

Group 1

SAJAX: The Road to Secure and Efficient Applications

- Final Project Report -

Thu Do, Matt Henry, Peter Knolle, Ahmad Yasin

George Mason University, 2006/07/15

SAJAX: The Road to Secure and Efficient Applications

Thu Do, Matt Henry, Peter Knolle, Ahmad Yasin

George Mason University Department of Information and Software Engineering

tdo@gmu.edu, mentatx@gmail.com, peter.knolle@gmail.com, ayasin@gmu.edu

Abstract

The purpose of this paper is to present an overview

of Asynchronous JavaScript and XML (AJAX)

technology, describe the benefits of its use, and

empirically demonstrate its efficient management of

client and server resources. We show the efficiency

and benefits of using AJAX with benchmarks that

compare AJAX versus non-AJAX versions of three web

applications. As AJAX does not offer any security in

and of itself, we explore the security aspects of AJAX

through the use of an instant messaging application

that pairs Secure Sockets Layer (SSL) and AJAX.

Analysis of the results is performed.

1. Introduction

Asynchronous JavaScript and XML (AJAX) is an

approach to web developing that provides a way for

client-server web applications to transfer data

asynchronously, leading to richer and more responsive

web experiences for end-users. The term AJAX was

introduced by Jesse James Garrett in [1] in February

2005 to define the combining of the technologies

XHTML, CSS, DOM, XML, XSLT,

XMLHttpRequest, and JavaScript as seen in such

applications as Google Suggest and Google Maps.

Since then many different AJAX powered web

applications have been produced, but traditional (non-

AJAX) web applications are still being produced as

well. We provide a comparison of AJAX and non-

AJAX applications and a discussion of combining

security and AJAX.

First we discuss the basics of AJAX and describe its

benefits over non-AJAX web applications. Then we

show, through the use of three benchmarks, that AJAX

applications transfer significantly fewer bytes between

the client and server than non-AJAX applications.

Finally, since AJAX provides no security in and of

itself we discuss security and AJAX by pairing AJAX

with SSL in a secure instant messaging program.

2. Basics of AJAX

The key to AJAX is the asynchronous JavaScript

request which is performed by the XMLHttpRequest

(XHR) JavaScript object. Almost all modern browsers

provide an implementation of the XHR object

including the two most used browsers, Microsoft’s

Internet Explorer [2] and Mozilla’s Firefox [3] and in

April 2006 the W3C provided a specification [4] for

the XHR. While the X in AJAX represents the XML

response from the server, it is not necessary for the

responses to be XML. As AJAX is becoming more

widespread transport formats other than XML are

becoming popular, the most notable being JavaScript

Object Notation which is more commonly referred to

as JSON. The typical AJAX interaction follows.

2.1. A typical AJAX interaction

1. An XHR object is created.
// Firefox 1.5
xhr = new XMLHttpRequest()

// Internet Explorer 6
xhr=new
ActiveXObject(Msxml2.XMLHTTP)

2. XHR assigns an onreadystatechange event handler to

handle the server’s response.
xhr.onreadystatechange=
function () { // handle it };

3. XHR makes an asynchronous HTTP POST or GET

request to the server.
xhr.open(“GET”,
“http://xxx.yyy.com/AjaxHandler
?param1=value1”, true);
xhr.send(null);

4. The server processes the request and sends back a

response.
// Code varies depending on the

// server.

5. XHR receives the response in its onreadystatechange

event handler and processes it.
// Usually DOM manipulation

3. Benefits of AJAX

AJAX applications provide a richer and smoother

end-user experience than traditional non-AJAX

applications. In a typical non-AJAX application the

end-user makes some changes to the page, a request is

sent to the server, the server processes the request and a

whole new page is written back to the client. In [5] it is

noted that this typical request-wait-response-wait

pattern is extremely disruptive and when coupled with

network latency it can be very irritating to end-users.

With every request-response interaction, the entire

page gets transferred across the network to the client

and the end-user is affected by having to see and wait

for the entire page to reload. With AJAX that pattern

is no longer necessary. Requests are made

asynchronously to the server, the server processes the

request and only the information necessary for the

client to make changes to the page is sent back to the

client. The amount of data transferred across the

network from the server to the client is reduced and the

end-user does not see or have to wait for the entire

page to reload.

4. Benchmarks

We implemented three benchmark web applications

to measure the efficiency, in bytes transferred, of an

AJAX version of each versus a non-AJAX version.

The server that was used was Apache Tomcat 5.5.17

using Servlets and JSP and the client was Mozilla’s

Firefox 1.5. Ethereal was used to record the number of

bytes being transferred. In all benchmarks the AJAX

version transferred significantly fewer bytes than the

non-AJAX version. Also of note is that in the non-

AJAX versions the end-user experience was much

worse, because with each request to the server the

entire page was refreshed. However, with the AJAX

version only the parts of the page that needed to be

updated were refreshed with each request. The results

are summarized in table 1.

Table 1. Benchmark Results

(average bytes transferred)

 AJAX Non-

AJAX

Percent

Difference

1.Auto-

populated drop

down boxes

14, 300 23,783 39.9%

2. Shopping cart 9,765 12,431 21.4%

3. Auto suggest 20,347 43,578 53.3%

4.1. Benchmark One
The first benchmark was based on a typical web

form that might be used to collect personal information

(see figure 1). Each dropdown box is populated

dynamically with data from the server, based on

information that has been inputted into previous fields

of the form, e.g., as soon as USA is selected as the

Country, the State/Prov. box is populated with all fifty

states. On average the non-AJAX version transferred

39.9% more bytes than the non-AJAX version.

Figure 1. Benchmark one’s screen

4.2. Benchmark Two
The second benchmark was a simplified version of a

shopping cart that might be seen on an e-commerce site

(see figure 2). Each time the quantity of an item is

changed a request is made to the server and the server

updates the session and sends a response back to the

client. On average the non-AJAX version transferred

21.4 % more bytes than the AJAX version.

Figure 2. Benchmark two’s screen

4.3. Benchmark Three
The third benchmark was an auto suggest text box

that displays suggested inputs, in real time, based on

what is being typed into the text box (see figure 3).

Each time a character is typed into the text box a

request is made to the server with the all of the text

typed so far. The server then sends back a list of all

possible matches for the browser to display. On

average the non-AJAX version transferred 53.3% more

bytes than the AJAX version.

Figure 3. Benchmark three’s screen

5. Secure AJAX (SAJAX) Chat

As AJAX doesn’t have any built in security

mechanisms, we explored the combination of SSL and

AJAX through the implementation of a secure chat

application. Initially, there was great concern due to

the name of the XMLHttpRequest object. An

investigation was launched to determine if it would

enjoy the benefits of a client browser’s SSL

connection, using Ethereal.

The packets intercepted via Ethereal between a test

client and server proved to have unreadable payloads

(as they were encrypted). This cleared the way to

continue researching and developing the Secure AJAX

(SAJAX) Chat application. It was decided that SSL (a

tried and proven means of encryption) would be

utilized for securing transmissions between the server

and client.

The next task involved the high-level architecture

and organization of the chat clients and server. A

database (Microsoft’s SQL Server 2005 Express

Edition, which is free) on the server (Microsoft

Windows Server 2003, Service Pack 1, running IIS

6.0) was used to marshal messages from a sender client

to the appropriate recipient client. The server was also

charged with the task of keeping track of each client,

through the use of sessions (HTTP(S) is, after all, a

stateless protocol).

Due to the expedient nature of this research, and the

fact that a three-tiered development model (data-access

layer, business-logic layer, and presentation layer) was

decided upon for use in development on the server-

side, CodeSmith (a template-based code generating

tool) was used to generate the data-access and

business-logic tiers. Not only did this save a great deal

of time and effort, it also ensured that the code (written

in ASP.NET 2.0, C#) would be consistent and follows

best practices.

The client-side development provided an interesting

challenge. Since the server was unable to contact a

client browser without a request being made, most of

the SAJAX Chat logic was implemented on the client-

side. It was designed with a base window containing

the client’s buddy list, and several satellite windows

(opened from and controlled by the base window) to

manage distinct chats.

Polling was used in the base window to retrieve data

from the server (all data from the server was returned

in XML format). Every two seconds, an AJAX call

would be made to request an updated buddy list, as

well as to receive any new messages. These messages

would be routed to the appropriate satellite window via

the base window. If the correct satellite window was

not open, the base window would spawn it. The

satellite windows communicated directly with the

server through AJAX calls to send messages, and were

architected to handle error messages. For example, if a

message was sent to a buddy who was not signed-in to

the system, a message indicating this would be

displayed in the sending satellite window.

Once constructed, the SAJAX Chat application

worked very well. It was secure, and built using AJAX

– thus achieving both of our primary goals. It was also

very intuitive and easy to use. Although certainly not

commercial-grade at this point, we plan to add more

specialized buddy lists and chat room functionality in

the next iteration of research. After such a successful

initial period of development, we believe that SAJAX

Chat is a fantastic base from which to continue efforts

in experimenting with the capabilities of AJAX in

security-oriented environments.

6. Summary

We have shown that AJAX is a valuable web

development technique that can be used to make more

efficient web applications. We feel that as a

technology, AJAX is only beginning to be realized for

its potential applications, particularly in areas regarding

security. We feel that as a technology, AJAX is only

beginning to be realized for its potential applications,

particularly in areas regarding security.

Through benchmarks, we have shown how

dramatically AJAX can reduce the bandwidth load on a

server by sending and receiving only necessary data.

Further, the strain on a server’s processor(s) can be

reduced by allowing clients to update themselves, given

the necessary information. The benchmarks also hint at

a myriad of problems in web development that AJAX

is much better suited to deal with than standard

client/server interactions. A perfect example being the

auto suggestion benchmark (Benchmark Three), which

is choppy at best without using AJAX.

When this research began, it was believed that

securing an AJAX application would be the most

difficult portion of our research. In the end, we were

able to rely on SSL, and free to concentrate efforts on

the application itself. Despite some minor architectural

issues in developing the client-side of SAJAX Chat

(which any project goes through), development moved

along rapidly.

Though SAJAX Chat is not a revolutionary

discovery, it a powerful indicator of how inventive the

web development community has become. With

minimal time, no budget, and armed only with an idea

and a few development tools, we were able to introduce

a practical and feasible alternative to installed, non-

secure chat clients.

Future plans call for chat room functionality and

specialized buddy lists. While no timetable has been

produced for the newly proposed features, it is likely

that it would be accomplished relatively quickly, given

the solid base of development from which we would

begin. We submit our findings in the hope that it

inspires new and creative applications in the realm of

secure AJAX development.

7. References

 [1] Garrett, J.J, “Ajax: A New Approach to Web

Applications,” February 2005. [Online]. Available:

http://www.adaptivepath.com/publications/essays/archi

ves/000385.php [Accessed June 13, 2006].

[2] Microsoft Corporation, “XMLHttpRequest Object”,

microsoft.com, 2006. [Online]. Available:

http://msdn.microsoft.com/workshop/author/dhtml/refe

rence/objects/obj_xmlhttprequest.asp. [Accessed June

13, 2006].

[3] XULPlanet.com, “XMLHttpRequest”,

xulplanet.com, 2006. [Online]. Available:

http://www.xulplanet.com/references/objref/XMLHttp

Request.html [Accessed June 13, 2006].

[4] W3C, “The XMLHttpRequest Object”,

www.w3.org, 2006. [Online]. Available:

http://www.w3.org/TR/2006/WD-XMLHttpRequest-

20060405/. [Accessed June 13, 2006].

[5] Smith, K. “Simplifying Ajax-Style Web

Development”, Computer, vol. 39, no. 5, pp. 98-101,

May 2006.

