
Online Souvenir Store

using Service Oriented Architecture (SOA)

Hands on Project Report

Neon Ngo and Tracy Tran

George Mason University

neonngo@yahoo.com, tracy.tran13@gmail.com

Abstract

Service-Oriented Architecture (SOA) is a software

architecture that supports communication between

services. An ecommerce application was built using

this architecture. The application is an online

Souvenir Store that allows users to search and browse

through the store’s catalog, add items to a shopping

cart, as well as purchasing the items in the cart. Users

are able to self register to the system and maintain

their shipping address and credit card information. A

database service is used to maintain the store’s

inventory and user information, a credit card web

service is used to validate the users’ credit card

information, and an email service is used to send

confirmation emails to the users.

1 Introduction

1.1 Service Oriented Architecture

Service-Oriented Architecture (SOA) is a software

architecture that supports communication between

services. A service is a unit of work that is to be

performed on behalf of a client. In a SOA

environment, a node on a network makes its

resources/service available to other nodes on the

network. These services are loosely coupled and highly

interoperable. These services interoperate based on a

formal definition (or contract) which is independent

from the underlying platform and programming

language. SOA is not a totally new architecture; rather,

it is an evolution that captures the best practices of

other distributed architectures that came before it by

stressing the importance of using standards, which are

well-defined and highly interoperable.

1.1.1 Web Services

Web Services is one of the types of services that can

facilitate a SOA application. Web Services achieve

interoperability because the services are based on a

formal contract which is independent from the

underlying platform or languages. In order to

encapsulate the vendor and language specific

implementation, each service provides its clients a Web

Service Description Language (WSDL) file which

describes what type of services are provided. The

WSDL is published to a service directory and can be

located by the client. Web services are accessible via

standard protocols, such as SOAP, over Hyper-Text

Transfer Protocol (HTTP). SOAP is a protocol for

exchanging Extensible Markup Language (XML) based

messages over a network even in the presence of a

network firewalls.

Figure 1 below demonstrates the basic Service-

Oriented Architecture implementing Web Services.

The figure depicts the service provider publishing its

WSDL to a directory of services. The service

consumer then queries the directory to locate a service

and determine how to communicate with that service.

The directory then passes the WSDL to the consumer.

Using the WSDL, the consumer determines what type

of requests it wants to send to the service provider and

the service provider in turn responses with an

appropriate message. Via the SOAP protocol, requests

and responses are sent using SOAP envelops, which are

XML based.

Figure 1. SOA implementing Web Services

1.1.2 Other Services

As mentioned earlier, a service is a unit of work that

is to be performed on behalf of a client. A service

within a SOA environment doesn’t necessarily have to

be a Web Service. A service can be a database in

which the client communicates with to retrieve and

manipulate data. A database service is highly

interoperable as it normally uses the ANSI/ISO

Structured Query Language (SQL) to create, modify,

retrieve and update data from a database management

system (DBMS). A service can also be a mail service

which routes and receive emails. The Simple Mail

Transfer Protocol (SMTP) is the standard for email

transmission on the Internet. All these different

interoperable services communicating with each other

over a distributed network to support the requirements

of its users make up a Service-Oriented Architecture

environment.

1.2 Rationale behind Proposed Project

Our goal was to build a specialized online shopping

“store” application, the Souvenir Store, which

implements the Service-Oriented Architecture. As

opposed to other existing ecommerce sites such as

Amazon.com and Buy.com, the Souvenir Store sells

only souvenir items specifically related to Washington

D.C. Washington D.C. souvenirs are generally

available only within the Washington D.C. area itself.

By making these souvenirs available for purchase

online, souvenir vendors can make more money from

travelers who may have forgotten to purchase souvenirs

while they were visiting Washington D.C.

Our online Souvenir Store allows the users to

browse, search, and add items to a shopping cart. The

application also allows the users to purchase the added

items. Users can self register and maintain their

account information, such as shipping and credit card

information, online.

2 Solutions/Analyses

2.1 Application Architecture

In building the Souvenir Store that that consists of a

Web Service as well as a database service and mail

service, the architecture of the application needed to be

defined. The application consists of two clients and

four services. The first client is the web browser in

which the customers interface with to perform their

online shopping transactions.

The browser interfaces with our “store”

service/server via HTTP when servicing the users’

requests. The “store” service is a web application that

returns standards based documents such as Hyper-Text

Markup Language (HTML), Cascading Style Sheets

(CSS), JavaScript, and Joint Photographic Experts

Group (JPEG) images. The “store” service is also a

client in itself. It is a client that interfaces with our

remaining three services, the Credit Card service (Web

Service), the Store Database service (MySQL

Database), and the Email service (Mail Service). The

Credit Card Validation service is used by the “store”

during the checkout process to authenticate the

customer’s credit card. The Credit Card Service is also

used to validate the user’s credit card during self-

registration or account updates when the user provided

credit card information. The Store Database service

keeps track of our store inventory and catalog as well

as registered users. It is used by the “store” when the

user browses or search through the store’s catalog.

Lastly, the “store” interfaces with our fourth service,

the Email service, via SMTP to send email

confirmations to the customers after a user registration

is completed, user account information is updated, and

after orders are successfully placed.

Figure 2 depicts the Souvenir Store application

architecture.

Figure 2. Application Architecture

2.2 Framework Architecture

The application was built using Ruby on Rails

(RoR). Rails is a framework on top of the Ruby

programming language for developing database-backed

web applications. The rationale for using this

framework is that Ruby on Rails simplifies and saves

time on web development by providing a full stack

framework that uses “Convention Over Configuration”

(COC), “Don’t Repeat Yourself” (DRY), and “Keep It

Simple Stupid” (KISS) principles.

2.2.1 Model-View-Controller Architecture

Rails follows the Model-View-Controller (MVC)

architecture. The model layer consists of data and

business rules that govern access to and manipulation

of this data. Rails uses Object/Relational Mapping

(ORM) to map the database tables to classes. For

example, if we have a table called orders, a Rail’s

application will have a class called Order. Active

Record, part of the Rails’ library, is used through out

our application to interface with the database. The

View layer is responsible for generating the user

interface based on data in the model. In Rails, dynamic

contents can be generated by embedding Ruby code

within the HTML, which are known as RHTML

templates. The controller layer receives events from

the view and determines the actions that need to be

performed by the model by handling the interaction

between the browser, the view and the model. Rails

handles this interaction behind the scene so the code

written within this layer can focus more on the

application-level functionality. Rails have internal

support which links the three layers together seamlessly

without much configuration or programming.

Essentially, Ruby on Rails reduces a large amount of

plumbing that developers have to do either

programmatically and via configuration.

Figure 3 below depicts the MVC architecture within

Rails.

Figure 3. Rails and Model-View-Controller

Architecture

2.3 Web Services

Rails’ library provides support for implementing

Web Services. To implement the Credit Card web

service, Rails’ Action Web Service was used. Action

Web Service is a part of the Rail’s library which

supports the use of SOAP and XML-RPC web service

protocols. Using Action Web Service, we declared and

published the Credit Card service APIs via WSDL with

little effort. It also allows a Action Web Services client

to easily import the much simpler Credit Card Service

API definition and use directly by the Web Services

client without having to go through steps of generating

stub classes, that most other web service

implementations require (Apache Axis, Java Web

Services Developer Pack (WSDP), Microsoft .NET

framework, and Codehaus XFire)

Figure 5 depicts the Credit Card Web Service

WSDL generated by Rails’ Action Web Service

framework based on the simple API definition shown

in Figure 4

Figure 4 Credit Card Web Service API definition

Figure 5. Credit Card Service WSDL

One of the great things about using Rails to develop

Web Services is that it generates a view that can be

used to test the service’s API. Figure 6 depicts test

request and response SOAP messages that are being

passed between the client (Store Service) and the

Credit Card service.

Figure 6. Credit Card Service SOAP Messages

2.4 Mail Services

Any standard SMTP server can be the Mail Service

used by the Store service via the Rails Action Mailer

library to facilitate the sending of emails across the

network. Since SMTP is a de facto standard for email,

its service is well defined and readily available from

any network connected client. The email architecture

and infrastructure is vast, wide and provides an

effective and efficient electronic communication

mechanism from any entity to another, whether they are

people or systems such as the online souvenir store.

2.5 Database Architecture

A MySQL database was used to support the Store

database service and the Credit Card Validation

service. MySQL is a free SQL Database Management

System (DBMS), which has the available APIs that

allow applications written in various languages to

access the database from many platforms. Figure 7

depicts the Store service’s database schema, and Figure

8 depicts the Credit Card service’s database schema.

Figure 7. Store Service Database Schema

Figure 8. Credit Card Service Database Schema

3 Related Project Works

Numerous online stores have emerged through out

the recent years. One very well known store is

Amazon.com. Unlike our Souvenir Store application,

Amazon’s store catalog contains a large number of

categories from books to music to house hold items.

For such a large application, Amazon for sure

implements SOA and uses various services to support

their business. Whether using Web Services or other

types of services, Amazon uses different services for

handling credit card validation, user authentication,

store inventory, ordering and shipping.

Another related work is Rich Solutions’ Credit Card

Service. This is a credit card Web Service that

validates and verifies credit card information and

transaction by providing a service gateway to all the

major credit card vendors. Registered clients can use

the service’s WSDL to make credit card requests and

this service claims to provide real-time authorization

over the Internet. Online businesses can subscribe and

connect to this service for processing credit card

transactions instead of rolling their own

implementation to connect to each individual credit

card vendor’s services.

4 Summary

Our goal was to build a specialized Souvenir Store

web application using a Service-Oriented Architecture.

We achieved this by using the Ruby on Rails

framework for development. Rails provides a

mechanism for interfacing with our MySQL databases

while also providing a mechanism for creating a Web

Service (Credit Card service), and an Email Service

client. We chose to implement the Credit Card service

as a Web Service as there are no standards based

mechanism or WSDL for credit card validation. Our

“store” uses the credit service to validate credit card

information using the Action Web Service and Rails

framework stack to encapsulate the complex details of

working with web services. Communication between

the “store” and the Credit Card service is achieved via

the SOAP stand which is XML based. The

communication between the “store” and the Mail

service is achieved via SMTP to send email to the end

users of the store service.

For future work, we plan to use or define a standard

set of security services for user authentication,

registration, and single sign-on (SSO) from multiple

participating web sites or services. This service will

handle all transaction relating to the users. The “store”

will use this service for any user related needs such as

user authentication and single sign-on.

5 References

Thomas, Dave, Hansson, David, Agile Web Development

with Rails, Pragmatic Bookshelf, 2005.

http://www.service-architecture.com/

http://rubyonrails.org/

