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Abstract
With our increasing reliance on cloud computing, accurate
resource allocation of virtual machines (or domains) in the
cloud have become more and more important. However, the
current design of hypervisors (or virtual machine monitors)
fails to accurately allocate resources to the domains in the vir-
tualized environment. In this paper, we claim the root cause
is that the protection scope is erroneously used as the re-
source scope for a domain in the current virtualization design.
Such design flaw prevents the hypervisor from accurately
accounting resource consumption of each domain. In this
paper, using virtual CPUs as a container we propose to rede-
fine the resource scope of a domain, so that the new resource
scope is aligned with all the CPU consumption incurred
by this domain. As a demonstration, we implement a novel
system, called VASE (vCPU as a container), on top of the
Xen hypervisor. Evaluations on our testbed have shown our
proposed approach is effective in accounting system-wide
CPU consumption incurred by domains, while introducing
negligible overhead to the system.

CCS Concepts • Social and professional topics→ Pric-
ing and resource allocation; • Software and its engi-
neering → Virtual machines; Scheduling; Cloud com-
puting.

Keywords CPUAccounting, Virtual I/O, Scheduling, Cloud
Computing
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1 Introduction
The adoption of cloud computing has become increasingly
popular among various Internet services. Cloud computing
enables the flexible provisioning and sharing of computing re-
source between multiple tenants. The underlying virtualiza-
tion technologies provide an isolated protection mechanism
for the states and executions of each virtual machine (VM,
or domain). However, such isolation is not currently well-
considered when it comes to the resource usage incurred
by the guest domains. Consequently, some guest domains
may be able to consume significantly more resource than
allocated, or resource overuse, as we refer to it in this paper.
Among various types of resource, the CPU is the most

important one and its accurate allocation and management
directly affects the operations and the revenue of the cloud
providers like Amazon and Google. According to [16], each
physical CPU core sells for a maximum potential annual
revenue of $900. However, as previous works [8, 29] have
observed and we will further demonstrate in Section 3.1, a
guest domain can consume up to 70% more of its allocated
CPU time, preventing the cloud providers to sell those 70%
overused CPU to other clients and resulting in a notewor-
thy monetary loss. The resource overuse issue may also
potentially degrade the performance of neighbor domains
[3, 9, 15, 25, 26, 30, 34, 38] and increase the energy consump-
tion of the host machines [14, 37].
Similar concerns over the resource overuse issue have

been raised previously in the context of non-virtualized en-
vironment for processes [4] and for containers [22]. In this
work, we investigate the problem in the virtualized envi-
ronment, which both imposes unique challenges compared
to previous works and also provides new opportunities to

https://doi.org/10.1145/3313808.3313814
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Figure 1. Illustration of software-based I/O virtualization:
much of I/O processing is offloaded to the driver domain,
which is not accounted to its source domain (domain-
1/domain-2). Such offloading processing: 1) is asynchronous
with processing in the source domain; and 2) interleaves
with each other in the driver domain.

enable a more accurate and lightweight solution compared
to existing ones in non-virtualized environments.

In virtualized environment, one major contributing factor
of the resource overuse problem is the use of offloading in
software-based I/O virtualizations. An illustrative example
is shown in Figure 1. With the software-based I/O virtual-
ization, I/O devices are managed by the driver domain (or
the hypervisor) and guest domains share those I/O devices
through the driver domain. When guest domains perform
I/O operations, a significant portion of the I/O processing
workload is offloaded to the driver domain. However, with
the current CPU resource accounting scope, the CPU usage
incurred by those offloaded processing in the driver domain
is not correctly accounted to its source domain. As a result,
through burdening the driver domain, the guest domains
may effectively consume more CPU resource. The case also
applies to the shared intrusion detection system [24] between
VMs, where a similar offloading mechanism is used.

Solving the resource overuse problem relies on an accurate
accounting of the offloaded processing, which is a challeng-
ing task, especially in virtualized environment. The semantic
gap between the hypervisor and domains and the asynchro-
nous nature of the offloaded processing pose significant chal-
lenges for either the hypervisor or the domains to accurately
measure the offloaded CPU usage. Previous works attempted
to overcome such semantic gap using VM-introspection tech-
niques [21, 24, 31], at the cost of complicated kernel tracing
and heavy runtime overhead which limits its usage in mod-
ern cloud systems. Others [19, 32] attempted to circumvent
these challenges by estimating, instead of accurately measur-
ing, the offloaded CPU time. Such estimation is based on the
assumption that offloaded CPU usage for the same workload
is always the same, which, as we will show in Section 3.2,
is not necessarily true and therefore the estimation-based
approach also fails to produce accurate accounting result.

In this paper, we claim that the root cause of this problem
lies in the design of virtualization systems: the protection
scope of a domain is erroneously used as its resource scope
during resource accounting and management. The protection
scope of a domain isolates its states and executions from
other domains, while the resource scope of a domain should
contain all the resource consumption incurred by this do-
main. In many cases, for instance the I/O offloading, these
two scopes are not aligned with each other. Such coincidence
in the current design prevents hypervisor from correctly al-
locating resource to each domain.
In this work, we aim to tackle the problem in the virtu-

alized multi-tenant cloud environment by re-aligning the
CPU resource scope of a domain with its actually-incurred
CPU usage, so that accurate resource allocation can be en-
forced for all guest domains. Specifically, we redefine the
resource scope for a domain, so that all the offloaded CPU
consumption is included within its resource scope. The new
resource scope for a guest domain is comprised of a combi-
nation of virtual CPUs from not only that domain but also
the driver domain. In the driver domain, all the offloaded
processing from a source domain is contained and encapsu-
lated in the corresponding vCPUs, which are contained in
the resource scope of that source domain. Therefore, the re-
sulting resource scope of a domain contains all the incurred
CPU consumption and can be used by the hypervisor to
accurately manage the CPU resource per domain.
To demonstrate our proposed approach, we implement

VASE System, a novel and light-weight solution built on top of
the Xen hypervisor. The evaluations in various settings show
that our approach is able to effectively manage the system-
wide CPU consumption incurred by the guest domains with
virtually no overhead.

To summarize, the contribution of our paper is three-fold:
• We distinguish the resource scope from the protection
scope in virtualized systems and redefine the resource
scope of a domain using existing vCPU abstraction,
enabling accurate resource management per domain.

• Our solution encapsulates all the CPU consumption
incurred by a domain to designated vCPUs contained
inside its resource scope. The asynchronous and inter-
leaved offloaded processing in the driver domain can
be accurately measured and debited to its source.

• By exploiting existing vCPU abstraction, our approach
eliminates explicit communications between the hy-
pervisor and domains, and hence its associated over-
head compared to approaches like kernel tracing or
VM-introspection. The hypervisor scheduler can ef-
fectively control the system-wide CPU consumption
incurred by a domain with virtually no overhead.

The rest of this paper is organized as follows: in Section 2,
we will provide the background on I/O virtualization and
CPU management in Xen. The motivation of this work will
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be presented in Section 3, with experiments showing the
drawbacks of state-of-art, followed by the problem statement,
challenges and solution in Section4. The design of our VASE
Systemwill be presented in Section 5, followed by evaluations
in Section 6. Discussions and related work will be provided in
in Section 7 and 8. We will conclude this paper in Section 9.

2 Background
2.1 I/O Virtualization
In virtualized environments, the hypervisor is responsible
for managing and allocating hardware resources to VMs
running on top of it. To provide guest VMs access to I/O
devices like network and disk, three approaches are com-
monly available: 1) software-based virtualization approach
where the hypervisor and guest VM cooperate to handle I/O
requests; 2) full emulation approach; and 3) IOMMU-assisted
pass-through approach. The software-based virtualization
approach has gained popularity in practice since on the one
hand, it has significant performance advantage compared
to the full emulation approach; on the other hand, it also
has better management flexibility with minimum additional
overhead compared to hardware-assisted approach [5, 20].
In the Xen virtualized environment, VMs are known as

domains. During booting, the first domain loaded by the Xen
hypervisor is referred to as Domain 0, or Dom0 for short,
which has elevated privileges to manage resources and other
guest domains. Those unprivileged guest domains are called
domain U, or DomU. The Xen hypervisor itself does not in-
clude device drivers. Instead, it delegates hardware support
to a special driver domain (usually Dom0) by exposing hard-
ware access to that domain. Xen has implemented the split
driver model for network and block device I/Os. Figure 2
illustrates the process of a DomU sending packets. During
such I/O process, most of the CPU time is consumed by those
components: physical device driver, backend and frontend of
the split driver, TCP/IP stack, and event channel.
With Xen’s split driver model, clearly the I/O requests

initiated by or destined for one DomU will also consume
CPU resources in Dom0. We denote this amount of CPU
time consumed by Dom0 for serving the I/O workloads in
DomUs as the offloaded CPU time. In the next section we will
briefly summarize how CPU resources are managed and how
software-based virtualized I/O design may potentially result
in inaccurate resource management.

2.2 CPU Management in Xen
In the Xen virtualized environment, CPU resources are man-
aged through Xen schedulers. The default Credit scheduler in
Xen allocates CPU resources in terms of credit. Each domain
has its own amount of credit and a domain with positive
remaining credit will be prioritized to run its vCPUs on the
physical CPUs (pCPUs). There are two parameters: weight
and cap set for each domain that determine its allocation of

DomUDomU Driver DomainDriver Domain

XenXen

HardwareHardware

Application

TCP/IP Stack

Frontend 

TCP/IP Stack

Backend Device Driver

Physical Device

Event Channel 

Figure 2. The path of sending a packet in Xen [10]. In the
split driver model, a large portion of I/O processing happens
in the driver domain, consuming a significant amount of
CPU resource on behalf of the DomUs.

credit. The weight determines the allocation ratio between
each domain when the system is oversubscribed, e.g., a do-
main with a weight of 512 may receive twice as much as
credit of a domain with a weight of 256. The cap is used
to limit the absolute amount of CPU time a domain may
consume. For example, a domain with cap 250 may receive
at most 2.5 pCPUs. The default cap value for domains is
0, which means its CPU usage is not capped, indicating a
work-conserving mode. Cap is an important parameter for
cloud providers to control resource allocation to domains.
For example, Varadarajan et al. [34] reported that Amazon
EC2 instances are capped. Based on the two parameters, the
scheduler periodically allocates the credit to each domain.
When a vCPU runs, it consumes the credit of its domain. As
shown in previous section, the executions of I/O workload
in DomUs require service from Dom0, which the hypervisor
scheduler is totally unaware of. As a result, the DomU may
effectively incur more CPU usage than allocated, causing
performance degradations and variations [8, 19, 32].

3 Motivation
Suppose we have a Xen virtualized environment where only
one DomU is running I/O workload with its cap set to 100.
Intuitively, we would expect the total system-wide CPU uti-
lization to be no more than 100% (of one CPU core). However,
as suggested in previous sections, due to I/O offloading, the
current Xen scheduler is unable to constrain the real CPU
usage incurred by each domain. In this section, we will inves-
tigate how significant such excessive usage is and show the
drawbacks of the estimation-based approaches [8, 19, 32].
For all the experiments in this paper, we use an HP Pro-

Liant DL380 G6 server as our testbed, which is equipped
with two Intel Xeon E5540 CPUs. To minimize the dynamics
within the system, features including hyperthreading, turbo
boost, and dynamic power management are all disabled. The
second CPU socket is also left idle at all time to eliminate
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Table 1. Workload Configurations using sysbench and iperf3

Workload Description Parameters

CPU Primality test using trial division –test=cpu –num-threads=1

sy
sb
en
ch MEM Allocate & randomly write to memory buffer –test=memory –num-threads=1

SEQ (Disk) Sequentially read pre-allocated files –test=fileio –file-test-mode=seqrd –num-threads=1
RND (Disk) Randomly read/write pre-allocated files –test=fileio –file-test-mode=rndrw –num-threads=1

ip
er
f3 TCP (Network) Generate random TCP traffic to a remote host -l 128 -P 1 -b 96M

UDP (Network) Generate random UDP traffic to a remote host -l 128 -P 1 -b 96M -u
MIX Read data from disk and send it via network -l 128 -P 1 -b 96M -u -F ∼/test_file.0
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Figure 3. System-wide CPU usage with one DomU running
various workloads. The total CPU usage reaches more than
170% (of a CPU core) in case of I/O intensive workloads,
exceeding the amount of 100% that is allocated to the DomU.
The exceeding part is “stolen” from other domains.

the Non-uniform memory access (NUMA) effect between
sockets. Unless explicitly stated, Dom0 is configured to have
eight vCPUs while each DomU is configured to have one
vCPU. The CPU consumption of vCPUs is obtained using
the Xen toolstack. Dom0 runs Ubuntu 16.04 and Xen 4.9.0
is used as the hypervisor. On each DomU, iperf3 [33] and
sysbench [23] are used to generate synthetic workloads listed
in Table 1. We use these workloads here and also in Section 6.
CPU utilization is measured by running the workload and
collecting the active vCPU time over a ten-second period.

3.1 Offloaded CPU Time is Significant
First, we verify that the offloaded CPU time is non-negligible.
To this end, we generate four types of workload in one DomU:
CPU, MEM, SEQ, and UDP, as listed in Table 1. The result
is shown in Figure 3, where the y-axis represents the total
system CPU usage incurred by the workload in DomU. We
can see from the figure that for Idle, CPU, andMEMworkload
in DomU, the total system CPU usage is within the allocated
resource limit (100%). However, for I/O-intensive workloads
− Network (UDP) and Disk (SEQ), the CPU usage in Dom0
becomes significant, especially for Network workload where
Dom0’s CPU usage surged to 90%, and total system CPU
usage incurred by DomU’s workload reaches more than 170%.
Although it is well-expected that the paravirtualized I/O will
incur some overhead in Dom0, it is not expected that such
excessive CPU usage can be as much as 90% of the allocated

amount. Hence, the implication from this experiment is that,
such a significant offloaded CPU usage in Dom0 must be
properly accounted for, or a large amount of CPU time may
be “stolen” from Dom0, resulting in significant monetary
loss and performance degradation for other domains, and
extra energy consumption for physical host.
Since our experiment is conducted in a controlled envi-

ronment where Dom0 does nothing but processing offloaded
work from a single DomU, we can therefore use Dom0’s total
CPU usage as the offloaded CPU usage. However, obtaining
the offloaded usage for a specific DomU is challenging in
reality. The state-of-the-art [8, 19, 32] addresses this issue
based on estimations and we will show its drawbacks next.

3.2 Estimation Approach is Inaccurate
To study the accuracy of the estimation approach in deter-
mining offloaded CPU consumption, we have replicated the
profiling and estimation technique proposed in [8, 19, 32].
This approach is built on the assumption that the same work-
load always incurs the same amount of offloaded CPU con-
sumption. So, by profiling the offloaded CPU consumption
for a certain workload once, the offloaded CPU consumption
incurred by this workload in the future can be estimated
based on the amount of data transmitted. However, we claim
this assumption is not true in a multi-tenant cloud environ-
ment, as activities from co-located DomUs pose significant
interferences. The following experiments demonstrate the
extent of estimation inaccuracy and prove our proposition.
To start with, we show the profiling, as a key step in the

estimation-based approach, cannot generate stable result in
the multi-tenant cloud environment. We profile the same
TCP workload while running various combinations of Do-
mUs in the same host. We repeat the profiling for 100 times
and the result is shown in Figure 5, where the x-axis repre-
sents different DomUs configuration, e.g., N1C2 means one
DomU running Network workload and the other two run-
ning CPU workloads, and the y-axis represents the profiling
result for each combination. The result clearly shows that
the profiling varies largely between different combinations,
e.g., 4 times between N1C2 and N1C3.
Next, we demonstrate the estimation error by selecting

one of the profiling results in the previous step to estimate
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Figure 4. The true and estimated CPU time of the driver domain when running I/O intensive workloads. The diagonal line
represents an accurate estimation. The estimation approach yields up to 79% errors for network and 50% for disk.
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Figure 5. The profiling result of the estimation approaches,
which proves it is false to assume the same workload always
incurs the same amount of offloaded CPU consumption to
the driver domain, especially with neighbors.

the offloaded CPU usage and compare it with the measured
value. The experiments are conducted by varying the num-
ber of co-located DomUs, the DomUs configuration and its
execution time. The result for TCP, UDP, SEQ and RNDwork-
load are shown in Figure 4a, 4b, 4c, and 4d, respectively. The
x-axis represents the estimated CPU time and the y-axis rep-
resents the measured CPU time. The diagonal line indicates

an accurate estimation. We can see the estimation errors are
significant — up to 79% in case of TCP.

As we can conclude from the result above, the estimation-
based approach cannot produce accurate accounting for of-
floaded CPU usage in multi-tenant settings and therefore
cannot enforce resource allocation in the cloud. The dynamic
neighbor interferences in multi-tenant systems are volatile
and difficult to accurately predict, which motivates us to
develop a direct and accurate approach to solve this issue.

4 Problem, Challenges and Our Solution
We have shown that, for the I/O-intensive workload, the
offloaded CPU usage is significant and dynamically chang-
ing, while the estimation-based approaches cannot address
the accounting issue. In general, an accurate CPU alloca-
tion relies on an accurate accounting of the offloaded CPU
consumption, referred in this paper as debt. Hence, the first
question we want to answer in this paper is that, can we
directly and accurately measure the debt (offloaded CPU time)
and use such accounting information to enforce CPU resource
allocation with minimum overhead?
Accurately measuring each domain’s debts is a challeng-

ing task. As shown in Figure 1, it is non-trivial to separate the
offloaded I/O processing of each guest apart because their
executions are all asynchronous and interleaved in the driver
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Figure 6. The overall design of VASE System. The resource scope of each domain is defined by the actual resource consumption
of that domain as opposed to falsely defined by the protection scope. The existing vCPU abstraction is used as resource
container to isolate and encapsulate the offloaded workload. VASE System enables such resource scope using two major
components: 1) An Accountant component in the driver domain; and 2) A Moderator component in the Xen hypervisor.

domain. In addition, even though such processing could be
traced and measured through extensive and costly kernel
tracing, the driver-domain-reported duration is nonetheless
inaccurate. This is because, in the middle of two timestamps,
the underlying hypervisor may perform context switches
that are transparent to the domains. Finally, the hypervisor,
which is capable of accurately and thoroughly measuring the
CPU runtime, is helpless in this case as the offloaded process-
ing to be measured runs in the driver domain. In summary,
the semantic gap between the hypervisor and domains and
the asynchronous nature of the offloaded processing pose sig-
nificant challenges for both the hypervisor and the domains
to accurately measure the offloaded CPU usage.

Before diving deep into how to overcome those obstacles
and measure all the debts, we wonder what the fundamental
cause behind the existence of the debt is. In the example of
Figure 1, a part of I/O processing is offloaded to the driver
domain, since the I/O devices is in protection scope of the
driver domain. Unfortunately, in the current design of the
virtualization systems, the same protection scope is used as
the resource scope of a domain. Any processing executed
within the its protection domain is accounted as its CPU
consumption. As a consequence, the debt is not accounted
correctly to its source domain, but incorrectly to the driver
domain. In general, debt exists whenever some processing is
offloaded outside the protection scope of the source domain.
Hence, to fundamentally address the issue, we need to

re-define the resource scope of a domain in the virtualiza-
tion systems so that all the processing incurred by a guest
domain will be contained and managed within its new re-
source scope. Now the next question is: what the resource
scope should be comprised of. We note that physical CPU re-
source is consumed by vCPUs on behalf of domains, since
vCPU is the abstraction of execution state of processing in

domains. Thus, we seek to redefine the resource scope of a
domain using the existing vCPU abstraction, and distinguish
it from its protection scope. All the offloaded processing
from different source domains is distinguished and pinned to
dedicated vCPUs in the driver domain. Then we define the
new resource scope of a domain by: (1) all the vCPUs in the
domain, and (2) all dedicated vCPUs serving offloaded pro-
cessing in the driver domain. With this new resource scope,
the hypervisor can effectively limit the system-wide CPU
usage of each domain. In the next section, we implement
VASE System to demonstrate our solution.

5 VASE System
In this section, we present VASE Systemwhich consists of two
components: the Moderator in the Xen hypervisor and the
Accountant that cooperates in the driver domain. Without
loss of generality, our approach is based on Xen 4.9.0 and
Ubuntu 16.04. Recent Xen and Linux versions also feature
the same mechanisms used in this paper.

The overall design of VASE System is shown in Figure 6. As
aforementioned, the resource allocation problem is caused by
the ill-defined resource scope of the domains in the current
virtualization design. Our approach is therefore designed to
create the correct resource scope in the hypervisor and let
the hypervisor perform per-domain resource accounting and
management based such resource scopes.
In a nutshell, the correct resource scope is established as

follows: in the driver domain, the Accountant exploits the
Linux kernel and device driver design to encapsulate and iso-
late the offloaded workload from each DomU into designated
vCPUs. Subsequently, the Moderator in the Xen hypervisor
is able to accurately learn the exact offloaded CPU usage
of each DomU with negligible overhead, compared with
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kernel tracing or estimation-based techniques used in previ-
ous approaches. With the offloaded usage from each DomU
accurately obtained, the Moderator then enforces resource
allocation by adjusting the credits in the Xen scheduler.

5.1 The Accountant Component
The Accountant runs in the driver domain and facilitates
the Moderator for accurate runtime measurements. The Ac-
countant is responsible for encapsulating and isolating the
offloaded workload from each DomU into designated vCPUs
in the driver domain. Before we explain how this is achieved,
we first briefly introduce how Linux kernel and its device
drivers handle I/O processing.

Device Driver Handling in Linux Device drivers gen-
erally follow the top-half + bottom-half scheme, which is
designed to minimize the time spent in the interrupt handler
and process longish tasks asynchronously. The top-half is a
piece of concise code called the Interrupt Service Routine (ISR)
which is triggered when the system receives hardware inter-
rupts. It executes only the minimum necessary operations to
schedule the corresponding bottom-half, and returns as soon
as possible. The bottom-half performs the concrete I/O work
and can be implemented in Linux with mechanisms includ-
ing softirq, tasklet, and workqueue. In the meantime, helper
threads spawned by device drivers may also be signaled to
facilitate the bottom-half processing concurrently.

Based on such a design principle, we can see that all
the I/O-related processing including the offloaded ones is
handled by entities including ISRs, softirq handlers, tasklets,
kworkers and other driver-specific kernel threads in Linux. In
other words, the granularity of the I/O-related processing is
at the thread/IRQ handler level. We will refer to these kernel
threads and IRQ handlers as workers hereinafter. This indi-
cates, instead of tracing through the entire I/O processing at
the function level, we have the opportunity to distinguish
the offloaded workload by isolating the few workers used by
each DomU to separate vCPUs in the driver domain. Also, us-
ing vCPUs as the means of encapsulation provides additional
advantages — now that the Moderator in the hypervisor can
directly measure the usage of the offloaded workload by look-
ing at the runtime of each vCPU, which means: 1) negligible
overhead compared to explicit communication between the
driver domain and the hypervisor; and 2) highest possible
accuracy since the measurement is done in the hypervisor.
For the rest of Section 5.1, we demonstrate how the I/O-

related processing workers in the driver domain can be iden-
tified and isolated to designated vCPUs according to the
DomUs they are serving. As a proof of concept, we run two
DomUs (DomU-1 and DomU-2), both are configured to have
a network device and a block device. All information used
below is stored in the driver domain and the Xen hypervi-
sor, and is accessible from Dom0. Dom0 is also the driver

domain in this example, and the workflow is the same when
a dedicated driver domain is used.

5.1.1 Identify the Workers
With careful examinations of the design and code path of
Linux kernel and Xen split-driver, we have implemented the
Accountant to identify all offloaded I/O processing workers
in our test environment. Figure 7 shows these IRQs and
kernel threads for block and network backend device drivers.
Each device type (network or block) has two components —
backend driver and real device driver (per paravirtualized
I/O design). Each driver component has workers including
IRQ handlers and/or kernel threads to carry its workload
(per Linux driver design). With these workers identified, the
next step is to group them by their corresponding source
DomU. This can be done by hooking into the Xen tool stack
at domain creation. The dotted box in Figure 7 shows how
the workers are grouped into three categories: 1) workers
serving DomU-1 only; 2) workers serving DomU-2 only; and
3) workers serving both DomU-1 and DomU-2.

5.1.2 Isolate Workers to vCPUs
With all the relatedworkers grouped by their source domains,
the next step is to have the CPU time consumed collectively
by those groups accurately measured in the hypervisor. As
aforementioned, vCPU runtime can be utilized to overcome
the semantic gap and establish an implicit communication
between the driver domain and hypervisor. If we can have the
driver domain bind the execution of the identifiedworkers on
designated vCPUs, accurate offloaded CPU consumption can
be immediately obtained by the hypervisor. The Accountant
achieves such a goal by manipulating scheduling and IRQ
affinities in the driver domain OS.

The workers in the driver domain consist of kernel threads
and IRQ handlers. For kernel threads, the Accountant mod-
ifies the CPU affinity settings in the scheduler to pin the
kernel threads in the driver domain to designated vCPUs.
For I/O-related IRQs, similarly, theAccountant sets their affin-
ity to selected vCPU by changing interrupt handling settings
in Linux. Note that here we only need to set the affinity of
the hardware IRQs (hence the top-half), without touching
any bottom-half mechanisms. The reason is that bottom-half
scheduled by the top-half will always be executed on the
same CPU where the task is originally scheduled [36]. Hence,
once we have pinned the hardware IRQs, the rest of the pro-
cessing will be executed on the same vCPU. Table 2 shows
an example configuration for two DomUs with network and
disk devices. In this example, all the network processing of-
floaded by DomU-1 can be measured by reading the runtime
of vCPU-3 and 5. Similarly, we can also get the offloaded
CPU consumption for DomU-2 disk processing by checking
the runtime of vCPU-2 and 6.
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Figure 7. Identification of related workers in the driver domain for each domain. In this example, a network device and a block
device are allocated to both DomU-1 and DomU-2. Thread “vif1.0-q0-guest”, with PID = 2783, serves the virtual network device
in DomU-1. IRQ “enp2s0f0-0”, with IRQ ID = 118, serves the physical network device in the driver domain. Those workers can
be grouped by the domains they serve: 1) serving only DomU-1; 2) serving only DomU-2; and 3) serving both.

5.1.3 Tweak Load Balancing
A potential issue with affinity is that the setting is not manda-
tory. The driver domain OS may, for load balancing or other
purposes, migrate the pinnedworkers to another CPU through
the scheduler or utilities like irqbalance. Hence, for a per-
sistent pinning configuration, we need to prevent the load
balancing facilities in the driver domain from dismantling our
affinity settings. Meanwhile, we cannot simply disable load
balancing facilities completely as we want them to continue
balancing other irrelevant workloads in the driver domain.
To this end, for schedulers, we utilize the isolcpus option in
Linux kernel, which isolates given vCPUs from the driver
domain scheduler so that the scheduler will not schedule
any processes on the isolated vCPUs unless explicitly being
asked by users. Similarly, for IRQs, we isolate vCPUs through
the IRQBALANCE_BANNED_CPUS variable that irqbalance uses
to decide which vCPUs receive interrupts.

5.2 The Moderator Component
So far, the Accountant has enabled the hypervisor to mea-
sure the offloaded CPU usage for I/O workloads. We call
this offloaded CPU usage as the debt of DomUs. Here we
present theModerator in the hypervisor that enforces proper
resource allocation. TheModerator is implemented inside the
Xen hypervisor’s Credit scheduler. It calculates and collects
the debt from each DomU every time the scheduler executes.

At each scheduling tick, the Moderator calculates the debt
of each DomU by checking the amount of credits burned
by that DomU’s designated vCPUs in the driver domain.

Among those debts, some of them are dedicated debt which
can be attributed to a specific DomU (i.e., CPU usage of its
corresponding backend drivers), while the rest are shared
debt among all DomUs who have work offloaded (i.e., CPU
usage of the physical device drivers and TCP/IP stack). The
dedicated portion can be directly accounted to its source
DomU. While, for the shared portion, we divide the debt to
each DomU in the proportion to their own dedicated debt
accumulated during the past scheduling epoch. A scheduling
epoch is the short time window between two consecutive
scheduler ticks. For example, with the same setup in Table 2,
for the past 30ms , vCPU-5 (DomU-1) and vCPU-7 (DomU-
2) have burned 4 and 6 credits respectively, while vCPU-3
(shared) has burned 5 credits. The total debts for DomU-1
and DomU-2 are therefore (4+2)=6 and (6+3)=9 credits.
With the debt for each DomU accurately accounted, the

Moderator then collects the debt for every scheduling epoch—
it deducts all the debt accumulated so far from each DomU’s
credit when the credit is refilled in csched_acct(). After
the debt is paid off, the remaining credit of each DomU will
be allocated to its vCPUs as in the original Credit scheduler.

6 Evaluation
We have implemented the VASE System in Xen 4.9.0. The
roadmap for evaluating our prototype is as follows. We first
verify the workload encapsulation and pinning scheme in the
Accountant component, and then we show the effectiveness
of the Moderator component by comparing the CPU usage
of each domain with and without our approach against the



VASE: vCPU as a container VEE ’19, April 14, 2019, Providence, RI, USA

Table 2. Processes and IRQs affinity setting in the driver domain. As shown in Figure 7, related processes and IRQs are
identified to serve DomU-1, DomU-2 or DomUs. In VASE System, they are pinned to designated Dom0 vCPUs accordingly.

Source Type PID IRQ ID vCPU # (mask)

Dom0 all other - - 0-1 (0x03)
DomU-* physical disk - 110-117 2 (0x04)
DomU-* physical network - 118-125 3 (0x08)
DomU-1 backend disk 2623,2781 131 4 (0x10)
DomU-1 backend network 2783-2784 132-133 5 (0x20)
DomU-2 backend disk 2977,3130 138 6 (0x40)
DomU-2 backend network 3132-3133 139-140 7 (0x80)

Table 3. vCPU utilization when running different workloads in DomU-1 and DomU-2 after VASE System being implemented.
The offloaded I/O processing is precisely encapsulated and correctly pinned to designated vCPUs as shown in Table 2. Each
vCPU only consumes CPU time if and only if corresponding I/O workload runs in corresponding DomUs.

Case #
Workloads Dom0 vCPU

DomU-1 DomU-2 0 1 2 3 4 5 6 7

1 Idle Idle - - - - - - - -
2 CPU MEM - - - - - - - -
3 UDP Idle - - - 12% - 76% - -
4 Idle UDP - - - 9% - - - 76%
5 SEQ Idle - - 4% - 21% - - -
6 Idle SEQ - - 4% - - - 20% -
7 UDP UDP - - - 10% - 38% - 48%
8 SEQ SEQ - - 5% - 13% - 11% -
9 UDP SEQ - - 4% 12% - 76% 17% -
10 SEQ UDP - - 4% 11% 18% - - 46%

given CPU caps. Finally we show that our approach intro-
duces negligible overhead to both the scheduling process
and the execution of the workload.

Here we use Vase to represent our solution and Credit for
the default Xen settings — the I/O workloads in the driver
domain are load-balanced across all available vCPUs when-
ever appropriate and the Credit scheduler is used. Previous
solutions [8, 19, 32] have been evaluated in Section 3.2, and
therefore will not be repeated for comparisons here. In our
experiments, Dom0 is used as the driver domain. All the data
points in the result were obtained through 100 repetitions
and 95% confidence intervals are provided in all applicable
figures, though most of them are too small to be visible.

6.1 Verify the Workload Encapsulation
Our goal here is to verify that all the offloaded I/O processing
in Dom0 has been thoroughly encapsulated and correctly
pinned to designated vCPUs. In other words, with our set-
tings, a designated vCPU in Dom0 should consume CPU
time if and only if its corresponding DomU runs the corre-
sponding type of I/O workload. To this end, we create two
DomUs using the configuration shown in Table 2 and run
various combinations of the workload listed in Table 1 on
these two DomUs. The vCPU utilization is shown in Table 3,
where “−” indicates such utilization is negligible.

As shown in Table 3, in cases of 3, 7, and 9 where DomU-1
performs network I/O, its corresponding vCPU-5 in Dom0
consumes significant CPU time, which concludes the if part.
For the only if part, we can see whenever vCPU-5 consumes
CPU time — again case 3, 7, and 9, DomU-1 is indeed per-
forming network I/O. For other vCPUs and other type of
workload, we can easily get the similar observations as well.
Hence, we conclude all offloaded I/O processing capsules
has been correctly and thoroughly identified and pinned to
designated vCPUs in Dom0 as expected.

6.2 Accurate CPU Resource Allocation
Next, we evaluate the effectiveness of our VASE System to ac-
curately enforce the capacity limits. In the experiment we let
one DomU run MIX workload listed in Table 1 with various
intensities and comparing the CPU consumption incurred
with and without our approach against the cap value. The
DomU is given 0 and 100 as its cap value in the scheduler
and the result is shown in Figure 8a and 8b, respectively. The
x-axis of each figure represents the intensity (sending rate)
of the workload and the y-axis represents the CPU usage
(upper figure) and network throughput (lower figure).

We first examine Figure 8a where work conserving mode
is enabled (cap = 0). In both upper and lower figures, as the
sending rate increases, both CPU time consumption and the
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Figure 8. CPU usage and throughput of one DomU with different values for cap. When VASE System is implemented, the total
CPU consumption of DomU is precisely limited by the given cap values. On the contrary, it can reach up to twice the allocated
amount in the original setting. Thus, VASE System accurately enforce the resource consumption limit of DomUs.
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Figure 9. Overall throughput with various number of Do-
mUs running CPU intensive workloads, which shows VASE
System introduces negligible overhead to CPU throughput.

network throughput increase as expected and are not capped
in both Credit and Vase.
Next in Figure 8b we set the cap to 100, indicating the

DomU is expected to incur at most 100% system-wide CPU
usage. We can see in the upper figure, as the sending rate
increases, Credit fails to keep the total CPU usage under the
cap, which in this case reaches 200%, significantly breaking
the configured limit. In comparison, in Vase, the total CPU

consumption including the offloaded portion is accurately
constrained to 100%. A similar result can be observed in Fig-
ure 8b (lower), where the network throughput of the DomU
can be limited to 60 Mbps in Vase, while Credit allows DomU
to generate excessive traffic to stress the system and poten-
tially impair the performance of neighbors. In the public
cloud such as Amazon EC2, the instance is sold with pre-
configured amount of CPU cores and its CPU usage should be
limited accordingly. VASE System enables the cloud providers
to achieve this exact purpose.

6.3 System Overhead
In this section we show our approach introduces negligible
overhead to the scheduling process and the workload itself.
We first examine the scheduling overhead. With our ap-

proach, when there are n DomUs with one network and one
disk device running in a host, at least 4+2×n vCPUs need to
be allocated to Dom0. As the number of vCPUs increases, the
runtime for both hypervisor scheduler and Dom0 scheduler
to iterate through all the vCPUs will also increase. Mean-
while, the extra routines in VASE System for calculating the
debt will also incur overhead. To evaluate the scheduling
overhead, we let DomU run CPU workload in Table 1 for 10
seconds, record the events/sec value reported by sysbench



VASE: vCPU as a container VEE ’19, April 14, 2019, Providence, RI, USA

1 2 3 4 5 6 7 8

Number of DomUs

0

100

200

300

400

C
P

U
C

o
n
su

m
p
ti

o
n

(%
co

re
s)

Credit-DomU

Credit-Dom0

Vase-DomU

Vase-Dom0

(a) Overall CPU usage

1 2 3 4 5 6 7 8

Number of DomUs

0

50

100

150

200

250

O
v
er

a
ll

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Credit Vase

(b) Overall I/O throughput

Figure 10. Overall CPU usage and I/O throughput with various number of DomUs. Vase incurs negligible I/O overhead when
CPU is saturated (DomUs > 4). When it is not, Vase accurately limits DomU’s CPU usage, and hence their I/O throughput.

with different number of DomUs, and compare the result
obtained for Credit and Vase. The max number of DomUs is
set to twice the number of pCPUs used in this experiment.
As we can see in Figure 9, the overall system CPU perfor-
mance in both cases is either very close or statistically the
same, indicating negligible overhead is introduced in the
CPU scheduling process. Besides, extra memory space is
required to keep the states of extra vCPUs, but it is orders
of magnitude lower compared to the size of Xen and kernel
structures and can be ignored.

Next, we examine Vase’s performance impact to the work-
load. We create various numbers of concurrently active Do-
mUs running MIX workload with each DomU’s cap set to
100. The result is shown in Figure 10a and 10b. The x-axis
represents the number of concurrent DomUs and the y-axis
represents the total CPU usage in the Figure 10a and overall
throughput in Figure 10b. In both figures, once the system
become over-committed, the overall CPU usage and total
achieved network throughput of Vase is on par with Credit.
Hence, Vase introduces negligible overhead to both sched-
uling and the processing of the workload. Therefore, we
can conclude that our approach is indeed light-weight. Be-
side, when the host is under-committed (DomUs <4), the
cloud user may prefer Credit over Vase due to the seemingly
higher overall throughput. However, this is not an intend-
ed/desired feature of the system, since the extra CPU and
throughput comes at the cost of potentially performance
variations and degradation of neighbor domains and extra
energy consumptions of the host machine. Moreover, the
cloud provider would prefer to consolidate the host by selling
all available cores, preventing host being under-committed.
Therefore, we believe Vase provides a better solution than
Credit for CPU management in the cloud.

7 Discussion
Limitation Though our proposed approach is implemented
in Xen-based virtualization systems with paravirtualized

I/O devices (both PV and HVM [1] instances), the idea be-
hind our approach is universal and can be extended to other
platforms use software-based I/O virtualization. Admittedly,
some technical aspects may be different and due to space
limits we omit the detailed discussions here. However, in the
high-level, many hypervisors share the same design princi-
ple. For example, the paravirtualized split driver model is
also supported in type-2 hypervisors like KVM/QEMU [28]
via virtio and VMware Workstation [2] via its guest tools.
Besides paravirtualized I/O, our approach applies to other
virtualized I/O implementations as well. For example, for
QEMU-based fully emulated devices in Xen, the QEMU pro-
cesses that handles I/O workload can be pinned to given
vCPUs in a way similar to our approach.

Hardware-based I/O virtualization solutions [11] have
been applied to some AWS instances recently. However,
software-based I/O virtualization is still widely used in the
cloud industry, e.g., all the Google Cloud instances and many
AWS instances. In addition, unlike some other works [4, 19,
22], our solution applies to not only network I/O but also
disk I/O, which also represents a huge number of hosts.

Scalability Our VASE System requires one designated vCPU
in Dom0 for each device in each DomU. Naturally, the ques-
tion to ask is that whether this approach will work as the
number of devices and DomUs increases. In theory, Linux
kernel v4.4 supports up to 8192 CPUs and Xen hypervisor
allows assigning the Dom0 a user-defined number of vCPUs.
Based on our experiments, Xen supports a maximum vCPUs
of at least 255 to be allocated to Dom0. Considering a dual-
socket Xeon E5 (up to 44 cores) server with two devices per
DomU, even with a 200% over-commit ratio and all one-core
small instances, the required 176 designated vCPUs is well
below the vCPU limit. Also, given the fact that Xen can hot
add and remove vCPUs, the number of designated vCPUs in
Dom0 can be adjusted as DomUs are created/destroyed so
that the scheduling overhead of maintaining many vCPUs
can be minimized.
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Load Balancing Another question is that, with this ap-
proach, whether we are limited to only one vCPU per device.
In other words, is this approach elastic and flexible enough
so that the number of vCPUs designated per device can be
dynamically adjusted depending on the intensity of the work-
load. The answer is yes - with Vase, we can allocate more
than one vCPU to carry out the work for a single device by
changing the IRQ mask. That way the load is balanced across
all the allocated vCPUs, improving the performance. In case
of light workloads, similarly, several devices of the same type
and same DomU can be consolidated to one vCPU.

8 Related Work
Accurate resource accounting and allocation is a long-standing
research challenge in various contexts including both non-
virtualized and virtualized environments [6, 7, 13, 18, 27,
35, 37]. In non-virtualized environments, when a user pro-
cess issues intensive network I/Os, a large portion of CPU
time is consumed asynchronously by OS kernel and not cor-
rectly accounted to that user process. LRP [12] and Resource
Container [4] aimed to address this issue by accounting
the network processing in the kernel to corresponding pro-
cesses. The same case also applies to the container environ-
ment and Iron [22] was proposed to address the same issue
for container-based multi-tenant environments. Ghanei et
al. [17] highlighted the challenge in accounting asynchro-
nous resource usage. They investigated the mobile comput-
ing scenario, where resources such as sensors and network
may be consumed asynchronously by running processes.
These three works are generally based on the kernel tracing
techniques, which enable us to track and account kernel
usage to the user process/container but also introduce sig-
nificant overhead, reducing the overall performance.

Accurate resource accounting is challenging in the virtu-
alized environment where multiple VMs share hardware and
software resources, including I/O devices, intrusion detection
systems (IDS), etc. For the case of the shared IDS between
VMs, Resource Cage [24] was proposed to accurately bill
each VM based on its usage of IDS service. Similarly, the
drawback of this approach is also the high overhead, due to
the use of sophisticated VM-introspection techniques to trace
and account the cross-domain offloaded processing. By com-
parison, our solution is easy to implement and lightweight
by exploiting the existing vCPU abstractions. As mentioned
previously in this paper, software-based I/O virtualization
is a major source of accounting inaccuracy. Cherkasova and
Gardner [8] and Santos et al. [29] have demonstrated that
when serving I/O requests in DomU, Dom0 consumes a non-
negligible amount of CPU time on behalf of that domain.
Gupta et al. [19] further investigated this issue by account-
ing the offloaded CPU consumption to that DomU in CPU
management. They measured the unit CPU consumption per
packet in Dom0 when serving network I/O in DomU, and
estimated future CPU consumption on behalf of DomUs by

the number of packets sent/received per DomU. With this
estimation, they modified the SEDF scheduler to aggregate
CPU consumption of domains in CPU allocation. Teabe et
al. [32] tried to improve accuracy of the estimation by profil-
ing I/O workloads with more features, such as packet sizes
and virtualization configuration, for both disk and network
I/O. They modified the Credit scheduler to charge DomUs
for offloading. As we have shown previously, the drawback
of such approaches is that, despite it improves estimation ac-
curacy, they extract features solely from the workload while
the actual offloaded CPU time may be affected by neighbor
activities, compromising its overall estimation accuracy. In
comparison, by direct measuring the usage of the offloaded
workload as it happens, our solution generates much more
accurate accounting of the offloaded CPU consumption.
When it comes to hardware-based virtualization tech-

niques, such as SR-IOV [11] and SmartNIC [16], the offloaded
I/O processing will happen in the specially designed hard-
ware, which no longer consumes CPU usage in Dom0. The
resource management can therefore be greatly simplified.
However, it still requires extra investment for dedicated hard-
ware in the host machines. On the contrary, our work solves
same problem at the software level without specialized hard-
ware and hence its additional cost.

9 Conclusion
Cloud computing relies on accurate resource allocation of
domains (VMs) to better serve the needs for both cloud users
and providers. In this paper, we have shown the current ap-
proaches fail to correctly account all the CPU usage incurred
by domains due to I/O offloading. We claim the root cause is
that the protection scope of a domain is incorrectly used as
its resource scope in the resource management. To address
this problem, we redefine the resource scope of a domain by
using vCPU as a container, so that all the processing incurred
by this domain is contained within its new resource scope.
To demonstrate our solution, we have implemented VASE
System that directly and accurately measures the offloaded
CPU usage and uses it to strictly enforce the CPU usage lim-
its in Xen. Our experiments have shown that our approach
is light-weight and effective in constraining CPU usage with
virtually no overhead.

Our future work includes extending the proposed VASE
System to other virtualization platforms, e.g., KVM/QEMU
and also the non-virtualized container environments.
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