
The Simulation & Improvements of the RTP
Barry Soesanto, Ray Martinez, Swarna Bhuvanapalli, Timothy A Rock

 INFS 612 Project
 Professor Yih-Feng Hwang

Abstract

The main goal of our project is to create a tool in

Java to simulate the limitations of the best-effort

service (jitter, packet loss, & delay) used by any

UDP-based protocol in real-time, one-way, stored

multimedia streaming. The visuals & reports

produced by this tool will be useful for scientists to

analyze & experiment with their own multimedia

streaming protocol. To put this tool into practice, we

chose to experiment with the RTP. In order to

accomplish this, we implemented the RTP on top of

the tool using the Java’s standard UDP API. Another

goal of the project is to research existing

improvements of the best-effort service in the

transport layer especially on top of RTP. Thus, in the

future, these improvements might be implemented on

top of our tool’s platform to assess their tolerant

against jitter, packet loss, & delay.

1. Introduction

Since the main goal of this project is in

developing the tool to implement & test an RTP-

based protocol, the research portion has been focused

on a wide variety of improvements so the reader will

already have various options to be implemented &

tested against network affects, loss, and potentially

jitter and delay, hopefully, using our tool. The

architecture of this tool is explained in section 4.

RTP is a UDP-based protocol that implements an

RTP Packet to stream a multimedia in real-time. An

RTP Packet consists of a UDP datagram plus several

RTP information such as sequence number,

timestamp, & the type of the media encoding being

streamed [3]. This portion of the info is called the

RTP Header.

2. Research Problem

Judging from the info provided by RTP Header,

it’s obvious that RTP alone, like UDP, only provides

a best-effort service. In other words, streaming in

RTP may suffer from jitter, delay, & packet loss. We

believe that packet loss is the most significant affect

as this results in congested network elements.

Therefore our work has focused first on packet loss.

The popular approaches to solve these problems

are the adaptive playout delay, forward error

correction, & interleaving [3]. However, these

approaches can be considered superficial because

they will work only to some degree of loss, delay, or

jitter.

Another different approach is to fix the unreliable,

best-effort nature of the network layer by means of

Intserv & Diffserv [3]. Although this approach

promises a quality of service as reliable as TCP, it has

faced a deployment issue if applied to all existing

routers in the network core [3].

Thus, we are interested in researching solutions

that stand between these two ends of approaches.

However, we’d like to avoid streaming the media

over TCP due to its jerky drop of rate in its

multiplicative decrease algorithm. In addition, we’d

like to avoid its mandatory retransmission of packets.

3. Related Research Works

3.1. TFRC

One of the improvements is to address the

congestion problem in the router queue. Under this

approach, jitter, delay, & packet loss are really due to

congested router queues. They become congested

because multimedia transmission keeps bursting

packets without any congestion control [3]. This lack

of control is obviously the inherent nature UDP or

any multimedia protocol on top of it.

The forward error correction, adaptive playout

delay, & interleaving only remedy the symptoms of

the root problem of congested router queues

superficially, but they don’t address the root problem

itself. Those superficial solutions are definitely

effective most of the time; however, there’s a limit

that they might break down as long as the routers

remain congested.

A straightforward solution might be to stream the

multimedia over TCP that has a congestion control

plus much more. However, the sudden & jerky drop

of rate in the AIMD algorithm might impact the

filling of the buffer at the application layer at the

receiver part. Of course, this won’t be a problem if

the streaming simply needs to burst the packets into

the media player as fast as it can. However, if the

streaming has a fixed cadence & playout rate, this

drop may impact the quality of the media when

viewed by the user [5].

Thus, a better solution would be to smoothen the

rate drop in the Congestion Avoidance in TCP

congestion control & adopt that modified version of

the control into a UDP-based protocol. Experts have

been using all of those arguments above to justify the

positive impact to implementing congestion control

over a UDP-based protocol. They propose the TCP-

Friendly Rate Control (TFRC) protocol that

implements such control over multimedia streaming

[5]. They then go further by specifying a whole new

transport-layer protocol. This new protocol of course

has the TFRC in it. This new protocol is called

Datagram Congestion Control Protocol (DCCP) [7].

Surprisingly, this protocol is intended to be

deployed between the UDP & the network layer

instead of on top of the UDP. The experts argued that

designing a new protocol on top of the UDP would

raise a compatibility issue with the existing

applications running over UDP-based protocols [7].

TRFC is not a whole new transport-layer protocol;

rather, it’s merely an algorithm of a TCP-like

congestion control for multimedia streaming.

In a nutshell, TFRC works by adjusting the

sending rate of packets (instead of adjusting the

packet size) upon receiving the info from the receiver

about loss packets. When a packet loss occurs,

instead of halving the sending rate, the sender comes

up with the new sending rate by feeding the info

about loss packets, & other info such as packet size,

round trip time, retransmission timeout value, into an

equation [6]. Unlike the jerky zigzag-line chart

depicted in the TCP AIMD algorithm, the chart for

TFRC as a result of this equation will depict a

sinusoidal line [6]. The detail description of how this

algorithm works is described in section 4.

3.2 SELECTIVE RETRANSMISSION

CAPABILITY

In a congested network this helps to further reduce

congestion by not retransmitting frames that were not

lost. Only those frames that are lost or corrupted are

retransmitted. It Balances the extremes of TCP and

UDP and retransmits a percentage of lost packets

.The amount that is retransmitted depends on several

Quality of Service (QoS) factors including current

loss , round-trip time, network congestion, and is

tuned to provide the best possible multimedia quality

given the network conditions.

The play out buffer has a temporary storage for

incoming packets. when a packet has not arrived at

the receiver by an expected time of arrival (ETA), a

round trip time for the data packet is computed. The

round trip time is an estimate of a period beginning

from the time a retransmission request is sent to from

the receiver to the sender till the time a copy of the

missing packet is received at the receiver from the

sender in response to the retransmission request. This

is obtained by adding a time stamp into the header

and a request for an acknowledgement. When the

received message is received and that header is

detected with a request for reply, a reply message is

sent back with the timestamp included from the

original request. When the sender receives the

acknowledgement it compares the current time

against the sent time. This round trip time is weighted

more heavily than older round trip values to come up

with an estimated round trip time.

If the sender and the receiver knew about the window

about how long a packet can usefully be

retransmitted, it could hold transmissions around until

they aged out. If the receiver accumulates some

amount of data in the buffer in before it starts playing

the output. Assuming the round trip time to request

and receive a retransmitted packet is less than the

amount of time it has in the buffer, it will have

enough time to detect a need for retransmission and

retransmit the packet. This way it will always have

time to retransmit and re-deliver a packet before it is

needed. On the other hand if information about the

round trip time is not received or if the round trip

time to retrieve the missing packet is greater than the

remaining buffer time then the request for the missing

packet is discarded and the buffer proceeds to play

out the next packet available.

4. Solutions/ Analysis

4.1. Analysis of TFRC

Each time the sender sends a packet, the receiver

will sends a feedback packet in return. Through this

mechanism, the round trip time can be calculated [6].

4.1.1 The receiver protocol of TFRC

Each time the receiver receives a packet, it

recalculates a loss event rate. In this concept of loss

event rate, a packet is considered lost after 3

consecutives packets with sequence numbers after the

lost packet have arrived [6]. When a packet is lost,

obviously the receiver doesn’t have the arrival time of

that packet unlike the other arriving packets. The

receiver then calculates an estimated time T_loss

when the lost packet were not lost & could have

arrived with the following equation [6].

T_loss = T_before + ((T_after - T_before) * (S_loss -

S_before) / (S_after - S_before));

where:

S_loss is the sequence number of a lost packet.

S_before is the sequence number of the last packet to

arrive with sequence number before S_loss.

S_after is the sequence number of the first packet to arrive

with sequence number after S_loss.

T_before is the reception time of S_before.

T_after is the reception time of S_after.

If this T_loss <= T_old + the round trip time, where

T_old is the T_loss of the previous packet loss, then

this current loss is grouped into the same previous

loss event. Otherwise, it’s grouped into a new loss

event. Thus, an interval of each loss event Ii can be

calculated by means of the first & the last T_loss

within that event. TFRC keeps track of a maximum of

8 lost events [6]. The loss events before them are

discarded from the history.

Then the receiver calculates a weighted average

Imean of all Ii where i is from 0 to 7. This weighted

average puts more weight on the recent intervals.

Finally, the loss event rate p = 1 / Imean [6]. This value

p is then sent to the sender as part of the feedback

message.

4.1.2 The sender protocol of TFRC

Initially the sender will Slow Start until the loss

event rate returned by the receiver is greater than 0

[6]. When such value occurs, the sender doesn’t go

into the Congestion Avoidance like in TCP. Rather,

the sender determines the new sending rate by feeding

the loss event rate into a TCP-like throughput

equation [6].

 s

X = --

 { R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8) * p *

(1+32*p^2))) }

X is the transmit rate in bytes/second.

s is the packet size in bytes.

R is the round trip time in seconds.

p is the loss event rate, between 0 to 1.

t_RTO is the TCP retransmission timeout value in seconds.

b is the number of packets acknowledged by a single TCP

acknowledgement.

The round trip time R above is updated every time

the feedback message is received by means of the

following equation [6]:

R = q*R + (1-q)*R_sample, or if there’s no feedback

message before, then R = R_sample.

Where:

q = 0.9 & R_sample = (t_now - t_recvdata) - t_delay

t_now is the arrival time of the feedback packet.

t_recvdata is the timestamp of the last data received

by the receiver. In other words, it’s the time when that

last data departed from the sender. This info is

included in the feedback message.

t_delay is the duration between the receipt of the last

packet at the receiver & the generation of the

feedback report. This info is included in the feedback

message.

When p is back to zero, the sender will back to

Slow Start.

When a feedback message is not received until the

no-feedback-timer times out, the sender then halves

its sending rate then returns to Slow Start [4]. The

expiration time of such timer is calculated by the

sender each time a feedback message is received as

the max of 4*R or 2*s/X [6].

However, using TFRC is not without any problem.

The equation in the TFRC is only sensitive to packet

loss. It’s not obvious if using this equation to adjust

the sending rate will eventually reduce jitter as well.

4.1.3. Possible improvements to TFRC

If a packet loss can occur because of the

congested router queues, then the straightforward

conclusion is that variance in packet delays (jitter) is

due to a less severe congestion of router queues. In

other words, when the queue remains congested for a

significant period of time, it’s called a persistent

congestion [2], and this is when an incoming packet

cannot find any empty slot in the queue at all. On the

other hand, if the queue is almost full but still has a

few empty slots for incoming packets & that it’s in

the process of draining, then one of those packets will

experience jitter. Such congestion is called a transient

congestion [2].

Thus, an improvement would be to incorporate an

additional response to this jitter into the TFRC sender

protocol. Such response will prevent the congestion

from becoming more severe, & thus reduce the loss

event rate.

In order to accomplish this, an additional

algorithm is needed at the receiver side to sense the

jitter. Such algorithm is already available in the

RTCP protocol. In fact, the TFRC-J protocol has

been developed to extend the TFRC by adding the

RTCP’s jitter calculation algorithm [4].

RTCP is a protocol complementary to RTP.

RTCP governs a feedback message sent by the RTP

receiver once every a certain period to report

important statistics such as packet loss, jitter, & delay

[3].

The algorithm to calculate the jitter in RTCP

basically works by observing the difference of

timestamps between two consecutive received packets

every time a new packet arrives at the receiver. Then

a weighted average of such differences is calculated

[2].

First, we calculate D(i,j)=(Rj-Ri)-(Sj-Si)=(Rj-Sj)-(Ri-Si)

where:

Ri and Rj are the receipt time of packet i & j at the

receiver.

Si & Sj are the departure time of packet i & j from the

sender

Then, a weighted average of Ds is calculated:

Ji = Ji-1 * (1 – a) + D(i, i – 1) * a.

Where Ji is the current average, Ji-1 is the previous

average calculated, & a equals to 1/16 in the RTCP’s

RFC [2].

This J value is what considered to be a jitter, &

sent back from the receiver to the sender as part of

the feedback message.

Originally, the sender only operates in either Slow

Start when the loss event rate is zero, or using the

TCP throughput equation when the loss event rate is

not zero. Now, after the jitter feedback is introduced,

when the loss event rate is zero but the jitter J is

greater than a certain threshold, the sender will enter

a TCP Congestion Avoidance rate instead of Slow

Start [4]. The sender will enter Slow Start instead if

the loss event rate is zero and the jitter is less than the

threshold [4]. The magnitude of the threshold is 1/10

of the round trip time [4].

Thus, after all these changes the sending behavior

will basically become [4]:

If (loss event rate > 0) {

Use the TCP throughput equation to determine the

new sending rate. Using this equation, unlike

TCP, the rate won’t abruptly drop.

} else if (jitter > threshold) {

enter the CA phase;

} else {

enter the Slow Start phase;

}

Another potential improvement of TFRC might be

to incorporate the info about packet loss defined by

RTCP into the TFRC’s feedback message & to have

the sender respond accordingly.

The advantage of using the packet loss

information in RTCP style is that the RTCP feedback

report only comes periodically instead of once for

every packet sent. RTCP defines an algorithm to

determine the delay between two consecutive reports

[2]. In this way, the sender doesn’t have to be busy

expecting the feedback message from the receiver for

every packet sent. Another advantage is that the

calculation of packet loss by RTCP is much simpler

than by TFRC. But the trade-off is that the calculation

is not as accurate and sensitive as the original loss

event rate variable in TFRC. This is because, unlike

the loss event rate, the packet loss calculation by

RTCP doesn’t use history of loss events & weighted

average of the event intervals.

However, we can still use this RTCP’s packet loss

calculation when the TFRC sender is in the Slow

Start phase or in the Congestion Avoidance phase. In

these phase, the frequent TFRC feedback about the

loss event rate is not very useful in determining the

sending rate except to detect exactly when the loss

event rate becomes greater than zero.

When the sender notices a packet loss from the

RTCP feedback report, it then switches to the TCP-

throughput-equation phase. Within this phase, the

TFRC then starts expecting the loss event rate again

for every packet sent.

The RTCP calculation of the packet loss is [2]

expected_interval = expected - expected_prior;

expected_prior = expected;

received_interval = received - received_prior;

received_prior = received;

lost_interval = expected_interval - received_interval;

if (expected_interval == 0 || lost_interval <= 0) fraction = 0;

else fraction = (lost_interval << 8) / expected_interval;

where:

expected = The expected number of received packets.

This can be calculated by taking the difference

between the last packet’s sequence number & the first

packet’s.

expected_prior = The expected number of received

packets when the previous RTCP feedback report was

sent.

Received = The number of packets actually received.

Received_prior = the number of packets actually

received when the previous RTCP feedback report

was sent.

The fraction here is the one sent to the sender by

means of the feedback report.

It can be seen from that algorithm that the fraction

variable is similar to the TFRC’s loss event rate in

that they both range from 0 to 1.

4.2. The architecture of the tool

The figure below depicts the architecture of the

tool. There are 4 modules:

4.2.1. The main class (experiment.java)

The main class of this tool is experiment.java.

This contains the main method and takes the

following arguments:

• G – launch the Generator thread

• E – launch the Extractor thread

• N – launch the Network simulator thread

• C – launch the Controller thread

Experiment.java can be invoked with all

arguments and a single PC will house all 4

applications. Alternatively, 4 computers could each

invoke one of these functions and run separately.

Each non-Controller thread will obtain their start

up information from a txt file that is named

respectively from their argument (G.txt, E.txt or

N.txt). This file tells the thread which UDP socket to

communicate over for its commands and status.

The command-status element will be common to

all applications although the specific command-status

vocabulary will be specific to the module. No two

modules can be listening on the same IP-Socket pair.

4.2.2. Generator

The Generator is the source of the stream of data.

It will send to the test protocol a fixed number of

datagrams of fixed size at a fixed interval.

Embedded in the datagram will be a sequence

number and time stamp from the Generator. This

information will be used by the simulator and

extractor to perform their duties and to declare

datagrams as having exceeded thresholds for network

effects.

The Generator will listen for setup and initiation

commands on its control-status port. When instructed

to begin, it will start the generating of datagrams to

the underlying protocol.

Upon completion of the generation, it will status

the Controller with the completion and statistics,

including any overruns on the sending.

4.2.3. Extractor

The Extractor will pull datagrams at the specified

pace. It will also keep statistics at the datagram level,

such as lost, out of sequence, and good datagrams. It

will pull from a queue. A future improvement of

threshold classifications will be made at the time that

the datagram is being queued. This will determine the

overall amount of delay and jitters experienced, and

compare it against the parameters set for the

experiment run.

The Extractor will listen on its control-status port

and will obtain thresholds, pre-fill queue levels and

other parameters as commands from the Controller.

When the command run is complete, the Extractor

will provide completion status and statistics back to

the Controller for compilation.

4.2.4. Network Simulator

The Network Simulator (Simulator) will read

datagrams sent by the Generator as soon as they

arrive and using the effect parameters (jitter, loss and

delay) calculate the scheduled departure (or

droppage of the datagram if loss is required) to the

Extractor.

The Simulator works totally at the UDP level and

is agnostic to the higher level protocol being run on

the Generator and Extractor.

It listens on its control-status port for parameters

and when to start and stop the experiment. It has no

knowledge of the number of datagrams being sent, so

it has to be told when to stop.

4.2.5. Controller

The Controller is the heart of this tool. It pulls

from its C.txt file the control status address/port pairs

for each of the other modules. It then parses specific

experiment runs from this file.

For each experiment run, it sends the appropriate

commands to the modules in the proper sequence

(Extractor, Network Simulator, and then Generator).

It watches for the completion statuses, compiles

the statistics and outputs the results in a format that

can be used for further analysis (comma separated

values). It then continues with any subsequent

experiment runs.

4.2.6. RTP Protocol

The RTP protocol is the target protocol being

tested by the tool. This is a thread that is launched by

either the Generator or Extractor to prepare and run.

A class is defined to specify the enqueuing,

dequeuing and statistics actions. The RTP protocol

will inherit from this class definition to run on the

tool.

Other users of this tool would substitute their

target protocol here and reuse everything else as is.

4.3. Factors that need Consideration

The platform is intended to be used where each

module can run on a different computer, and these

modules could be geographically pretty far apart so a

couple of factors that need to be considered as these

might extend the experiment:

1) The time stamps or each module's perception

of time is independent. The approach required

the Generator to provide a time stamp and each

down stream module needed to calibrate their

time reference relative to the Generator's time

stamp and the arrival time of the first packet.

2) Synchronization and timing the beginning,

duration and end of an experimental pass needs

to factor in long delays. We added a sleep

command to the vocabulary of the controller to

allow the user to set the duration of the

experiment pass.

3) Running all modules on one computer

sometimes overloaded it. This would be

evidences with overruns on the Generator

module. We added an over run statistic to

capture this condition so the controller has the

ability to subtract off the underruns from the

statistics of the project. We also took advantage

of the modularity of the platform. By distributing

the modules across multiple computers,

processing overhead was eliminated as a factor.

5. Summary & future works

Several improvements have been researched &

reported in this project. However, we have not

implemented one of them on top of RTP in our tool to

be tested. Possible future works include comparing &

analyzing these improvements to decide which one to

be implemented.

TFRC itself is a growing research area. Several

extensions of TFRC have to be researched further as

they provide improvements when applied to a

wireless network. There are also researches about

incorporating various RTCP feedback calculations

into the TFRC. The jitter calculation explained in this

paper is just one of the examples.

The environment implements packet loss

simulation. The next affect that should be added to

the platform should be jitter. When the jitter delay

reaches ½ of the packet transmission rate, out of

sequence packet occur.

Selective retransmission capability is not

implemented in this project and it was researched so

that it could be considered as a future enhancement in

the project experiment. There are quite a lot of

improvements that are suggested to RTP out of which

this is considered most advantageous by many who

have experimented with this selective retransmission

by various other methods such as video data prefetch

over a skipping function, retransmission over DCCP

protocol and their performance has been evaluated to

find that this capability is in deed very beneficial.

6. References

[1] H. Schulzrinne, A. Rao, R. Lanphier, “Real Time

Streaming Protocol (RTSP)”, RFC 2326, April 1998,

http://www.rfc-editor.org/rfc/rfc1889.txt.

[2] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson,

“RTP: A Transport Protocol for Real-Time Applications”,

RFC 1889, January 1996, http://www.rfc-

editor.org/rfc/rfc1889.txt.

[3] J.F. Kurose & K.W. Ross, Computer Networking: A

Top Down Approach Featuring the Internet, Pearson

Education, Inc., 2005.Source Code:Chapter 7,

http://media.pearsoncmg.com/aw/aw_kurose_network

_3/labs/lab7/lab7.html

[4] Q. Li & D. Chen, “Analysis & Improvement of TFRC

Congestion Control Mechanism”, IEEE Xplore, September

2005.

[5] S. Floyd, M. Handley, J. Padhye, J. Widmer,

“Equation-based Congestion Control for Unicast

Applications”, ACM Digital Library, August 2000.

[6] S. Floyd, M. Handley, J. Padhye, J. Widmer, “TCP

Friendly Rate Control (TFRC): Protocol Specification”,

RFC 3448, January 2003, http://www.rfc-

editor.org/rfc/rfc3448.txt.

[7] T. Phelan, “Datagram Congestion Control Protocol

(DCCP) User Guide”, IETF Working Group, July 2004,

http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-user-

guide-02.txt.

[8] M.Piecuch, K.French, G.Oprica, M.Claypool

 “A Selective Retransmission Protocol for Multimedia on

the Internet”,
http://web.cs.wpi.edu/~claypool/papers/srp/srp.pdf

APPENDIX:

ARCHITECTURE MODEL OF THE PROJECT:

Extractor

Generator

UDP UDP

UDP

 UDP

100%

Network Simulator

Experiment

Controller

RTP

RTP

Cont

Stat

Cont

Stat

Cont

Stat

 GenCont

Stat

 Sim Cont

Stat

 Extract Cont

Stat

Receive

Send

