
The Simulation & Improvements of the RTP 
Barry Soesanto, Ray Martinez, Swarna Bhuvanapalli, Timothy A Rock 

    INFS 612 Project 
    Professor Yih-Feng Hwang 

 

 

Abstract 
 

The main goal of our project is to create a tool in 

Java to simulate the limitations of the best-effort 

service (jitter, packet loss, & delay) used by any 

UDP-based protocol in real-time, one-way, stored 

multimedia streaming. The visuals & reports 

produced by this tool will be useful for scientists to 

analyze & experiment with their own multimedia 

streaming protocol. To put this tool into practice, we 

chose to experiment with the RTP. In order to 

accomplish this, we implemented the RTP on top of 

the tool using the Java’s standard UDP API. Another 

goal of the project is to research existing 

improvements of the best-effort service in the 

transport layer especially on top of RTP. Thus, in the 

future, these improvements might be implemented on 

top of our tool’s platform to assess their tolerant 

against jitter, packet loss, & delay. 

 

1. Introduction 
 

Since the main goal of this project is in 

developing the tool to implement & test an RTP-

based protocol, the research portion has been focused 

on a wide variety of improvements so the reader will 

already have various options to be implemented & 

tested against network affects, loss, and potentially 

jitter and delay, hopefully, using our tool. The 

architecture of this tool is explained in section 4. 

RTP is a UDP-based protocol that implements an 

RTP Packet to stream a multimedia in real-time. An 

RTP Packet consists of a UDP datagram plus several 

RTP information such as sequence number, 

timestamp, & the type of the media encoding being 

streamed [3]. This portion of the info is called the 

RTP Header. 

 

2. Research Problem 
 

Judging from the info provided by RTP Header, 

it’s obvious that RTP alone, like UDP, only provides 

a best-effort service. In other words, streaming in 

RTP may suffer from jitter, delay, & packet loss. We 

believe that packet loss is the most significant affect 

as this results in congested network elements. 

Therefore our work has focused first on packet loss. 

The popular approaches to solve these problems 

are the adaptive playout delay, forward error 

correction, & interleaving [3]. However, these 

approaches can be considered superficial because 

they will work only to some degree of loss, delay, or 

jitter. 

Another different approach is to fix the unreliable, 

best-effort nature of the network layer by means of 

Intserv & Diffserv [3]. Although this approach 

promises a quality of service as reliable as TCP, it has 

faced a deployment issue if applied to all existing 

routers in the network core [3]. 

Thus, we are interested in researching solutions 

that stand between these two ends of approaches. 

However, we’d like to avoid streaming the media 

over TCP due to its jerky drop of rate in its 

multiplicative decrease algorithm. In addition, we’d 

like to avoid its mandatory retransmission of packets. 

 

3. Related Research Works 
 

3.1. TFRC 

 

One of the improvements is to address the 

congestion problem in the router queue. Under this 

approach, jitter, delay, & packet loss are really due to 

congested router queues. They become congested 

because multimedia transmission keeps bursting 

packets without any congestion control [3]. This lack 

of control is obviously the inherent nature UDP or 

any multimedia protocol on top of it.  

The forward error correction, adaptive playout 

delay, & interleaving only remedy the symptoms of 

the root problem of congested router queues 

superficially, but they don’t address the root problem 

itself. Those superficial solutions are definitely 

effective most of the time; however, there’s a limit 

that they might break down as long as the routers 

remain congested. 

A straightforward solution might be to stream the 



multimedia over TCP that has a congestion control 

plus much more. However, the sudden & jerky drop 

of rate in the AIMD algorithm might impact the 

filling of the buffer at the application layer at the 

receiver part. Of course, this won’t be a problem if 

the streaming simply needs to burst the packets into 

the media player as fast as it can. However, if the 

streaming has a fixed cadence & playout rate, this 

drop may impact the quality of the media when 

viewed by the user [5]. 

Thus, a better solution would be to smoothen the 

rate drop in the Congestion Avoidance in TCP 

congestion control & adopt that modified version of 

the control into a UDP-based protocol. Experts have 

been using all of those arguments above to justify the 

positive impact to implementing congestion control 

over a UDP-based protocol. They propose the TCP-

Friendly Rate Control (TFRC) protocol that 

implements such control over multimedia streaming 

[5]. They then go further by specifying a whole new 

transport-layer protocol. This new protocol of course 

has the TFRC in it. This new protocol is called 

Datagram Congestion Control Protocol (DCCP) [7]. 

Surprisingly, this protocol is intended to be 

deployed between the UDP & the network layer 

instead of on top of the UDP. The experts argued that 

designing a new protocol on top of the UDP would 

raise a compatibility issue with the existing 

applications running over UDP-based protocols [7].  

TRFC is not a whole new transport-layer protocol; 

rather, it’s merely an algorithm of a TCP-like 

congestion control for multimedia streaming.  

In a nutshell, TFRC works by adjusting the 

sending rate of packets (instead of adjusting the 

packet size) upon receiving the info from the receiver 

about loss packets. When a packet loss occurs, 

instead of halving the sending rate, the sender comes 

up with the new sending rate by feeding the info 

about loss packets, & other info such as packet size, 

round trip time, retransmission timeout value, into an 

equation [6]. Unlike the jerky zigzag-line chart 

depicted in the TCP AIMD algorithm, the chart for 

TFRC as a result of this equation will depict a 

sinusoidal line [6]. The detail description of how this 

algorithm works is described in section 4. 

 

3.2 SELECTIVE RETRANSMISSION 

CAPABILITY 

 
In a congested network this helps to further reduce 

congestion by not retransmitting frames that were not 

lost. Only those frames that are lost or corrupted are 

retransmitted. It Balances the extremes of TCP and 

UDP and retransmits a percentage of lost packets 

.The amount that is retransmitted depends on several 

Quality of Service (QoS) factors including current 

loss , round-trip time, network congestion, and is 

tuned to provide the best possible multimedia quality 

given the network conditions. 

 

The play out buffer has a temporary storage for 

incoming packets. when a packet has not arrived at 

the receiver by an expected time of arrival (ETA), a 

round trip time for the data packet is computed. The 

round trip time is an estimate of a period beginning 

from the time a retransmission request is sent to from 

the receiver to the sender till the time a copy of the 

missing packet is received at the receiver from the 

sender in response to the retransmission request. This 

is obtained by adding a time stamp into the header 

and a request for an acknowledgement. When the 

received message is received and that header is 

detected with a request for reply, a reply message is 

sent back with the timestamp included from the 

original request. When the sender receives the 

acknowledgement it compares the current time 

against the sent time. This round trip time is weighted 

more heavily than older round trip values to come up 

with an estimated round trip time. 

 

If the sender and the receiver knew about the window 

about how long a packet can usefully be 

retransmitted, it could hold transmissions around until 

they aged out. If the receiver accumulates some 

amount of data in the buffer in before it starts playing 

the output. Assuming the round trip time to request 

and receive a retransmitted packet is less than the 

amount of time it has in the buffer, it will have 

enough time to detect a need for retransmission and 

retransmit the packet. This way it will always have 

time to retransmit and re-deliver a packet before it is 

needed. On the other hand if information about the 

round trip time is not received or if the round trip 

time to retrieve the missing packet is greater than the 

remaining buffer time then the request for the missing 

packet is discarded and the buffer proceeds to play 

out the next packet available. 

 

 

4. Solutions/ Analysis 
 

4.1. Analysis of TFRC 
 

Each time the sender sends a packet, the receiver 

will sends a feedback packet in return. Through this 

mechanism, the round trip time can be calculated [6]. 



 

4.1.1 The receiver protocol of TFRC 

Each time the receiver receives a packet, it 

recalculates a loss event rate. In this concept of loss 

event rate, a packet is considered lost after 3 

consecutives packets with sequence numbers after the 

lost packet have arrived [6]. When a packet is lost, 

obviously the receiver doesn’t have the arrival time of 

that packet unlike the other arriving packets. The 

receiver then calculates an estimated time T_loss 

when the lost packet were not lost & could have 

arrived with the following equation [6]. 

 

T_loss = T_before + ( (T_after - T_before) * (S_loss - 

S_before) / (S_after - S_before) ); 
 

where: 

 

S_loss is the sequence number of a lost packet. 

 

S_before is the sequence number of the last packet to 

arrive with sequence number before S_loss. 

 

S_after is the sequence number of the first packet to arrive 

with sequence number after S_loss. 

 

T_before is the reception time of S_before. 

 

T_after is the reception time of S_after. 

 
If this T_loss <= T_old + the round trip time, where 

T_old is the T_loss of the previous packet loss, then 

this current loss is grouped into the same previous 

loss event. Otherwise, it’s grouped into a new loss 

event. Thus, an interval of each loss event Ii can be 

calculated by means of the first & the last T_loss 

within that event. TFRC keeps track of a maximum of 

8 lost events [6]. The loss events before them are 

discarded from the history. 

Then the receiver calculates a weighted average 

Imean of all Ii where i is from 0 to 7. This weighted 

average puts more weight on the recent intervals. 

Finally, the loss event rate p = 1 / Imean [6]. This value 

p is then sent to the sender as part of the feedback 

message. 

 

4.1.2 The sender protocol of TFRC 

 

Initially the sender will Slow Start until the loss 

event rate returned by the receiver is greater than 0 

[6]. When such value occurs, the sender doesn’t go 

into the Congestion Avoidance like in TCP. Rather, 

the sender determines the new sending rate by feeding 

the loss event rate into a TCP-like throughput 

equation [6]. 

  s 

X =  ------------------------------------------------------------------------

----- 

        { R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8) * p * 

(1+32*p^2))) } 
 

X is the transmit rate in bytes/second. 

 

s is the packet size in bytes. 

 

R is the round trip time in seconds. 

 

p is the loss event rate, between 0 to 1. 

 

t_RTO is the TCP retransmission timeout value in seconds. 

 

b is the number of packets acknowledged by a single TCP 

acknowledgement. 
 

The round trip time R above is updated every time 

the feedback message is received by means of the 

following equation [6]: 

 

R = q*R + (1-q)*R_sample, or if there’s no feedback 

message before, then R = R_sample. 

 

Where: 

 

q = 0.9 & R_sample = (t_now - t_recvdata) - t_delay 

 

t_now is the arrival time of the feedback packet. 

 

t_recvdata is the timestamp of the last data received 

by the receiver. In other words, it’s the time when that 

last data departed from the sender. This info is 

included in the feedback message. 

 

t_delay is the duration between the receipt of the last 

packet at the receiver & the generation of the 

feedback report. This info is included in the feedback 

message.  

 

When p is back to zero, the sender will back to 

Slow Start.  

When a feedback message is not received until the 

no-feedback-timer times out, the sender then halves 

its sending rate then returns to Slow Start [4]. The 

expiration time of such timer is calculated by the 

sender each time a feedback message is received as 

the max of 4*R or 2*s/X [6].  



However, using TFRC is not without any problem. 

The equation in the TFRC is only sensitive to packet 

loss. It’s not obvious if using this equation to adjust 

the sending rate will eventually reduce jitter as well. 

 

4.1.3. Possible improvements to TFRC 

 

If a packet loss can occur because of the 

congested router queues, then the straightforward 

conclusion is that variance in packet delays (jitter) is 

due to a less severe congestion of router queues. In 

other words, when the queue remains congested for a 

significant period of time, it’s called a persistent 

congestion [2], and this is when an incoming packet 

cannot find any empty slot in the queue at all. On the 

other hand, if the queue is almost full but still has a 

few empty slots for incoming packets & that it’s in 

the process of draining, then one of those packets will 

experience jitter. Such congestion is called a transient 

congestion [2]. 

Thus, an improvement would be to incorporate an 

additional response to this jitter into the TFRC sender 

protocol. Such response will prevent the congestion 

from becoming more severe, & thus reduce the loss 

event rate. 

In order to accomplish this, an additional 

algorithm is needed at the receiver side to sense the 

jitter. Such algorithm is already available in the 

RTCP protocol. In fact, the TFRC-J protocol has 

been developed to extend the TFRC by adding the 

RTCP’s jitter calculation algorithm [4].  

RTCP is a protocol complementary to RTP. 

RTCP governs a feedback message sent by the RTP 

receiver once every a certain period to report 

important statistics such as packet loss, jitter, & delay 

[3]. 

The algorithm to calculate the jitter in RTCP 

basically works by observing the difference of 

timestamps between two consecutive received packets 

every time a new packet arrives at the receiver. Then 

a weighted average of such differences is calculated 

[2]. 

 

First, we calculate D(i,j)=(Rj-Ri)-(Sj-Si)=(Rj-Sj)-(Ri-Si) 
 

where: 

 

Ri and Rj are the receipt time of packet i & j at the 

receiver. 

 

Si & Sj are the departure time of packet i & j from the 

sender 

 

Then, a weighted average of Ds is calculated: 

 

Ji = Ji-1 * (1 – a) + D(i, i – 1) * a. 

 

Where Ji is the current average, Ji-1 is the previous 

average calculated, & a equals to 1/16 in the RTCP’s 

RFC [2]. 

This J value is what considered to be a jitter, & 

sent back from the receiver to the sender as part of 

the feedback message. 

Originally, the sender only operates in either Slow 

Start when the loss event rate is zero, or using the 

TCP throughput equation when the loss event rate is 

not zero. Now, after the jitter feedback is introduced, 

when the loss event rate is zero but the jitter J is 

greater than a certain threshold, the sender will enter 

a TCP Congestion Avoidance rate instead of Slow 

Start [4]. The sender will enter Slow Start instead if 

the loss event rate is zero and the jitter is less than the 

threshold [4]. The magnitude of the threshold is 1/10 

of the round trip time [4]. 

Thus, after all these changes the sending behavior 

will basically become [4]: 

 

If (loss event rate > 0) { 

Use the TCP throughput equation to determine the 

new sending rate. Using this equation, unlike 

TCP, the rate won’t abruptly drop. 

} else if (jitter > threshold) { 

enter the CA phase; 

} else { 

enter the Slow Start phase; 

} 

 

Another potential improvement of TFRC might be 

to incorporate the info about packet loss defined by 

RTCP into the TFRC’s feedback message & to have 

the sender respond accordingly.  

The advantage of using the packet loss 

information in RTCP style is that the RTCP feedback 

report only comes periodically instead of once for 

every packet sent. RTCP defines an algorithm to 

determine the delay between two consecutive reports 

[2]. In this way, the sender doesn’t have to be busy 

expecting the feedback message from the receiver for 

every packet sent. Another advantage is that the 

calculation of packet loss by RTCP is much simpler 

than by TFRC. But the trade-off is that the calculation 

is not as accurate and sensitive as the original loss 

event rate variable in TFRC. This is because, unlike 

the loss event rate, the packet loss calculation by 

RTCP doesn’t use history of loss events & weighted 

average of the event intervals. 



However, we can still use this RTCP’s packet loss 

calculation when the TFRC sender is in the Slow 

Start phase or in the Congestion Avoidance phase. In 

these phase, the frequent TFRC feedback about the 

loss event rate is not very useful in determining the 

sending rate except to detect exactly when the loss 

event rate becomes greater than zero.  

When the sender notices a packet loss from the 

RTCP feedback report, it then switches to the TCP-

throughput-equation phase. Within this phase, the 

TFRC then starts expecting the loss event rate again 

for every packet sent. 

The RTCP calculation of the packet loss is [2] 

 

expected_interval = expected - expected_prior; 

expected_prior = expected; 

received_interval = received - received_prior; 

received_prior = received; 

lost_interval = expected_interval - received_interval; 

if (expected_interval == 0 || lost_interval <= 0) fraction = 0; 

else fraction = (lost_interval << 8) / expected_interval; 

 
where: 

 

expected = The expected number of received packets. 

This can be calculated by taking the difference 

between the last packet’s sequence number & the first 

packet’s. 

 

expected_prior = The expected number of received 

packets when the previous RTCP feedback report was 

sent. 

 

Received = The number of packets actually received. 

 

Received_prior = the number of packets actually 

received when the previous RTCP feedback report 

was sent. 

 

The fraction here is the one sent to the sender by 

means of the feedback report. 

It can be seen from that algorithm that the fraction 

variable is similar to the TFRC’s loss event rate in 

that they both range from 0 to 1. 

 

4.2. The architecture of the tool 
 

The figure below depicts the architecture of the 

tool. There are 4 modules: 

4.2.1. The main class (experiment.java) 

 

The main class of this tool is experiment.java. 

This contains the main method and takes the 

following arguments: 

• G – launch the Generator thread 

• E – launch the Extractor thread 

• N – launch the Network simulator thread 

• C – launch the Controller thread 

 

Experiment.java can be invoked with all 

arguments and a single PC will house all 4 

applications. Alternatively, 4 computers could each 

invoke one of these functions and run separately. 

Each non-Controller thread will obtain their start 

up information from a txt file that is named 

respectively from their argument (G.txt, E.txt or 

N.txt). This file tells the thread which UDP socket to 

communicate over for its commands and status.  

The command-status element will be common to 

all applications although the specific command-status 

vocabulary will be specific to the module. No two 

modules can be listening on the same IP-Socket pair. 

4.2.2. Generator  

 

The Generator is the source of the stream of data. 

It will send to the test protocol a fixed number of 

datagrams of fixed size at a fixed interval. 

Embedded in the datagram will be a sequence 

number and time stamp from the Generator. This 

information will be used by the simulator and 

extractor to perform their duties and to declare 

datagrams as having exceeded thresholds for network 

effects. 

The Generator will listen for setup and initiation 

commands on its control-status port. When instructed 

to begin, it will start the generating of datagrams to 

the underlying protocol. 

Upon completion of the generation, it will status 

the Controller with the completion and statistics, 

including any overruns on the sending. 

4.2.3. Extractor 

 

The Extractor will pull datagrams at the specified 

pace. It will also keep statistics at the datagram level, 

such as lost, out of sequence, and good datagrams. It 

will pull from a queue. A future improvement of 

threshold classifications will be made at the time that 

the datagram is being queued. This will determine the 

overall amount of delay and jitters experienced, and 

compare it against the parameters set for the 

experiment run. 

The Extractor will listen on its control-status port 



and will obtain thresholds, pre-fill queue levels and 

other parameters as commands from the Controller. 

When the command run is complete, the Extractor 

will provide completion status and statistics back to 

the Controller for compilation. 

4.2.4. Network Simulator 

 

The Network Simulator (Simulator) will read 

datagrams sent by the Generator as soon as they 

arrive and using the effect parameters (jitter, loss and 

delay) calculate the scheduled departure ( or 

droppage of the datagram if loss is required) to the 

Extractor. 

The Simulator works totally at the UDP level and 

is agnostic to the higher level protocol being run on 

the Generator and Extractor.  

It listens on its control-status port for parameters 

and when to start and stop the experiment. It has no 

knowledge of the number of datagrams being sent, so 

it has to be told when to stop. 

4.2.5. Controller 

 

The Controller is the heart of this tool. It pulls 

from its C.txt file the control status address/port pairs 

for each of the other modules. It then parses specific 

experiment runs from this file.  

For each experiment run, it sends the appropriate 

commands to the modules in the proper sequence 

(Extractor, Network Simulator, and then Generator). 

It watches for the completion statuses, compiles 

the statistics and outputs the results in a format that 

can be used for further analysis (comma separated 

values). It then continues with any subsequent 

experiment runs. 

4.2.6. RTP Protocol 

 

The RTP protocol is the target protocol being 

tested by the tool. This is a thread that is launched by 

either the Generator or Extractor to prepare and run. 

A class is defined to specify the enqueuing, 

dequeuing and statistics actions. The RTP protocol 

will inherit from this class definition to run on the 

tool. 

Other users of this tool would substitute their 

target protocol here and reuse everything else as is. 

 

4.3. Factors that need Consideration 

 

The platform is intended to be used where each 

module can run on a different computer, and these 

modules could be geographically pretty far apart so a 

couple of factors that need to be considered as these 

might extend the experiment: 

1) The time stamps or each module's perception 

of time is independent. The approach required 

the Generator to provide a time stamp and each 

down stream module needed to calibrate their 

time reference relative to the Generator's time 

stamp and the arrival time of the first packet. 

2) Synchronization and timing the beginning, 

duration and end of an experimental pass needs 

to factor in long delays. We added a sleep 

command to the vocabulary of the controller to 

allow the user to set the duration of the 

experiment pass. 

3) Running all modules on one computer 

sometimes overloaded it. This would be 

evidences with overruns on the Generator 

module. We added an over run statistic to 

capture this condition so the controller has the 

ability to subtract off the underruns from the 

statistics of the project. We also took advantage 

of the modularity of the platform. By distributing 

the modules across multiple computers, 

processing overhead was eliminated as a factor. 

 
 

5. Summary & future works 
 

Several improvements have been researched & 

reported in this project. However, we have not 

implemented one of them on top of RTP in our tool to 

be tested. Possible future works include comparing & 

analyzing these improvements to decide which one to 

be implemented. 

TFRC itself is a growing research area. Several 

extensions of TFRC have to be researched further as 

they provide improvements when applied to a 

wireless network. There are also researches about 

incorporating various RTCP feedback calculations 

into the TFRC. The jitter calculation explained in this 

paper is just one of the examples. 

The environment implements packet loss 

simulation. The next affect that should be added to 

the platform should be jitter. When the jitter delay 

reaches ½ of the packet transmission rate, out of 

sequence packet occur. 

Selective retransmission capability is not 

implemented in this project and it was researched so 

that it could be considered as a future enhancement in 

the project experiment. There are quite a lot of 



improvements that are suggested to RTP out of which 

this is considered most advantageous by many who 

have experimented with this selective retransmission 

by various other methods such as video data prefetch 

over a skipping function, retransmission over DCCP 

protocol and their performance has been evaluated to 

find that this capability is in deed very beneficial. 
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APPENDIX: 

 

ARCHITECTURE MODEL OF THE PROJECT: 
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