes control. The queue

constantly listens to the channel, and when it senses

activity it listens for interruption or completion. The

queue becomes active when it senses a collision in

the network or the 48 bit jam signal. Once it has

finished controlling which adapters can transmit and

when, it goes back to simply monitoring the network

and letting the nodes send as per the CSMA/CD

protocol.

Figure 2: Queue monitoring the network

 In normal CSMA/CD, the first time a node

is involved in a collision it has a 50 percent chance of

immediately resending the frame without waiting at

all [5]. In CSMA/CDNQ, the BEB algorithm is

modified because there must be wait time to allow

the queue’s change-value-signal to propagate to all

the nodes. Therefore, when the collision counter is

one, the random number used to determine wait time

cannot be 0. In this case, the BEB is changed so the

wait time is automatically one time slot. The

following table demonstrates the number of time slots

that can be randomly chosen in CSMA/CD vs.

CSMA/CDNQ.

Table 1: Possible wait times for up to 2 consecutive

collisions

 CSMA/CD CSMA/CDNQ

0 N/A N/A

1 0, 1 time slots 1 time slot

C
o
lli

s
io

n

C
o
u
n
te

r

2

0,1,2,3 time
slots

0,1,2,3 time
slots

The reason a node cannot immediately

retransmit as is possible in regular CSMA/CD is

because immediately following a collision, the queue

sends out a broadcast signal to all nodes in the

network that changes all send variables to false. If a

node could immediately retransmit with no waiting

time, the queue’s broadcast would not be able to

propagate through.

Due to the queues variable changing signal,

no nodes can transmit. The queue then sends out a

frame that collects the MAC address of every node

involved in the collision. It can determine which

nodes were involved in the collision since, as in

regular CSMA/CD protocol, each node has a

collision counter that is used by the BEB algorithm

previously mentioned (see [6]). When it propagates

back to itself, it places each MAC address in its

queue. This may sound time consuming, but imagine

a congested network experiencing frequent collisions

involving many hosts. In regular CSMA/CD if there

are say, five nodes involved in one collision, many

repeat collisions will occur, especially during the

early stages of the BEB, since the likelihood that two

or more nodes select the same waiting time is higher

earlier in the algorithm. By preventing future

collisions and making one quick trip around the

network, the CSMA/CDNQ actually saves time. It

may also be quicker to simply modify the 48 bit jam

signal to flip the send variable value, but in the event

that the queue goes down, this could be disastrous.

Section 4.4 addresses this issue.

 As soon as the collector frame returns to the

queue, the addresses of the adapters involved in the

collision are added to the queue and network queue

channel takeover begins. As an example let us refer

to the first address in the queue as Collision Address

1 (CA1), the second Collision Address 2 (CA2), and

so on. CA1 at this point senses an empty channel and

is ready to retransmit, but is waiting for the value of

its send variable to change before it can begin. The

queue sends a signal to CA1 that 1) resets CA1’s

collision counter to 0, 2) sets a frame counter in the

adapter initialized to 5 that will decrement with every

sent frame so that CA1 only controls the network for

a period of time, and 3) resets CA1’s send variable to

true. CA1 now has control of the network to transmit

up to 5 frames consecutively. With each completed

transmission, the frame counter decrements. Channel

dominance leaves this node in one of two ways. The

first is in the event that it transmits its maximum

number of frames, which is five. The nodes’ send

variable is then automatically reset to false, thus

preventing it from continuing transmitting. The

second event is that it runs out of frames to send, thus

leaving the channel empty. In both scenarios, as soon

as the queue senses an empty channel, it sends out

two signals. The first signal goes to CA1, verifying

that its send variable is now false. If it is not,

meaning it simply ran out of frames to send, the

signal changes it to false. CA1 is then removed from

the queue. The second signal goes to CA2, which is

now the head of the queue. This signal changes

CA2’s send variable to true, and the same algorithm

that CA1 executed is now traversed by CA2.

 This behavior continues until there are no

more addresses in the queue. Consider the last

address, CA5, completes its five frames. The queue

still sends its signal to CA5 changing the variable to

false, but instead of sending a signal to the next

address in the queue (since there isn’t one) it sends

out a broadcast resetting all transmit variables to true.

The network is now on its own again, that is, until the

next collision occurs, which triggers the whole

process over again.

4.4. Queue Failure

 In the unlikely yet disastrous event that the

network queue goes down, there is a backup plan so

that transmissions may continue. While in collision

resolution mode, when the queue has control over the

network, each adapter is still listening to the channel

for other transmissions. This is because when all but

one adapter has send variable equal to false, one node

in the network should be transmitting. If this is not

happening, it indicates that the queue went down

while all the send variables are equal to false. This is

why when an adapter’s send value is false, it counts

the idle time in the network. It begins timing after

the end of each transmission, which is also as soon as

the channel becomes empty. Anytime its send

variable is false, it times the idle channel. If a node’s

send value is false, and the channel is empty for 1023

times slots (1023 * 512 bit times), it automatically

resets its send value to true. The number 1023 is

selected because in CSMA/CD, this is the maximum

amount of time an adapter can possibly randomly

select to wait.

 Imagine that the queue goes down; all nodes

wait the maximum timeout time, and then reset their

variables to true. Now imagine that a collision

occurs. The same procedure is performed, meaning

the nodes enter modified BEB, which is the BEB in

which immediate retransmission is not allowed.

Without interaction from the network queue, they just

continue from the first waiting period into regular

CSMA/CD. It is only in this event that packet

starvation and Ethernet capture can occur.

 Earlier in the paper, I mentioned how it

would be quicker to have the jam signal change the

value of the send variables network wide to false.

After all, it is already being propagated to each node.

You should now realize that this is impractical, and

that only the queue should be able to lock nodes out

from sending. If a regular node had the power to

change the send variable by transmitting the jam

signal, and the queue goes down, then every time a

collision occurs each node on the network must wait

the maximum timeout period, indicating queue

failure, before resetting it’s variable and re-entering

normal CSMA/CD. This would be a huge waste of

time, because in CSMA/CDNQ, even though

multiple collisions may occur in the case of the queue

being down, the nodes only must wait the maximum

timeout time once, instead of every time a collision

occurs. Even worse yet, while a node on its second

collision timeout waiting period hears a node that it

collided with previously, it will assume the

transmission is coming from the queue, reset it’s

waiting time, and be locked out indefinitely!

5. Summary

 The CSMA/CDNQ algorithm may appear

complicated, but in fact is simply a modified version

of the CSMA/CD protocol that is currently in use by

the Ethernet. My research indicates weakness in the

CSMA/CD protocol that my CSMA/CDNQ resolves.

A prototype may be developed in the future to test

and examine the CSMA/CDNQ under different

network situations to get an accurate analysis of the

benefits and performance statistics of the protocol.

6. References

[1] Akyildiz, I.F., and J. Liebeherr, “A Highly

Adaptive Media Access Protocol for Dual Bus

Metropolitan Area Networks”, Distributed Computing

Systems, 1992., Proceedings of the 12th International

Conference, 9-12 Jun 1992 pp. 186-193.

[2] G. Fairhurst, “Carrier Sense Multiple Access with

Collision Detection”, 14 Jan. 2004

<http://www.erg.abdn.ac.uk/users/gorry/course/lan-

pages/csma-cd.html>.

[3] Ferrari, D., S. Steinberg, and B. Whetten, “The

Packet Starvation Effect in CSMA/CD LANs and a

Solution”, Local Computer Networks, 1994., Proceedings

of the 19th Conference, 2-5 Oct. 1994 pp 206 - 217

[4] Kabatepe, M., and K.S. Vastola, “FDQ: The Fair

Distributed Queue MAN”, INFOCOM '92. Eleventh

Annual Joint Conference of the IEEE Computer and

Communications Societies. IEEE, 4-8 May 1992 pp 200-

209 vol. 1

[5] Kurose, J.F., and K.W. Ross, Computer

Networking, Pearson Addison Wesley, 2005.

[6] Lian, F.L., J.R. Moyne, and D. Tilbury,

“Performance Evaluation of Control Networks: Ethernet,

ControlNet, and DeviceNet”, IEEE Control Systems

Magazine, Feb. 2001.

