
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

MOANA: Modeling and Analyzing I/O Variability
in Parallel System Experimental Design

Kirk W. Cameron, Ali Anwar, Yue Cheng⋆, Li Xu, Bo Li, Uday Ananth, Jon Bernard,

Chandler Jearls, Thomas Lux, Yili Hong, Layne T. Watson, Ali R. Butt

Virginia Tech, ⋆George Mason University

Abstract—Exponential increases in complexity and scale make variability a growing threat to sustaining HPC performance at

exascale. Performance variability in HPC I/O is common, acute, and formidable. We take the first step towards comprehensively

studying linear and nonlinear approaches to modeling HPC I/O system variability in an effort to demonstrate that variability is often a

predictable artifact of system design. Using over 8 months of data collection on 6 identical systems, we propose and validate a

modeling and analysis approach (MOANA) that predicts HPC I/O variability for thousands of software and hardware configurations on

highly parallel shared-memory systems. Our findings indicate nonlinear approaches to I/O variability prediction are an order of

magnitude more accurate than linear regression techniques. We demonstrate the use of MOANA to accurately predict the confidence

intervals of unmeasured I/O system configurations for a given number of repeat runs – enabling users to quantitatively balance

experiment duration with statistical confidence.

Index Terms—Variability, performance modeling, machine learning.

✦

1 INTRODUCTION

EMERGENT high performance computing (HPC) systems
must scale to meet the ever-growing demands of many

grand challenges for scientific computing. Performance vari-
ability1 increases with system scale and complexity.

Highly variable observations in large complex systems
can make it difficult, and sometimes even impossible, to
fully optimize for performance. Such variability is cited as
a significant barrier to exascale computing [21, 35]. Unfor-
tunately, variability (which includes OS jitter [27]) is both
ubiquitous and elusive as its causes pervade and obscure
performance across the systems stack from hardware [17, 29]
to middleware [1, 26] to applications [14] to extreme-scale
systems [35, 42]. Additionally, as a number of recent reports
attest [21, 35], performance variability at scale can signifi-
cantly reduce performance and energy efficiency [4, 11].

Variability is a persistent challenge in experimental sys-
tems research. Table 1 lists the 7 parameters in our HPC
I/O variability study (more details about the study are
available in Section 3). In this example, one would need
(7
2

)

= 21 pairwise plots to display the two-way relationship
of parameter effects on variability. Assuming it takes 30
seconds for a benchmark run, it would take over 8 hours to
test just 1,000 configurations. For 95% statistical significance,
we would run this configuration tens of times or more which
would take weeks. Brute force experiments were used in this
work to provide ground truth values for comparison to our
variability prediction methods. For the 7 variables studied
with runtimes averaging more than 30 seconds per run, the
experiments in this paper took nearly 8 months in total with
nearly uninterrupted runs and 6 dedicated systems.

1. We use the term performance variability to describe the general
spread or clustering of a measured performance metric such as exe-
cution time or throughput. Variability can be expressed in standard
statistical terms such as standard deviation.

Parameters Number of levels Levels
Hardware CPU Clock Frequency (GHz) 15 1.2, 1.4, · · · , 2.9, 3.0

OS
I/O Scheduling Policy 3 CFQ, DEAD, NOOP

VM I/O Scheduling Policy 3 CFQ, DEAD, NOOP

Application
Number of Threads 9 1, 2, 4, 8, · · · , 256

File Size (KB) 3 64, 256, 1024
Record Size (KB) 3 32, 128, 512

I/O op mode 13 fread, fwrite, · · ·

TABLE 1: Parameters used in our study of I/O variability.
More details about the study is available in Section 3.

For higher order (e.g., three way or more) relationships
and a larger number of parameters (e.g., 100 to 200) that are
common in parallel and distributed systems, the parameter
space explodes quickly to tens of thousands or millions
of possible configurations. Experimental system work at
exascale quickly becomes impracticable requiring years of
experiments or thousands of nodes to obtain significant
results.

While HPC experimental systems researchers have long
acknowledged its existence [18, 25], variability is regularly
discounted or ignored by the community. While there are
notable exceptions (e.g., OS jitter [27], application inter-
ference [20, 45], reproducibility [39], scheduling [15]),
many researchers in our community have published qual-
ity contributions that fail to report box plots or p-values
or assumed single-mode population distributions without
certainty. This does not typically discredit the contributions
and is likely not shoddy science but a consequence of a focus
on system design hypothesis testing under practical time
constraints. One consequence of accepting the status quo
however, is year after year the prevailing literature builds
on previous work and the community becomes implicitly
complicit in perpetuating these techniques. Furthermore, as
noted above, the significance and impact of variability at
exascale is potentially impracticable. In our work, we seek to
identify scalable variability prediction techniques beginning

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

with statistical first principals.
We believe studying variability is essential to the long

term viability of parallel and distributed experimental sys-
tems research. In this work, we have conducted experiments
on highly variable I/O codes over more than a year to gain
the statistical confidence necessary to determine if variability
is a predictable artifact. We’ve solicited the collaborative ex-
pertise of statisticians to predict the combined multi-variant
effects of variability on HPC I/O. Rather than isolating the
effects of jitter and resource contention, we propose MOd-
eling and ANAlysis techniques or MOANA to model the
simultaneous, combined effects of a number of variables on
I/O application kernels performance variability. MOANA
enables researchers to determine the number of repeat ex-
periments required to guarantee a given level of statistical
confidence and convergence – without resorting to brute
force approaches. While we demonstrate our approach on
HPC I/O performance variability, the techniques are widely
applicable to experimental design in parallel and distributed
systems.

Specifically, we make the following contributions in this
paper:

• a detailed empirical study of HPC I/O variability
in shared-memory systems for 95K permutations of
benchmark and system variables;

• design, implementation, and analysis of MOANA, a
nonlinear variability prediction methodology;

• direct validation of the accuracy of MOANA vari-
ability predictions versus exhaustive brute-force data
(ground truth) collected from 6 highly parallel,
shared-memory servers for 48 server-months (6
servers x 8 months each) of runtime;

• a demonstration of the use of MOANA to determine
the runs required for a given statistical confidence
and convergence for measured and predicted HPC
I/O system configurations; and

• a commitment to make the MOANA techniques and
our datasets open source and available to the com-
munity. 2

What follows is a detailed study of variability analysis
and prediction. In Section 2, we apply the linear analysis
approach to the study of variability to highlight the char-
acteristics of variability and the limitations of the linear
approach. Section 3 provides an overview of the MOANA
approach and the abstract concept of a variability map: a
model combining application and system characteristics
that mathematically captures the differences among exper-
imental configurations. Section 4 demonstrates the use of
non-linear training and the application of the variability
map concept to variability prediction of unseen system and
application configurations. Next, Section 5 describes the
three prediction techniques we applied to MOANA: LSP
(modified linear Shepard algorithm), MARS (multivariate
adaptive regression splines), and Delaunay triangulation
approximation. Section 6 demonstrates the application of
MOANA to optimize experimental design by quantifying
the tradeoffs between repeating experiments and statistical
confidence. Sections 7, 8 and 9 respectively discuss our

2. URL redacted pending paper review.

work in the context of existing literature and limitations and
future work.

2 LIMITS OF LINEAR EMPIRICAL ANALYSES

In this section, after detailing our experimental setup, we
describe a select set of linear, empirical analyses for our
dataset. Our goal is to demonstrate that while linear em-
pirical analyses have served the community well for many
years, the non-linear characteristics of variability on emer-
gent systems limit the use of linear approaches for predic-
tion. We show that at times linear correlations can provide
insights to variability, but as the non-linear effects grow
with the introduction of simultaneous changes to more vari-
ables, correlations between design and performance vari-
ability artifacts become more difficult to predict. We focus
on three representative isolated experiments (i.e., varying
thread count or file size or record size across frequencies
and modes3 and another experiment relying on the more
holistic and widely used ”analysis of variance” (ANOVA)
technique [33].

2.1 Experimental Setup

We focus on intra-node variability effects, identified as a
key barrier to exascale [21, 27, 35], and perform our experi-
ments on parallel shared-memory nodes common to HPC
systems. Table 1 summarizes the parameter space for all
experiments performed on a lone guest Linux operating
system (Ubuntu 14.04 LTS//XEN 4.0)4 on a dedicated 2TB
HDD on a 2 socket, 4 core (2 hyperthreads/core) Intel Xeon
E5-2623 v3 (Haswell) platform with 32 GB DDR4. System
parameters include: CPU frequency, host I/O scheduling
policy (CFQ, DEAD, NOOP), and VM I/O scheduling policy
(CFQ, DEAD, NOOP). I/O application parameters include:
I/O operation modes (file write, file read, file initial write,
etc.), file size, record size, and up to 256 threads. The IOZone
benchmark enables control of these settings and up to 6
identical systems were used to speed up the experiments
and tasks were distributed to account for any minor manu-
facturing differences across these machines.

Brute force experiments using all valid permutations of
the parameters from Table 1 result in a total of over 95K
unique configurations5. For each configuration, we conduct
40 runs. Assuming data normality this results in a 95%
statistical confidence in the resulting data set. The standard
deviation of these 40 runs is used as a proxy for variability
without loss of generality. By assuming normality for now,
we mirror prevailing approaches in the extant literature and
avoid more time-consuming population studies that might
take years. Furthermore, we tested and found the accuracy

3. Since we observed few differences across the various host and VM
scheduling policy combinations, we fix this parameter in our select
examples.

4. We selected a widely used, stable version of Ubuntu as representa-
tive of current datacenter deployments. The proposed measurement,
analysis, and prediction techniques are independent of the system
being measured.

5. We used every unique combination of thread count, frequency,
scheduling policy, and op mode mentioned in Table 1. The unique
combinations for (file size, record size) are limited to file size > record
size resulting in the following combinations: (64, 32), (256, 32), (1024,
32), (256, 128), (1024, 128), and (1024, 512).

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

of our techniques were only slightly improved without the
normality assumption while the experimental work took
significantly longer over a span of months.

2.2 Isolated Linear Empirical Analysis

1 2 4 8 16 32 64 128256

Thread

0

2

4

6

8

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

×10
8

(a) I/O thpt for fread

1 2 4 8 16 32 64 128256

Thread

0

1

2

3

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

×10
8

(b) I/O thpt for
fwrite

1 2 4 8 16 32 64 128256

Thread

0

0.5

1

1.5

2

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
8

(c) I/O thpt for initial
write

1 2 4 8 16 32 64 128256

Thread

3

2.8

2.5

2.3

2

1.8

1.5

1.2

F
re

q
u

e
n

c
y
 (

G
H

z
)

0.5

1

1.5

2

2.5

3

3.5

1016

(d) I/O var for fread

1 2 4 8 16 32 64 128256

Thread

3

2.8

2.5

2.3

2

1.8

1.5

1.2

F
re

q
u

e
n

c
y
 (

G
H

z
)

0.5

1

1.5

2

2.5

3

3.5
1015

(e) I/O var for fwrite

1 2 4 8 16 32 64 128256

Thread

3

2.8

2.5

2.3

2

1.8

1.5

1.2

F
re

q
u

e
n

c
y
 (

G
H

z
)

0.5

1

1.5

2

2.5

3

1015

(f) I/O var for initial
write

Fig. 1: I/O throughput (@freq: 1.5 GHz, 2.0 GHz, 2.5 GHZ, and
3.0 GHZ) as a function of number of threads for three different
I/O op modes (a, b, and c). Heat map of I/O throughput
variance (y-axis-right) as a function of CPU frequency (y-axis-
left) and number of threads (x-axis) for three different I/O op
modes (d, e, and f). File size = 1024 KBytes, Record size = 32
KBytes.

64 256 1024

File size (KB)

0

2

4

6

8

T
h
o
u
g
h
o
u
t
(K

B
/s

)

×10
8

(a) I/O thpt for fread

64 256 1024

File size (KB)

1

2

3

T
h
o
u
g
h
o
u
t

(K
B

/s
) ×10

8

(b) I/O thpt for
fwrite

64 256 1024

File size (KB)

0.5

1

1.5

2

2.5

T
h
o
u
g
h
o
u
t
(K

B
/s

)

×10
8

(c) I/O thpt for initial
write

64 256 1024

File size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

1

2

3

4

10
16

(d) I/O var for fread

64 256 1024

File size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

1

2

3

10
15

(e) I/O var for fwrite

64 256 1024

File size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

0.5

1

1.5

2

2.5

3

10
15

(f) I/O var for initial
write

Fig. 2: I/O throughput (@freq: 1.5 GHz, 2.0 GHz, 2.5 GHZ,
and 3.0 GHZ) as a function of file size for three different I/O
op modes (a, b, and c). Heat map of I/O throughput variance
(y-axis-right) as a function of CPU frequency (y-axis-left) and
file size (x-axis) for three different I/O op modes (d, e, and f).
Record size = 32 KBytes, Threads = 256.

Effect of number of threads Figure 1 shows experiments
designed to examine the effects of number of threads on
I/O variability. In this case, raw I/O throughput increases
with the number of threads for all three modes (file read, file
write, and file initial write)—see Figures 1(a), 1(b), and 1(c).
I/O throughput variance also increases with the number of

32 128 512

Record size (KB)

2

4

6

8

T
h
o
u
g
h
o
u
t
(K

B
/s

)

×10
8

(a) I/O thpt for fread

32 128 512

Record size (KB)

1

2

3

T
h

o
u

g
h

o
u

t
(K

B
/s

)

×10
8

(b) I/O thpt for
fwrite

32 128 512

Record size (KB)

0.5

1

1.5

2

2.5

T
h
o
u
g
h
o
u
t
(K

B
/s

)

×10
8

(c) I/O thpt for initial
write

32 128 512

Record size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

1

2

3

10
16

(d) I/O var for fread

32 128 512

Record size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

1

2

3

4
10

15

(e) I/O var for fwrite

32 128 512

Record size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

1

2

3

10
15

(f) I/O var for initial
write

Fig. 3: I/O throughput (@freq: 1.5 GHz, 2.0 GHz, 2.5 GHZ,
and 3.0 GHZ) as a function of record size for three different I/O
op modes (a, b, and c). Heat map of I/O throughput variance
(y-axis-right) as a function of CPU frequency (y-axis-left) and
record size (x-axis) for three different I/O op modes (d, e, and
f). File size = 1024 KBytes, Threads = 256.

64 256 1024

File size (KB)

3
2.8
2.5
2.3
2

1.8
1.5
1.2F

re
q
u
e
n
c
y
 (

G
H

z
)

1

2

3

4

5

10
14

(a) file size

32 128 512

Record size (KB)

3

2.8

2.5

2.3

2

1.8

1.5

1.2

F
re

q
u
e
n
c
y
 (

G
H

z
)

1

2

3

4

5

10
14

(b) record size

1 2 4 8 16 32 64 128256

Thread

3

2.8

2.5

2.3

2

1.8

1.5

1.2

F
re

q
u

e
n

c
y
 (

G
H

z
)

2

4

6

8

10

12

1014

(c) # of threads

Fig. 4: Heat map of change ((a) and (b)) in I/O throughput
variance (y-axis-right) from 256 threads (Figure 2(e) and Fig-
ure 3(e)) down to 64 threads as a function of CPU frequency
(y-axis-left) and file size (x-axis) and record size (x-axis). Heat
map of change (c) in I/O throughput variance (y-axis-right)
from 1024 KBytes file size (Figure 1(d)) down to 64 KBytes.
Results for fwrite are shown.

threads: highest for file read operations (Figure 1(d)) and file
write operations (Figure 1(e)) at the highest frequency. File
read operations have high variance in the lower frequency
range as well (Figure 1(d)). Among our experiments, in-
creases in thread count (independent of scheduler as noted
above) had the strongest correlation to increases in vari-
ability. Additionally, the variability correlated with thread
count mostly dampens the effects of frequency changes
on variability. This can be explained by the increase in
contention for fixed, shared resources introduced as the
number of threads increases. This is a prime example of the
value of linear correlation techniques for providing insight
to the root causes of variability.

Effect of file size Figure 2 shows experiments designed to
examine the effects of file size on I/O variability. Figure 2(a)
shows raw I/O throughput increases with file size for file
read operations. This is expected as the major I/O time is
for seek operations, and increasing file sizes imply each seek
is followed by a sequential read of larger data. For file write
operations (Figure 2(b)) and file initial write operations

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(Figure 2(c)), the I/O throughput initially increases but
eventually decreases. Most writes are absorbed in the cache,
but as the cache becomes full, the disk flush operations
dominate and reduce overall throughput. Figure 2(d) shows
that I/O variance for file read operations is highest for
medium file sizes and higher CPU frequency. A reason
for this is that initially, the throughput is driven by disk
seeks, but as the role of seeks decrease, the role of I/O-
system interactions become more pronounced. These effects
are seemingly amplified by changes in frequency. For file
write operations, variance is higher for larger sized files
at lower frequency as shown in Figure 2(e). Figure 2(f)
shows that for initial write operations, larger file sizes with
higher frequency exhibit the most variance. This is harder
to explain but potentially due to the need for more disk
flushes amplified at the higher CPU frequencie resulting in
increases in variability.

We note two observations overall for the file size ex-
periments: 1) file size generally impacts variability though
the trends are not consistent across modes; 2) frequency
also impacts the variability in a way that is not consistent
with the impact of file size. These variables show some
correlation to variability, but the correlations are murky,
making causality often difficult to determine. Fortunately,
several of the authors spent 2 years studying the effects
of processor frequency on I/O performance [9]. This work
showed that processor frequency alters the arrival rates of
I/O requests and ultimately affects the number of epochs
required to service requests—and by proxy performance
varies with the number of epochs. This phenomenon likely
explains more precisely some of the aforementioned obser-
vations. For example, observations where smaller requests
suffer smaller variability could be caused by these arrival
rate and epoch effects. In such cases, the variability is
pronounced. However, for other cases such as fwrite, these
effects are not as pronounced and likely amortized over the
duration of the runtime. These experiments exemplify the
challenges for linear correlation techniques since they can
help identify potential culprits of variability, but finding the
root cause can be time consuming or potentially impossible.
For example, if the root cause of performance variability was
hidden within the hardware design, it could potentially be
impossible to isolate without a cycle accurate simulator.

Effect of record size Figure 3 shows experiments designed
to examine the effects of record size on I/O variability.
Figure 3(a) shows raw I/O throughput decreases with in-
creases in record size for file read operations. For file write
operations (Figure 3(b)) and file initial write operations
(Figure 3(c)), the I/O throughput remains unchanged. I/O
variance results vary extensively. Smaller record size and
higher CPU frequency give the highest variation for file read
operations. Medium record size and lowest CPU frequency
give the highest variation for write operations. Medium
record size and higher frequency give the highest variation
for initial write operations. See Figures 3(d), 3(e), and 3(f),
respectively.

These experiments exemplify the growing challenge for
experimental systems. Varying just a few parameters results
in two observations: 1) there is no discernible pattern for
increases in record size across modes; and 2) frequency

impacts variability but in ways significantly different than
record size. The combined effects of changes in record size
and frequency are non-linear and it is difficult to draw
meaningful conclusions from these experiments. This mo-
tivates the need to take a more holistic view of variability
under such conditions.

2.3 Holistic Linear Empirical Analysis

Meta-analysis A meta-analysis of Figures 1- 3 is appealing
in search of trends in the data. Consider the following
experiment shown in detail for fwrite in Figure 4. We
repeat the file size (Figure 4(a)) and record size (Figure 4(b))
experiments calculating the change in variability when the
number of threads decreases from 256 to 64. The resulting
heat maps show that the variability when changing thread
counts (at large and small file sizes) is sensitive to frequency
variations. Figure 4(c) shows that variability when changing
file sizes is not particularly sensitive to frequency variations
(i.e., only the highest frequency seems to matter).

Furthermore, consider Figure 5 showing the per thread
I/O throughput as the number of threads increases (x-axis).
All of the subfigures on the left of Figure 5 (a, c, and e) use
1.2 GHz for CPU frequency and 64 KBytes file size. All of the
subfigures on the right of Figure 5 (b, d, and f) use 3.0 GHz
and 1024 KBytes file size.

These experiments highlight another challenge for
variability-aware systems designs. The combined effects of
changes in multiple variables can result in a multivariate
optimization problem with multiple, competing variability
minimization configurations. This further emphasizes the
need for accurate prediction of the non-linear effects of
system and application configurations on variability.

ANOVA We used statistical analysis of variance
(ANOVA) [33] experiments to identify first-order effects
(one-parameter changes) and second-order effects (two-
parameter changes) of performance variability. We omit
the full results due to space limitations, but in summary,
this ANOVA experiment showed that nearly all of the
parameters studied (and their second order configurations,
e.g., Filesize x Thread) affect I/O variability in a statistically
significant way. Unfortunately, this linear method does
not expose the relative magnitude of the variability
contribution for a given variable. Table 2 shows the use of
a related technique, linear regression (LR), results in large
inaccuracies (> 300% average relative error or ARE) when
used to predict the non-linear effects of variability.

Limitations In these examples, we are only considering a
few hundred permutations of I/O modes, CPU frequency,
thread count, file size, and record size from among over 95K.
This limits these types of analyses to a very small part of the
experimental data set. Analyses of the combined effects of
more than two variables and their nonlinear interactions is
severely limited. While some causality can be inferred from
the analyzed data as discussed, any conclusions lack the full
context of the data set and cannot be easily generalized. For
these reasons, and the manual nature of these approaches,
we next consider methods for automating analysis of vari-
ability.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

1 2 4 8 16 32 64128256

Thread

0

2

4

6

8

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
5

(a) I/O thpt for fread

1 2 4 8 16 32 64128256

Thread

0

1

2

3

4

5

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
6

(b) I/O thpt for fread

1 2 4 8 16 32 64128256

Thread

0

2

4

6

8

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
5

(c) I/O thpt for fwrite

1 2 4 8 16 32 64128256

Thread

0

1

2

3

4

5

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
6

(d) I/O thpt for fwrite

1 2 4 8 16 32 64128256

Thread

0

2

4

6

8

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
5

(e) I/O thpt for init write

1 2 4 8 16 32 64128256

Thread

0

1

2

3

4

5

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

×10
6

(f) I/O thpt for init write

Fig. 5: Each subfigure shows the per thread I/O throughput as
the number of threads increases. All of the subfigures on the left
((a), (c), and (e)) use 1.2 GHz for CPU frequency and 64 KBytes
file size. All of the subfigures on the right ((b), (d), and (f)) use
3.0 GHz and 1024 KBytes file size. Other fixed parameters: host
scheduler = CFQ, VM I/O scheduler = NOOP, record size =

32 KBytes.

3 MOANA METHODOLOGY

We propose a non-linear modeling and analysis approach
(MOANA) that leverages advanced approximation methods
to predict I/O performance variability. The methods we
have selected—modified linear Shepard (LSP) algorithm,
multivariate adaptive regression splines (MARS), and delau-
nay triangulation—are capable of approximating nonlinear
relationships in high dimensions. This increases the likeli-
hood that given a system and application configuration, the
resulting models will accurately predict the variability. In
this section, we assume a general familiarity with non-linear,
training-based machine learning techniques. For those that
would prefer to understand the mathematics and statistics
of these approaches before continuing, we suggest reading
Section 5 before proceeding with this section. What imme-
diately follows is an overview of the MOANA methodology
for accurate variability prediction.

We propose the concept of a variability map to describe
and predict variability. Let the configuration x be an m-
dimensional vector of parameters. The variability map is
a function f(x) that gives the variability measure (i.e.,
standard deviation in our context) at x. The variability map
approximation f̃(x) is constructed from experimental data

File Size (KB)

R
e
c
o
rd

 S
iz

e
 (

K
B

)

64 256 512 768 1024

3
2

1
2
8

2
5
6

5
1
2

Training Points

Test Points

Fig. 6: Plot shows the file size and record size combinations
used for training and prediction test sets.

using the LSP, MARS, and delauney methods and can be
used to predict variability for any given configuration x.

We use data collected from our brute force approach
(Section 2.1) to train our LSP, MARS, and delauney models.
Recall from Table 1 the total number of measured configu-
rations is:

15(Freq)× 9(Thread)× 6(Filesize x Recsize)× 3(I/O Sche)

× 3(VM I/O Sche)× 13(I/O Op Mode) = 94770.

Note that both File Size and Record Size have three levels;
but there are only 6 distinct, valid combinations of File Size
and Record Size in the training set. Figure 6 shows the six
combinations of the file size and record size that we used
for the training set (marked by solid dots).

The methods require a numeric value, x, defined in our
experiments as:

x = (Frequency, Threads, File Size, Record Size),

which has 15×9×6 = 810 distinct configurations assuming
fixed values for I/O Scheduler, VM I/O Scheduler, and I/O
Operation Mode. For each distinct I/O Scheduler, VM I/O
Scheduler, and I/O Operation Mode combination, we will
build a variability map approximation f̃(x). In total, we will
construct 3× 3× 13 = 117 variability maps.

Thus, we can denote the configuration as x(k, l), and

denote the corresponding variability value as f
(l)
k , where

k = 1, · · · , 810 and l = 1, · · · , 117. For a given l, the dataset

is {x(k, l), f
(l)
k }, k = 1, · · · , 810, and the corresponding

variability map approximation f̃ (l)(x) can be obtained by
using the LSP, MARS, or delauney algorithms described in
Section 5.

Predictor evaluation We define the following relative error
as an evaluation criterion. That is

r =
|f̃ − f |

f
(1)

where f̃ is the predicted variability at a x, and f is the true
variability (obtained from direct measurements).

We use statistical cross validation to compute the

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

average relative error (ARE). For a given dataset

{x(k, l), f
(l)
k }, k = 1, · · · , 810, we randomly divide the

dataset into two parts where the proportion of one part
is p and the remaining proportion is (1 − p). We use all
configurations from the p portion of the data set as samples
to train our predictive models. We use our trained predictors
to predict all configurations from the (1 − p) portion of the
data set. We compute the ARE value for each data point
in the test using the average of the relative error, r, for
each data point. We repeat this random data set division
procedure to construct 117 variability maps. The ARE is
averaged again over the 117 trained models, and it will be
assumed to be the true variability for the method.

Predictor comparisons By varying p we can observe the
tradeoffs between predictor accuracy and the ratio of the
training set to the predicted data points. Table 2 shows the
ARE for linear regression (LR), LSP, MARS, and delaunay
triangulation as functions of the training sample proportion
p, averaged over 117 variability maps.

We are unaware of any existing methods to predict
performance variability. Hence, we compare the proposed
techniques to the general linear regression model. From the
results in the table, it is clear that the proposed nonlinear
methods out predict the linear regression by an order of
magnitude. In this random division testing, the LSP method
consistently outperforms MARS. For example, the ARE is
around 15% under LSP for a setting that uses 30% of the
data for training and predicts 70% of the data. The ARE is
around 30% if one uses 10% data for training and 90% data
for LSP. If we use half of the data set to predict the other half
of the data set (p = .5) the ARE of the LSP method is about
12%. Table 2 shows that supervised learning is possible in
MOANA runtime systems as good accuracies are possible
for small training sets for algorithms such as LSP (20% ARE
when only 20% of the data set is used for training).

Training Testing LR LSP MARS Delaunay
Prop. p Prop. (%) (%) (%) (%)

0.9 0.1 323.09 11.13 56.61 9.97
0.8 0.2 323.47 11.27 57.59 10.19
0.7 0.3 324.00 11.47 58.35 10.48
0.6 0.4 324.58 11.72 59.94 10.88
0.5 0.5 324.59 12.22 62.35 11.42
0.4 0.6 325.82 13.25 66.52 12.22
0.3 0.7 327.02 15.44 71.49 13.56
0.2 0.8 329.56 19.33 79.27 16.13
0.1 0.9 339.32 30.44 100.14 23.39

TABLE 2: ARE for linear regression (LR), LSP, and MARS
as functions of p, averaged over 117 variability maps and
based on B = 200 repeats for random division.

4 ACCURATE VARIABILITY PREDICTION USING

MOANA

In this section we attempt to predict 585 configurations
not considered in the full, 95K-configuration training set
described in Section 2.1. Figure 6 shows the five combi-
nations of the file size and record size that we used for
prediction (marked by diamonds). We calculate the average
relative error (ARE) as discussed in the previous section
for these new sets of experiments for comparison. Without
loss of generality, we limit the experiments to a fixed CPU
frequency (2.5 GHz) and a fixed number of threads (128) and

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
o

o

o
o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0
.0

e
+

0
0

5
.0

e
+

0
7

1
.0

e
+

0
8

1
.5

e
+

0
8

Experiment value

P
re

d
ic

te
d
 v

a
lu

e

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+ +
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

o

+
LSP

MARS

y=x

LSP= 40.07%

MARS= 29.75%

Fig. 7: Comparison of the two proposed prediction models
on new configurations. The y-axis shows the predicted
standard deviation from our two models, while the x-axis
shows the empirical standard deviation from 40 runs. The
ARE for each method is also shown on the legend.

we apply both LSP and MARs – though in a later section we
apply the third predictor (i.e., Delaunay). We select 5 valid
combinations of file size and record size with all possible
permutations of I/O scheduler, VM I/O scheduler, and I/O
operation modes. Table 3 lists all the parameters in this
study.

Throughout this section, we use scatter plots (e.g., Fig-
ure 7) to discuss the accuracy of our MOANA methodology
for the 5 × 3 × 3 × 13 = 585 configurations described in
Table 3. In Figures 7 – 9 and all subfigures, the y-axis shows
the predicted standard deviation for both LSP and MARS
models. The x-axis shows the empirical (measured) stan-
dard deviation with the unseen configuration. The y = x
diagonal line is a reference line that represents predicted
values equal to the empirical (measured) values.

File size Record size I/O scheduler VM I/O scheduler I/O Mode
512 32, 128, 256 CFQ, DEAD, NOOP CFQ, DEAD, NOOP All 13 levels
768 32, 128 CFQ, DEAD, NOOP CFQ, DEAD, NOOP All 13 levels

TABLE 3: These configurations are not included in the
training set. We use MOANA to predict these ”unseen”
configurations and compare to our ground truth brute force
data to ascertain accuracy.

Use Case I: A general model In this use case, we attempt
to determine whether the MOANA approach results in a
single model that predicts variability well generally. Figure 7
shows a scatter plot of the general prediction accuracy of
our derived models for the 5 × 3 × 3 × 13 = 585 configu-
rations described in Table 3. The MARS data points (cross
point type in Figure 7) are generally clustered closer to the
diagonal compared to the LSP data points (circle point type
in Figure 7). This is confirmed with average relative error
(ARE) calculations: MARS has a 29.75% ARE while LSP has

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

ooooooooo
oooooooooooooooooo ooooooooo

ooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Fread

+++++++++
++++++++++++++++++

+++++++++
+++
+
+++++

LSP= 60.55%
MARS= 40.50%

oooo
ooooo
oooooooooooooooooo
oooooooooooooooooo

0.0e+00 1.0e+08
0

.0
e

+
0

0
1

.0
e

+
0

8

Fwrite

+++

LSP= 107.75%
MARS= 95.29%

ooooooooo
oooooooooooooooooooooooooooooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Initial Write

+++

LSP= 84.71%
MARS= 79.76%

ooooooooooooooooooooooooooo
oooooooooooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Mixed Workload

+++++++++++++++++++++++++++
++++++++++++++++++

LSP= 18.08%
MARS= 13.01%

ooooooooo
oooooooooooooooooo

ooooooooo
ooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Pread

++++++
+++

++++++
+
+++

+
+++
+
+++

++++++
+++

++++++
+
++

LSP= 34.24%
MARS= 17.68%

ooooooooo
oooooooooooo
o
oooooooooooooo
ooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Pwrite

+++

LSP= 53.42%
MARS= 22.47%

ooooooooooooooooooooooooooo

oooooooooooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Random Read

++++++++++++++++++
+++++++++

++++++++++++++++++

LSP= 17.21%
MARS= 10.73%

ooooooo
oo

o

o o
o

o
o

o
o
o

o

oo
o

o
o

o
o

o
o ooo oooooooooooooo

0.0e+00 1.0e+08
0

.0
e

+
0

0
1

.0
e

+
0

8

Random Write

++++++
+ ++++ ++++
+
++++++
++

+
++++++ ++++++++++++++

LSP= 34.79%
MARS= 34.80%

ooooooooo
oooooooooooooooooo

ooooooooo
ooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

ReRead

+++++++++
+++++++++

+++++++++

+++++++++
+++++++++

LSP= 16.67%
MARS= 11.33%

ooooooooo
oooooooooooooooooo

ooooooooo
ooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Read

+++++++++
+++++++++

+++++++++

+++++++++
+++++++++

LSP= 29.45%
MARS= 19.27%

ooooooooooooooooooooooooooo

oooooooooooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Reverse Read

++++++++++++++++++
+++++++++

++++++++++++++++++

LSP= 17.25%
MARS= 8.36%

o
oo
o
ooo
oo

oooooooooooooooooo oooooooooooooooooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

ReWrite

+++++++++++++++++++++++++++
++++++++++++++++++

LSP= 23.95%
MARS= 16.28% oooooooo

o

oooooooooooooooooo

ooooooooo

ooooo
oooo

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

Stride Read

++++++++++++++++++

+

++++
+
+++

+++++++++

+++++++++

LSP= 22.84%
MARS= 17.21%

o +LSP MARS y=x

Fig. 8: Prediction scatter plots of different I/O operation modes. Points in the same plot have the same mode. The x-axis is
the empirical standard deviation observed from 40 runs. The y-axis is the predicted standard deviation obtained from our
two models. The ARE for each method is also shown on the legend.

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

f−size= 512 , r−size= 32

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+
+

++

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+
+

++

+

+

+

LSP= 20.44%
MARS= 15.54%

o
o

o

oo
oo

oo
o

o

o

o

o

o

o

oo
ooo

oo

o

o

o

o

o

o

oo
oo

o

oo

o

o

o

o
o

o

oo
oo

o
oo

o

o

o

o
o

o

oo
oo

o

oo

o

o

o

o
o

o

oo
ooo

oo

o

o

o

o
o

o

oo
oo

o
o

o

o

o

o

o
o

o

oo
oo

o

oo

o

o

o

o
o

o

oo
oo

o

o
o

o

o

o

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

f−size= 512 , r−size= 128

+
+

+

++

+

+
+

+
+

+

+

+

+
+

+
++

+

+
+

+
+

+

+

+

+
+

+
++

+

+
+

++

+

+

+

+
+

+
++

+

+
+

+
+

+

+

+

+

+

+
++

+

+
+
++

+

+

+

+

+

+
++

+

+
+

++

+

+

+

+
+

+

++

+

+
+

+
+

+

+

+

+
+

+
++

+

+
+

++

+

+

+

+
+

+

++

+

+
+
++

+

+

+

LSP= 44.16%
MARS= 24.44%

o
o

o

oo
oo

oo
o

o

o

o

o

o

o

oo
ooo

oo

o

o

o

o

o

o

oo
oo

o

oo

o

o

o

o
o

o

oo
oo

o
oo

o

o

o

o
o

o

oo
oo

o

oo

o

o

o

o
o

o

oo
ooo

oo

o

o

o

o
o

o

oo
oo

o
o

o

o

o

o

o
o

o

oo
oo

o

oo

o

o

o

o
o

o

oo
oo

o

o
o

o

o

o

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

f−size= 512 , r−size= 256

+
+

+

++
+
+

+
+

+

+

+

+

+
+

+
+++++
+

+

+

+

+

+
+

+
+++++
++

+

+

+

+
+

+

+++
+

+
+

+

+

+

+

+
+

+

+++++
++

+

+

+

+
+

+
++
++

+
++

+

+

+

+
+

+

+++
+

+
+

+

+

+

+

+
+

+

+++++
++

+

+

+

+
+

+

+++
+

+
++

+

+

+

LSP= 88.67%
MARS= 48.29%

o

o

o
o

o
oo

o

oo

o

o

o

o

o

o
o

o
oo

o

o
o

o

o

o

o

o

o
oooo

o

o
o

o

o

o

o

o

o
o
ooo

o

oo

o

o

o

o

o

o
o

ooo

o

oo

o

o

o

o

o

o
o

ooo

o

o
o

o

o

o

o

o

o
o

ooo

o

oo

o

o

o

o

o

o
o

ooo

o

o
o

o

o

o

o

o

o

o
ooo

o

o
o

o

o

o

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

f−size= 768 , r−size= 32

+

+

+
+

+

+
+

+
+
+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+
+

+
+
+

+
+

+
+
+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

LSP= 18.06%
MARS= 28.85%

o
o

o
oo

o

o

o

oo

o

o

o

o
o

o
oo

o

o

o

o
o

o

o

o

o
o

ooo

o

o

o
o
o

o

o

o

o
o

o
oo

o

o

o

oo

o

o

o

o
o

ooo

o

o

o

oo

o

o

o

o
o

o
oo

o

o

o

o
o

o

o

o

o
o

ooo

o

o

o

oo

o

o

o

o
o

ooo

o

o

o

o
o

o

o

o

o
o

o
oo

o

o

o

o
o

o

o

o

0.0e+00 1.0e+08

0
.0

e
+

0
0

1
.0

e
+

0
8

f−size= 768 , r−size= 128

+
+

+
++

+

+

+
+
+

+

+

+

+
+

+
++

+

+

+
+

+

+

+

+

+
+

+
++

+

+

+
+
+

+

+

+

+
+

+
++

+

+

+
+
+

+

+

+

+
+

+
++

+

+

+
+
+

+

+

+

+
+

+
++

+

+

+

+
+

+

+

+

+
+

+
++

+

+

+
+
+

+

+

+

+
+

+
++

+

+

+
+

+

+

+

+

+
+

+
++

+

+

+
+
+

+

+

+

LSP= 29.01%
MARS= 31.60%

o
+

LSP
MARS
y=x

Fig. 9: Prediction scatter plots of different file and record size combinations. Points in the same plot have other parameters
fixed. The x-axis is the empirical standard deviation observed from 40 runs. The y-axis is the predicted standard deviation
obtained from our two models. The ARE for each method is also shown on the legend.

a 40.07% ARE. This is the opposite finding from the previous
section where LSP consistently outperforms MARS.

Upon deeper inspection, we were able to determine
that MARS is more sensitive to file size and record size
parameters in the training set. Since much of the accuracy
gains come from tight data points for continuous variables
(due to the logarithmic distance between record sizes),
MARS likely gains accuracy due to its sensitivity to these
continuous variables. LSP likely performs better when the
variables predicted are randomly selected from within the
population as done in the training set experiments in the

previous section. As expected, the ARE for both methods is
generally larger than observed values for LSP and MARS
from the previous section (see Table 2) but consistently an
order of magnitude better than linear regression.

We use an example to illustrate the detailed analysis for
two data points. Consider the cases of file size=512 and file
size=768. Depending on the record size variable settings,
the ARE values using MARS for file size=512 vary from
15.54% to 48.29% with an average ARE of 29.4% and for
file size=768 from 28.85% to 31.60% with an average ARE of
30.23%. These errors are close to the average for the general

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

model, but they would likely be improved with more data
points. Upon deeper inspection, it is the record size=256
configuration for the file size=512 that causes the error to be
higher in that case. The inaccuracy comes from the sparsity
of points at the higher record sizes as mentioned previously.

Use Case II: Variability by application (I/O Mode) In this
use case, we attempt to determine whether the MOANA
approach can be used to classify the predicted applications
for the previously unseen configurations (i.e., I/O Mode in
Table 3) by the magnitude of their variability. Figure 8 plots
the prediction results for varying I/O operation modes.
In all but 3 cases (Fread, Fwrite, and Initial Write), the
LSP or MARS predictions beat the average ARE values
for the general model from Use Case I (MARS=29.75%,
LSP=40.07% in Figure 7). For the relatively accurate cases,
the magnitude of variance is lowest and tightly clustered
for Pwrite, Rewrite, Random Write. As the variance grows
it generally becomes less tightly clustered for Reverse Read
and Random Read. Pread, Read and Stride Read show the
highest variances and the least clustered results. For 10 of
the 13 applications examined, this constitutes a reasonably
accurate rank ordering of variability by magnitude and the
isolation by application provides some notion of causality
by variable.

MOANA’s strength, illustrated by this example, is clas-
sifying variables by magnitude of variability across a large
set of experiments accounting for the nonlinear effects of
high-order variables. We leave it to our future work to
determine exactly why inaccuracies occur in the Fwrite, and
Initial Write (i.e., file write) predictions, but we speculate
there are two reasons: (1) page cache operations result in
flushes of commit operations to update the disk store and
the variability introduced is unaccounted for in our model;
and (2) though we did not observe differences in the bare-
metal versus VM variability studies, it is possible that under
certain extreme write conditions (e.g., the buffer cache fills)
the interactions of the nested (host and VM) file systems
result in unanticipated performance changes [19]. For Fread,
the inaccuracies are not as drastic as Fwrite and Initial Write
but still exceed the average ARE for the general model.
We speculate these inaccuracies are due to a combination
of caching and prefetching effects that can be influenced
significantly by the experimental setup (e.g., multi-level
cache buffers).

Use Case III: Variability by file and record size In this
use case, we attempt to determine whether the MOANA
approach can be used to classify the predicted variability
for previously unseen configurations of file and record size
by the magnitude of their variability. Figure 9 plots the
prediction results for valid file and record size combinations
from Table 3. In all but 1 case, the LSP or MARS predictions
beat the average ARE values for the general model from
Use Case I (MARS=29.75%, LSP=40.07% in Figure 7). For
the inaccurate case (file size=512, record size=256), we know
from Use Case I that the inaccuracy comes from the sparsity
of points at the higher record sizes; in other words, the best
accuracies occur at the smallest record sizes for both file
sizes.

Recall that for this experiment, for each file and record
size pair, we vary I/O Scheduler, VM I/O Scheduler, and

I/O Mode (or application). The results in Figure 9 indicate
that second order effects are influential in the magnitude of
the predicted variability. For example, for file size=768 and
record size=32, LSP ARE is under 20% and 2-3 distinct clus-
ters are observable in the data. These clusters are affected by
the application class (i.e., they are clustered by I/O modes
that share characteristics such as writes). Identification of
these higher order effects are another valuable contribution
of the MOANA approach to analyzing variability. For 4 of
the 5 scenarios studied, with consideration of the higher
order effects, we can (with reasonable accuracy) rank order
variability by magnitude and the isolation by file size,
record size, and mode classification provides some notion
of causality for a set of variables.

5 MOANA PREDICTION MODELS

TABLE 4: Acronyms

GCV Generalized cross validation error
MARS Multivariate adaptive regression splines
LSP Linear Shepard
LR Linear regression
ARE Average relative error

TABLE 5: Notation

x, x(k) Vector for system configuration
y A general notation for variability
fk Measured variability

f(x), f̃(x) True/estimated variability function,
mapping x to system variability

r Relative error of the predicted variability
Wk(x) Weight function for the local approximation

Pk(x) at data point x(k)

Pk(x) Local linear approximation function in
Modified Linear Shepard Algorithm

dk(x) Euclid distance from k-th sample point to x

R
(k)
ω Radius of influence about x(k) used

to define Wk(x)

R
(k)
p Radius about x(k) within which points

are used to compute the least squares
fit Pk(x)

Nw, Np Thresholds used in LSP to define

R
(
wk) and R

(
pk)

ωijk Coefficient in Pk(x)
B Basis function space in MARS
M Set for selected function basis in MARS
h(x) Selected basic function in MARS
β Coefficient for selected basic function

For completeness, we provide details for LSP (modified
linear Shepard algorithm), MARS (multivariate adaptive
regression splines), and Delaunay triangulation approxi-
mation methods. Section 3 described a variability map as
a function f(x) that gives the variability measure (i.e.,
standard deviation in our context) at x. The variability map
approximation f̃(x) is constructed from experimental data

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

and can be used to predict variability for any given configu-
ration x. The modeling framework is currently implemented
in R. MARS is available in the R package ’earth’. For the
LSP and delauney algorithms, we tailored the existing FOR-
TRAN code and linked it to R. Table 4 and Table 5 provide
summaries of acronyms and terms used throughpout this
section.

5.1 Modified Linear Shepard Algorithm

The linear Shepard algorithm is derived from the modified
Shepard algorithm [40]. Given n distinct data points x(1),
. . ., x(n) and values fk = f

(

x(k)
)

, the linear Shepard
algorithm constructs an interpolant to f of the form

f̃(x) =

n
∑

k=1

Wk(x)Pk(x)

n
∑

k=1

Wk(x)

(2)

where the locally supported weights are

Wk(x) =

(

R
(k)
w − dk(x)

)

+

R
(k)
w dk(x)

2

, dk(x) =
∥

∥x− x(k)
∥

∥

2
,

and the local (linear, here) approximations Pk(x) have the
form

Pk(x) = fk +
m
∑

j=1

a
(k)
j

(

xj − x
(k)
j

)

(3)

The function Pk(x) is the local linear weighted least
squares fit around x(k) with the ith data point having weight

ωik =

(

R
(k)
p − di

(

x(k)
)

)

+

R
(k)
p di

(

x(k)
)

2

, i 6= k.

Let Np = min{n, ⌈3m/2⌉} and D = max
i,j

∥

∥x(i) − x(j)
∥

∥

2
, and

define

R(k) = min
{

r
∣

∣ B
(

x(k), r
)

contains at least Np points
}

(4)

where B̄ is the closure of the open ball B
(

x(k), r
)

=
{

x
∣

∣

∥

∥x − x(k)
∥

∥ < r
}

. The values of R
(k)
p and R

(k)
w are then

specified as

R(k)
w = min

{

D

2
, R(k)

}

, R(k)
p = 1.1R(k) (5)

Let S = {i1, i2, i3, . . ., iNp−1} be the set of indices
corresponding to the Np − 1 points that are closest to
x(k), which determine the local least squares approximation

Pk(x). The weights satisfy ωijk > 0 because R
(k)
p is slightly

larger than R(k). Define an (Np − 1)×m matrix A by

Aj· =
√
ωijk

(

x(ij) − x(k)
)t

(6)

and (Np − 1)-vector b by

bj =
√
ωijk(fij − fk) (7)

The coefficients a(k) ∈ Em of Pk(x), where Em is m-
dimensional real Euclidean space, are the minimum norm

solution of the least squares problem

min
a∈Em

‖Aa− b‖2.

5.2 Multivariate Adaptive Regression Splines (MARS)

Let

C =
{

1, (xj − t)+, (t− xj)+
∣

∣ t = xkj ,

1 ≤ k ≤ n, 1 ≤ j ≤ m
}

The basis functions B for MARS are chosen from prod-
ucts of functions in the set C:

B = C ∪ C ⊗ C ∪ C ⊗ C ⊗ C ∪ · · · .
At each iteration the model of the data is a C0 m-
dimensional spline of the form

∑

hα∈M

βαhα(x) (8)

where M ⊂ B, |M| ≤ n, and the coefficients βα are
determined by a least squares fit to the data. hα ∈ M is
constrained to always be a spline of order ≤ 2 (piecewise
linear) in each variable xj . The initial model is f̃(x) ≡ 1. Let
M ⊂ B be the set of basis functions in the model at iteration
q. The basis at iteration q + 1 is that basis

M∪
{

hℓ(x)(xj − t)+, hℓ(x)(t− xj)+
}

(9)

which minimizes the least squares error of the model using

that basis over all hℓ(x) ∈ M and t = x
(k)
j , 1 ≤ j ≤ m,

1 ≤ k ≤ n, subject to the constraint that hℓ(x)(xj − t)+ is a
spline of order 2 in xj , and a spline of degree at most nI in x
(where nI is the most variable interactions permitted). The
iteration continues for some given number nB of iterations
or until the data are overfit, at which point the generalized
cross-validation criterion

GCV(λ) =

n
∑

k=1

(

f̃λ
(

x(k)
)

− fk
)2

(1−M(λ)/n)2
(10)

(where λ is the number of basis functions in the model
f̃λ, M(λ) is the effective number of parameters in f̃λ),
having been computed for each λ, is used to choose the final
approximation f̃λ(x) that minimizes GCV(λ) with λ ≤ nB .
This C0 m-dimensional spline f̃λ(x) is the multivariate
adaptive regression spline (MARS) approximation to the
data. The constraints and greedy way M is constructed
mean that f̃λ(x) is not necessarily the best approximation
to the data by a spline of degree nI generated from B, or by
a spline with nB basis functions from B.

5.3 Piecewise Linear Interpolation via Delaunay Trian-

gulation

A d-dimensional triangulation T (P) of a finite set of points
P in R

d is any set of d-simplices with vertices in P that are
disjoint except along their boundaries and whose union is
the convex hull of P . Given n distinct data points P = {x(1),
. . ., x(n)} and values fk = f

(

x(k)
)

, a piecewise linear inter-

polant to f , denoted f̃T , can be defined for any triangulation
T (P) as follows.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

7M

8M

9M

10M

11M

10 15 20 25 30 35 40

7M

8M

9M

10M

90% Conf dence Interval with Increasing Sample Sizei

Sample Size

I/
O

 S
td

ev
P

re
d

ic
te

d
 I

/O
 S

td
ev

Fig. 10: Measured and predicted 90% confidence intervals for I/O performance variability. Convergence values indicate the
proximity of the indicated number of samples to full convergence (at 40 samples). Predicted values are for an unobserved
configuration and based upon use of a Delaunay predictor with a p = 90% training set from the measured results. Errors
are calculated relative to the measured confidence interval at each sample size.

At any point x in the convex hull of P , x must be
contained in some simplex in T (P). Let S be a d-simplex
in T (P) with vertices {s(1), . . ., s(d+1)} such that x ∈ S.
Then for k = 1, . . . , d+ 1, there exist weights Wk ≥ 0 such

that x =
∑d+1

k=1 s
(k)Wk and

∑d+1
k=1 Wk = 1, and

f̃T (x) = f(s(1))W1 + . . . + f(s(d+1))Wd+1 (11)

Note that in most cases, any triangulation of P is not
unique. The Delaunay triangulation, denoted DT (P), is a
(generally unique) triangulation, that has many properties
considered optimal for the purpose of interpolation [30].
Therefore, the Delaunay interpolant f̃DT is often used as
an approximation to a multivariate function f .

Discussion. The unknown parameters are derived from the
measured data. For example, we can list the coefficients of
the MARS bases. However, this closed-form expression is
typically too long to practically show in a paper and varies
with a set of measurements making it less intuitive. For LSP,
the parameters constitute a relatively large matrix (810 *
4 size) that also depends on the measured data and does
not present well in a manuscript. Hence, our focus is on
presenting the general formulae for these predictors along
with the average relative error.

6 USING MOANA FOR DESIGN OF EXPERIMENTS

Predicting confidence. In Section 4, we used MOANA and
two non-linear predictors (LSP and MARS) with promising
results for predicting variability accurately. We used these
predictions to analyze the variability of configurations not
included in the training data set with some success. In this
section, we demonstrate another use of variability predic-
tion – to predict the convergence of statistical confidence
intervals for unseen system and application configurations.

To further demonstrate the flexibility of MOANA, we
use a Delaunay predictor [12]. We evaluated the Delaunay
technique for predicting 90% confidence intervals as we did
the LSP and MARS techniques in Section 3 and achieved an
average relative error of 4% using a p = 90% training set
without loss of generality.

Figure 10 demonstrates how the proposed MOANA
convergence estimation works for a sample configuration.
The topmost graph shows the I/O standard deviation in
measured throughput for a 90% confidence interval. From
left to right we observe the change in standard deviation
as we increase the number of randomly selected, measured
samples from 10 to 40. The vertical lines provide markers to
indicate how close the marked sample size is to the ”best”
(or least) standard deviation at 40 samples. 75% convergence
at a sample size of 24 means that with 24 samples we get
75% of the way towards full convergence to the maximum
40 samples. Taking just 7 more samples (for a total of 31)
brings us 90% of the way towards full convergence to the
maximum 40 samples. Each sample at this configuration has
a cost in time (e.g., 10 seconds). Identifying the correlation
between samples and convergence enables tradeoff analyses
such as: 7 more samples costs 70 seconds but brings us 15%
closer to convergence – this in turn informs experimental
design space tradeoff decisions of coverage versus time.

The MOANA approach enables projection of design
space costs for predicted values as well. Figure 10 demon-
strates how the proposed MOANA convergence estimation
works for a predicted configuration. The bottommost graph
shows the I/O standard deviation in predicted throughput.
From left to right we observe the change in standard de-
viation as we increase the number of randomly selected,
measured samples used in the prediction from 10 to 40.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

The vertical lines provide markers to indicate how close
the marked sample size is to the ”best” (or least) predicted
standard deviation at 40 samples. 75% convergence at a
sample size of 24 means that with 24 samples we get
almost 75% of the way towards full convergence to the
maximum 40 samples – in this case with an error of less
than 3% compared to the measured value obtained during
the brute force experiments. The prediction of these values
has further implications for design space decisions well
beyond the measured data set – projections of the time costs
of additional experimental configurations for design space
exploration.

Large file sizes. Since file size had the greatest impact
on runtime, we limited experiments in the first 6 months
of data collection to file sizes smaller than 1MB. However,
this potentially ignores behaviors that might be common
in enterprise datacenter environments with intense I/O
workloads. To address this limitation, we spent almost two
months collecting 80 samples for each unique configuration
of thread count (1; 2; 3; 4; 5), file size (200MB; 500MB), record
size (4KB; 256KB; 16384KB), and frequency (1.2 GHz; 2.1
GHz; 3.0 GHz)6. We repeated the aforementioned collection
methods on the same physical hardware but due to some
internal repurposing and others using the systems in be-
tween our experiments, we used Ubuntu 14.04 LTS/KVM
Qemu 2.12 instead of Ubuntu 14.04 LTS/XEN 4.0. As a
sanity check, we repeated and compared our results to
thousands of small file size experiments from the first six
months of data. Even at the higher sample rate of the
large file experiments, we observed populations that were
statistically analogous across the respective old and new
data sets despite the change in hypervisors. This confirmed
our hypothesis that the new and old data sets exhibited
similar behavior and are worth inclusion in this manuscript.
However, due to the differences in system software across
the datasets, we purposely did not combine the results
directly to analyze trends from small to large file sizes.

We limit the analyses of the large file size data to pre-
diction of confidence intervals – the results are very similar
to those in Figure 10 and are not included because there are
few new conclusions and due to space considerations. Since
we started with a larger number of samples, our raw data
shows 75% convergence happens at a sample size of 36; this
means that with 36 samples we get 75% of the way towards
full convergence to the maximum 80 samples. Taking 21
more samples (for a total of 57) brings us 90% of the way
towards full convergence to the maximum 80 samples. The
I/O standard deviation in predicted throughput shows 75%
convergence at a sample size of 35; this means that with
35 samples we get almost 75% of the way towards full
convergence to the maximum 80 samples – in this case with
an error of less than 2.5% compared to the measured value
obtained during the brute force experiments.

There are several takeaways here. First, the MOANA
approach works effectively for large file sizes up to 500
MB in our experiments. This is not particularly surprising
as the nonlinear analysis and prediction techniques work
well for smaller file sizes and are independent of the mea-

6. Due to increases in the per-experiment time, we did not test as
many combinations as we did in the first set of experiments.

sured data. Second, the MOANA approach showed that the
overall behaviors for large file sizes, despite a change to
the hypervisor, were very similar to the overall behaviors
for small file sizes. This supports our hypothesis that the
black-box, end-to-end analyses using MOANA are useful
for a broad array of experiments and the variance is not
simply noise but includes predictable behavior to some
extent. Third, the behaviors we are observing appear to
persist across hypervisor implementations which provides
indications that hypervisors are not the root cause of the ob-
served variabilities. This is a somewhat contrary finding as
conventional wisdom purports that hypervisors introduce
variability. But admittedly, this warrants further investiga-
tion in future work.

7 RELATED WORK

The most closely related work to ours is reproducibility
in benchmarking since variability plays a role. Hoefler et
al. [15] recently summarized the state of the practice for
benchmarking in HPC and suggested ways to ensure repeat-
able results. The main contribution of their work is a series
of best practice rules based in existing statistical and math-
ematical first principles. Ricci et al. [24] also describe best
practices for OS systems researchers when encountering
variability across heterogeneous nodes in a cluster. Recently,
studies of the combined effects of hardware, applications,
and operating systems on I/O variability [7] have seen
interest due to implications for performance analysis, QoS
gurantees, etc. Introducing determinism to achieve repro-
ducibility has also been explored using environment cate-
gorization [32], statistical modeling [36], or variance-aware
algorithm design [2]. Environment categorization considers
the interactions and composition of hidden factors in the
system (e.g., DataMill [13]). Madireddy et. al [22] investi-
gated the challenge of I/O variability in HPC environments
caused by concurrent activities across the system. They
analyzed the correlation of I/O performance of applications
and I/O contention [23] and they developed a performance
variability model using a machine learning approach on
Lustre file systems considering application and system char-
acteristics. Some other research projects [16, 37, 44] explored
the issue of I/O variability and proposed models and op-
timizations for parallel file systems in HPC. Our focus is
on predicting variability and the application of MOANA to
experimental analysis and design.

OS jitter studies [27] are also related to variability. Jitter
in HPC is typically described as performance loss caused
by the competition for resources between background pro-
cesses and applications, or application interference [20, 45].
Some OS jitter researchers have simulated these effects at
scale [11], while others have proposed applications [14] or
systems [4] that can account for these types of variability.
Additionally, schedulers are often identified as causes of
significant variability in HPC systems [39] and might be
classified as a form of jitter. We specifically studied the
effects of schedulers in this work and found the effects of
thread count and other variables (e.g., processor speed) to
contribute more substantially to variability than scheduler
design. As mentioned, we leave isolation of the effects of ad-
ditional variables, background jitter, and cross-application
interference to future work.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

There have also been a number of high-profile projects in
computer architecture that explore variability. These projects
are mainly focused on the consequences of on-chip power
budgets [3, 6, 17, 31, 43]. These techniques are orthogonally
related to MOANA. Since we view variability as an artifact
of system design, we capture variations due to all aspects
of design including the underlying architecture. In the cur-
rent study, software artifacts tend to dominate variability
though we do see some architectural effects (e.g., voltage
and frequency scaling). So, for observable architectural pa-
rameterizations, we can capture the effects and in future
work potentially expose causality.

Our use of predictors of variability is related to per-
formance prediction. Performance prediction of HPC and
distributed applications is a well-studied field and recent
works have used analytical [10, 38, 41], profile based [5, 34],
and simulation based [8, 28] approaches, or a combination
of these [46], to accurately predict overall performance. In
contrast, detailed studies like ours that result in models or
predictors that consider variability are almost nonexistent.
In our work, we explored the use of multiple non-linear
predictors for analysis and prediction.

8 DISCUSSION

MOANA is the first comprehensive end-to-end system
methodology of its kind and one step towards improving
our understanding of I/O system performance variability.
The growing impact and prevalence of variability coupled
with a deficit in our understanding of the implications
on future design make this work particularly timely. We
consider variability unavoidable, an artifact of software and
hardware designs. MOANA demonstrates that these vari-
ability artifacts can be predicted; and that these predictions
can be used to revisit the design of our experiments. The
use of MOANA to predict variability for classes of appli-
cations has the potential for broad impact on experimental
system design. However, the current work is not without
limitations.
Causality. MOANA is a black-box approach to predicting
variability. We measure the execution performance for an
application in its entirety and characterize and predict the
performance variability. We then use these predictions to
determine which configurations see the most variability and
quantify their affect on experimental design. Our focus, for
now, is not on identifying causality in these experiments.
Our focus is on demonstrating that variability is a pre-
dictable artifact of system design.
Experimental Breadth. Previously observed performance
variability influenced our selection of I/O benchmarks and
variables for this study. The time investment in this work is
substantial and tradeoffs abound for fidelity (and therefore
trustworthiness and repeatability in the results) versus the
number and scope of applications and variables studied.
Since the research space abounds in studies of the parame-
terization of systems and applications and is lacking in stud-
ies of variability, we opted for gathering results that were
limited in application number and scope but robust in their
statistical significance. This led to selecting benchmarks that
are well-understood and deterministic in nature.
Simplifying Assumptions. We purposely made simplifying

assumptions about population distributions to align our
techniques with those in the prevailing literature. While
our direct measurements and analyses of the populations
confirm that distributions at times exhibit normality and at
other times do not, our prediction accuracy demonstrates
that the effects of this assumption on prediction accuracy
are minimal for the regular I/O codes studied. We believe
this helps to explain why many past studies have provided
significant insights despite assumptions of normality. How-
ever, as we demonstrated in our comparisons with linear
approaches, it is increasingly likely that such assumptions
will lead to inaccuracies that will be unacceptable at exascale
and beyond. The MOANA black-box approach, despite the
aforementioned assumptions and limitations, is scalable and
can be used for accurate interpolation and extrapolation.

9 CONCLUSIONS AND FUTURE WORK

MOANA uses nonlinear statistical techniques to predict the
high order effects of high-performance systems and appli-
cation configurations on I/O variability. We demonstrated
that by building variability maps, or correlation vectors
between configurations and variance, we can accurately
predict variability for hundreds of unseen configurations
of systems and applications. The MOANA approach re-
sults in a single model for all parameter settings (>70%
accuracy for MARS) that is an order of magnitude more
accurate than best available linear regression techniques.
Our analyses showed MOANA can readily identify both
first order effects (rank ordering modes by the variability
magnitude) and higher order effects (clustering variability
by mode for file size and record size studies) through
comparison of variability maps. We also demonstrated the
use of MOANA for predicting convergence of unmeasured
configurations for use in experimental design. Effectively,
MOANA enables users to optimize the tradeoffs between
system space coverage and time/confidence.

During our work, we have identified a number of av-
enues for future research. First and foremost, we would
like to deepen our understanding of performance variability
as an artifact of our software and hardware designs. To
this end, we plan to increase the breadth of our studies
to include a broader number and type of applications
and systems. Additionally, we would like to explore other
hardware configurations (accelerators, emergent memory
and I/O systems) to consider performance variability with
regard to hardware classes of systems and heterogeneity. In
another direction, we want to study more deeply the effects
of population distribution assumptions (common in the
literature) against experimental system research accuracy
and the accuracy of our prediction techniques at scale.

REFERENCES

[1] H. Akkan, M. Lang, and L. M. Liebrock. Stepping towards
noiseless linux environment. In Proceedings of the 2Nd ACM
International Workshop on Runtime and Operating Systems for
Supercomputers, 2012.

[2] J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration–
exploitation tradeoff using variance estimates in multi-
armed bandits. Theoretical Computer Science, 410(19):1876–
1902, 2009.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[3] A. Bacha and R. Teodorescu. Dynamic reduction of voltage
margins by leveraging on-chip ecc in itanium ii processors.
ACM SIGARCH Computer Architecture News, 41(3):297–307,
2013.

[4] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj.
Benchmarking the effects of operating system interference
on extreme-scale parallel machines. Cluster Computing,
11(1):3–16, Mar. 2008.

[5] J. Bourgeois and F. Spies. Performance prediction of an
nas benchmark program with chronosmix environment. In
Euro-Par 2000 Parallel Processing, pages 208–216. Springer,
2000.

[6] K. Bowman, J. W. Tschanz, S.-L. L. Lu, P. Aseron, M. M.
Khellah, A. Raychowdhury, B. M. Geuskens, C. Tokunaga,
C. B. Wilkerson, T. Karnik, et al. A 45 nm resilient
microprocessor core for dynamic variation tolerance. Solid-
State Circuits, IEEE Journal of, 46(1):194–208, 2011.

[7] Z. Cao, V. Tarasov, H. P. Raman, D. Hildebrand, and
E. Zadok. On the performance variation in modern storage
stacks. In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 329–344, Santa Clara, CA,
2017. USENIX Association.

[8] H. Casanova, A. Legrand, and M. Quinson. Simgrid: A
generic framework for large-scale distributed experiments.
In Computer Modeling and Simulation. IEEE UKSIM 2008.
Tenth International Conference on.

[9] H.-C. Chang, B. Li, G. Back, A. R. Butt, and K. W. Cameron.
Luc: Limiting the unintended consequences of power scal-
ing on parallel transaction-oriented workloads. In IEEE
IPDPS, 2015.

[10] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. Von Eicken. LogP:
Towards a realistic model of parallel computation, volume 28.
ACM Sigplan Notices, 1993.

[11] P. De and V. Mann. jitsim: A simulator for predicting
scalability of parallel applications in presence of os jitter. In
Euro-Par 2010 - Parallel Processing, volume 6271 of Lecture
Notes in Computer Science, pages 117–130. Springer Berlin
Heidelberg, 2010.

[12] J. A. De Loera, J. Rambau, and F. Santos. Triangulations
Structures for algorithms and applications. Springer, 2010.

[13] A. B. de Oliveira, J.-C. Petkovich, T. Reidemeister, and
S. Fischmeister. Datamill: Rigorous performance evalu-
ation made easy. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, 2013.

[14] A. Hammouda, A. R. Siegel, and S. F. Siegel. Noise-tolerant
explicit stencil computations for nonuniform process exe-
cution rates. ACM Trans. Parallel Comput., 2(1):7:1–7:33,
Apr. 2015.

[15] T. Hoefler and R. Belli. Scientific benchmarking of parallel
computing systems. In Proceedings of the 2015 International
Conference for High Performance Computing, Networking,
Storage and Analysis, 2015.

[16] E. C. Inacio, P. A. Barbetta, and M. A. Dantas. A statisti-
cal analysis of the performance variability of read/write
operations on parallel file systems. Procedia Computer
Science, 108:2393 – 2397, 2017. International Conference
on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland.

[17] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L.
Bircher, and M. S. S. Govindan. Audit: Stress testing the
automatic way. In Microarchitecture (MICRO), 45th Annual
IEEE/ACM International Symposium on, 2012.

[18] W. T. Kramer and C. Ryan. Performance variability of highly
parallel architectures. Springer, 2003.

[19] D. Le, H. Huang, and H. Wang. Understanding perfor-
mance implications of nested file systems in a virtualized
environment. In USENIX FAST, 2012.

[20] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Ko-
rdenbrock, K. Schwan, and M. Wolf. Managing variability

in the io performance of petascale storage systems. In High
Performance Computing, Networking, Storage and Analysis
(SC), 2010 IEEE International Conference for, 2010.

[21] R. Lucas, J. Ang, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra, A. Geist,
G. Grider, R. Haring, J. Hittinger, A. Hoisie, D. Klein,
P. Kogge, R. Lethin, V. Sarkar, R. Schreiber, J. Shalf, T. Ster-
ling, and R. Stevens. Ascac subcommittee for the top ten
exascale research challenges. 2014.

[22] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross,
S. Snyder, and S. M. Wild. Analysis and correlation of
application i/o performance and system-wide i/o activity.
In 2017 International Conference on Networking, Architecture,
and Storage (NAS), pages 1–10, Aug 2017.

[23] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross,
S. Snyder, and S. M. Wild. Machine learning based paral-
lel i/o predictive modeling: A case study on lustre file
systems. In International Conference on High Performance
Computing, pages 184–204. Springer, 2018.

[24] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn,
R. Stutsman, and R. Ricci. Taming performance variability.
In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 409–425, Carlsbad,
CA, 2018. USENIX Association.

[25] R. Mraz. Reducing the variance of point to point transfers
in the ibm 9076 parallel computer. In Proceedings of the 1994
ACM/IEEE conference on Supercomputing, 1994.

[26] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti.
Achieving performance isolation with lightweight co-
kernels. In ACM HPDC, 2015.

[27] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of asci q. In ACM
ICS, 2003.

[28] S. Prakash and R. L. Bagrodia. Mpi-sim: using parallel
simulation to evaluate mpi programs. In Proceedings of
the 30th conference on Winter simulation. IEEE Computer
Society Press, 1998.

[29] A. Rahimi, D. Cesarini, A. Marongiu, R. Gupta, and
L. Benini. Task scheduling strategies to mitigate hard-
ware variability in embedded shared memory clusters.
In 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), 2015.

[30] V. Rajan. Optimality of the delaunay triangulation in R
d.

Discrete & Computational Geometry, 12(2):189–202, 1994.
[31] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith,

G.-Y. Wei, and D. Brooks. Voltage smoothing: Characteriz-
ing and mitigating voltage noise in production processors
via software-guided thread scheduling. In IEEE/ACM
MICRO, 2010.

[32] R. Ricci, G. Wong, L. Stoller, K. Webb, J. Duerig, K. Downie,
and M. Hibler. Apt: A platform for repeatable research in
computer science. ACM SIGOPS Operating Systems Review,
49(1):100–107, 2015.

[33] A. Rutherford. Introducing anova and ancova: A glm
approach.

[34] R. H. Saavedra and A. J. Smith. Analysis of benchmark
characteristics and benchmark performance prediction.
ACM Transactions on Computer Systems (TOCS), 14(4):344–
384, 1996.

[35] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing
technology challenges. In Proceedings of the 9th International
Conference on High Performance Computing for Computational
Science, 2011.

[36] D. Skinner and W. Kramer. Understanding the causes of
performance variability in hpc workloads. In Workload
Characterization Symposium, 2005. Proceedings of the IEEE
International, 2005.

[37] S. W. Son, S. Sehrish, W.-K. Liao, R. Oldfield, and
A. Choudhary. Reducing i/o variability using dynamic i/o

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892129, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

path characterization in petascale storage systems. Journal
of Supercomputing., 73(5):2069–2097, May 2017.

[38] D. Sundaram-Stukel and M. K. Vernon. Predictive analysis
of a wavefront application using loggp. ACM SIGPLAN
Notices, 34(8):141–150, 1999.

[39] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Par-
allel parameter tuning for applications with performance
variability. In ACM/IEEE SC, 2005.

[40] W. I. Thacker, J. Zhang, L. T. Watson, J. B. Birch, M. A.
Iyer, and M. W. Berry. Algorithm 905: Sheppack: Modified
shepard algorithm for interpolation of scattered multivari-
ate data. ACM Trans. Math. Softw., 37(3):34:1–34:20, Sept.
2010.

[41] A. J. Van Gemund. Symbolic performance modeling of
parallel systems. Parallel and Distributed Systems, IEEE
Transactions on, 14(2):154–165, 2003.

[42] S. O. F. Wang, D. A. Dillow, R. Miller, G. M. Shipman,
D. Maxwell, and D. H. J. B. J. Larkin. Reducing application
runtime variability on jaguar xt5. 2010.

[43] P. N. Whatmough, S. Das, Z. Hadjilambrou, and D. M.
Bull. 14.6 an all-digital power-delivery monitor for anal-
ysis of a 28nm dual-core arm cortex-a57 cluster. In IEEE
International Solid-State Circuits Conference-(ISSCC), 2015.

[44] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky,
J. Lofstead, and S. Oral. Predicting output performance
of a petascale supercomputer. In Proceedings of the 26th
International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’17, pages 181–192, New
York, NY, USA, 2017. ACM.

[45] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu.
On the root causes of cross-application i/o interference
in hpc storage systems. In IEEE International Parallel and
Distributed Processing Symposium, 2016.

[46] J. Zhai, W. Chen, and W. Zheng. Phantom: predicting
performance of parallel applications on large-scale parallel
machines using a single node. In ACM Sigplan Notices,
volume 45, pages 305–314, 2010.

Kirk W. Cameron is Professor of Computer Science at Virginia Tech
and Director of the stack@cs Center for Computer Systems. The central
theme of his research is to improve performance and power efficiency
in computer systems. Accolades for his research include U.S. National
Science Foundation and U.S. Department of Energy Career Awards,
IBM and AMD Faculty Awards, and a Distinguished Visiting Fellowship
from the U.K. Royal Academy of Engineering. He received the PhD
degree in computer science from Louisiana State University and is a
member of the IEEE and a Distinguished Member of the ACM.

Ali Anwar is a research staff member at IBM Almaden Research Center.
He received his Ph.D. degree in Computer Science from Virginia Tech. In
his earlier years he worked as a tools developer (GNU GDB) at Mentor
Graphics. Ali’s research interests are in distributed computing systems,
cloud storage management, file and storage systems, Internet of Things,
AI platforms, and intersection of systems and machine learning.

Yue Cheng received his Ph.D. degree in Computer Science (2017)
from Virginia Tech. He is an assistant professor of Computer Science
at George Mason University. His research interests include distributed
systems, cloud and serverless computing, high performance computing,
and the Internet of Things. At George Mason he leads the Experimental
Scalable & Efficient Systems Laboratory (EXCEL).

Li Xu is a PhD student in statistics at Virginia Tech. His research inter-
ests include machine learning and engineering applications, reliability
analysis, and spatial statistics.

Bo Li received his BS degree in automation from Dalian University of
Technology in 2006, MS degree in control theory & control engineer-
ing from Dalian University of Technology in 2009, and MS degree in
computer science from Rochester Institute of Technology in 2012. He is
currently working toward the PhD degree at the Virginia Polytechnic In-
stitute and State University. His research interests include power-aware
computing in the high-performance computing domain and performance
modeling of scientific parallel applications under DVFS, DCT, and DMT.

Uday Ananth received his M.S degree in Computer Science from Vir-
ginia Polytechnic Institute and State University in 2017. He is a currently
a Member of Technical Staff at Viasat Inc and his interests include
cloud computing / orchestration, firmware development and network
layer optimizations.

Jon Bernard is a PhD student in computer science at Virginia Tech. His
research interests include operating systems, performance variability,
and security.

Chandler Jearls is an undergraduate in Computer Engineering at Vir-
ginia Polytechnic Institute and State University. His research interests
include parallel computing, distributed computing systems and computer
architecture.

Thomas Lux received a B.S. degree (cum laude) in Computer Science
with minors in Mathematics and Physics from Roanoke College in 2016.
He is a Ph.D. candidate in Computer Science at Virginia Polytechnic In-
stitute and State University. His research interests include mathematical
modeling, optimization, numerical analysis, and reinforcement learning
for artificial intelligence.

Yili Hong received his PhD in statistics (2009) from Iowa State Univer-
sity. He is an associate professor of statistics at Virginia Tech. His re-
search interests include machine learning and engineering applications,
reliability analysis, and spatial statistics. He has over 60 publications
in venues such as Journal of the American Statistical Association,
Annals of Applied Statistics, Technometrics, and IEEE Transactions on
Reliability. He is currently an associate editor for Technometrics and
Journal of Quality Technology. He is an elected member of International
Statistical Institute. He won the 2011 DuPont Young Professor Award,
and the 2016 Frank Wilcoxon Prize in statistics.

Layne T. Watson (F ’93) received the B.A. degree (magna cum laude) in
psychology and mathematics from the University of Evansville, Indiana,
in 1969, and the Ph.D. degree in mathematics from the University of
Michigan, Ann Arbor, in 1974. He is currently a professor of computer
science, mathematics, and aerospace and ocean engineering at Vir-
ginia Polytechnic Institute and State University. He serves as senior
editor of Applied Mathematics and Computation, and associate editor
of Computational Optimization and Applications, Evolutionary Optimiza-
tion, Engineering Computations, and the International Journal of High
Performance Computing Applications. He is a fellow of the National In-
stitute of Aerospace and the International Society of Intelligent Biological
Medicine. He has published well over 300 refereed journal articles and
200 refereed conference papers. His research interests include fluid
dynamics, solid mechanics, numerical analysis, optimization, parallel
computation, mathematical software, image processing, and bioinfor-
matics.

Ali R. Butt received his Ph.D. degree in Electrical and Computer
Engineering from Purdue University. He is a professor of Computer
Science and ECE (by courtesy) at Virginia Tech. He is a recipient of
several awards such as an NSF CAREER Award. He is an alumni of
the National Academy of Engineering’s US Frontiers of Engineering
(FOE) Symposium, US-Japan FOE, and National Academy of Science’s
AA Symposium on Sensor Science. Ali’s research interests are in dis-
tributed computing systems, cloud/edge computing, file and storage
systems, Internet of Things, I/O systems, and operating systems. At
Virginia Tech he leads the Distributed Systems & Storage Laboratory
(DSSL).

