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Introduction
o Instructor of Section 002
– Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
– Email: yuecheng@gmu.edu
– Office: 5324 Engineering
– Office hours: T 15:00pm-16:30pm 
– Research interests: Distributed and storage systems, 

serverless and cloud computing, operating systems
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Introduction
o Instructor of Section 002

– Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
– Email: yuecheng@gmu.edu
– Office: 5324 Engineering
– Office hours: T 15:00pm-16:30pm 
– Research interests: Distributed and storage systems, 

serverless and cloud computing, operating systems

o Teaching assistant
– Zhemin An
– Email: zan2@gmu.edu
– Office hours: 

• W 10am-12pm; R: 3:30pm-5:30pm
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Administrivia
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o Required textbook
– Operating Systems: Three Easy Pieces, 
By Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

o Recommended textbook
– Operating Systems Principles & Practices
By T. Anderson and M. Dahlin

o Prerequisites are enforced!!
– CS 310 Data Structures 
– CS 367 Computer Systems & Programming -OR-
– ECE 445 Computer Organization
– Be comfortable with C programming language

o Class web page
– https://cs.gmu.edu/~yuecheng/teaching/cs471_fall19/index.html
– Class materials will all be available on the class web page

https://cs.gmu.edu/~yuecheng/teaching/cs471_fall19/index.html


Administrivia (cont.)
o Syllabus

– https://cs.gmu.edu/media/syllabi/Fall2019/CS_471ChengY002.html

o Grading
– 30% projects 
– 10% homework
– 15%+15% two midterm exams
– 30% final exam

o Reminders
– Honor code
– Late policy: 15% deducted each day. No credit after 3 days 
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Course format
o (Review) + lecture + (worksheets)

– A short overview of the previous lecture to make sure 
the old content is not completely forgotten

– Worksheet practices to make sure the lecture is well 
understood
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OS/161 Projects
o Three coding projects

– Project 0: Intro to OS/161 (due Sep 13) – 6%
– Project 1: Synchronization – 12%
– Project 2: Syscalls and processes – 12%
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Homework and system 
programming assignments

o Two written homework assignments

o + Extra credits for some system programming 
assignments
– For those who are ahead of the schedule and are 

interested in more work : ) 
– Expect more as the semester approaches… 

• A baseline hash table based key-value store implemented 
using C

• Adding multi-threading and concurrency support
• Adding memory management
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What is an OS?
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What is an OS?
o OS manages resources

– Memory, CPU, storage, network
– Data (file systems, I/O)

o Provides low-level abstractions to applications
– Files
– Processes, threads
– Virtual machines (VMs), containers
– …
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OS abstracts away low-level details
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OS abstracts away low-level details

o Under the surface
– Complex and dirty 

implementations of 
abstractions and a lot 
more… 
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OS abstracts away low-level details

o User’s perspective
– User interface: 

• Terminal, GUI
– Application interface: 

• System calls
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The goals of an OS
o OS manages resources

– Memory, CPU, storage, network
– Data (file systems, I/O)

o Provides low-level abstractions to applications
– Files
– Processes, threads
– Virtual machines (VMs), containers
– …

o Goals
– Resource efficiency (resource virtualization) 
– Ease-of-use (interfaces)
– Reliability (user-kernel space separation)
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System Calls
o System calls provide the interface between a running 

program and the operating system
– Generally available in routines written in C and C++ 
– Certain low-level tasks may have to be written using 

assembly language

o Typically, application programmers design programs 
using an application programming interface (API)

o The runtime support system (runtime libraries) 
provides a system-call interface, that intercepts 
function calls in the API and invokes the necessary 
system call within the operating system

o Major differences in how they are implemented (e.g., 
Windows vs. Unix)
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Example System Call Processing
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Major System Calls in Linux:
File Management 

o fd = open(file, how, …) 
– Open a file for reading, writing, or both

o s = close(file)
– Close an open file

o n = read(fd, buf, nbytes)
– Read data from a file into a buffer

o n = write(fd, buf, nbytes)
– Write data from a buffer into a file

o pos = lseek(fd, offset, whence)
– Move the file pointer

o s = stat(name, &buf)
– Get a file’s status info
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3 Major Topics 
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OS Provides Virtualization on Hardware
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Topic 1: Concurrency, Synchronization, and 
CPU Scheduling
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CPU Memory

Storage

• Process/thread abstraction
• Synchronization
• CPU scheduling



Process Abstraction
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o A process is a program in execution
– It is a unit of work within the system. A program is a passive entity, a process is 

an active entity.
o Process needs resources to accomplish its task

– CPU, memory, I/O, files
– Initialization data

o Process termination requires reclaim of any reusable resources
o Single-threaded process has one program counter specifying 

location of next instruction to execute
– Process executes instructions sequentially, one at a time, until 

completion
o Multi-threaded process has one program counter per thread
o A software system may have many processes, some user, some 

operating system running concurrently on one or more CPUs
– Concurrency by multiplexing the CPUs among the processes / threads



Loading from Program to Process
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Computation – Increased 
Complexity
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Computation – Increased 
Complexity
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Topic 2: Memory Management and 
Virtual Memory
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CPU Memory

Storage

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling



Memory Management
o All data in memory before and after processing
o All instructions in memory in order to execute
o Memory management determines what is in memory 

when
– Optimizing CPU utilization and computer response to users

o Memory management activities
– Keeping track of which parts of memory are currently being used 

and by whom
– Deciding which processes (or parts thereof) and data to move 

into and out of memory
– Allocating and deallocating memory space as needed

o Virtual memory management is an essential part of 
most operating systems
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Topic 3: Storage, I/O, and 
Filesystems
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CPU Memory

Storage

• Hard disk drives
• RAID
• Flash SSDs
• File and I/O systems

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling



Storage Management
o OS provides a uniform, logical view of information 

storage
– Abstracts physical properties to logical storage unit  - file
– Each medium is controlled by device type (i.e., disk 

drive, tape drive)
• Varying properties include access speed, capacity, data-

transfer rate, access method (sequential or random)
o Filesystem management

– Files usually organized into directories
– Access control on most systems to determine who can 

access what
– OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and dirs
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media
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Storage Hierarchy

29



Storage Structure
o Main memory – relatively large storage media that 

the CPU can access directly
– Small CPU cache memories are used to speed up average 

access time to the main memory at run-time
– Volatile (data loss at power-off)
– Byte-addressable

o Secondary storage – extension of main memory that 
provides large nonvolatile storage capacity.
– Magnetic disks
– Electronic disks -- Solid state disks (SSDs)
– Non-volatile (i.e., persistent)
– Non byte-addressable
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Storage Systems Tradeoffs
o Storage systems organized in hierarchy

– Speed
– Cost
– Volatility
– Density

o Faster access time, greater cost per bit
o Greater capacity (density), lower cost per bit
o Greater capacity (density), slower access 

speed

31



32

Storage hierarchy – Increased 
Complexity
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Storage hierarchy – Increased 
Complexity



The CPU-Memory Gap
The gap widens between memory, disk, and CPU speeds. 
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Caching
o Skew rule: 80% requests hit on 20% hottest data
o Important principle, performed at many levels in a 

computer (in hardware, operating system, software)
o Information in use copied from slower to faster 

storage temporarily
o Faster storage (cache) checked first to determine if 

information is there
– If it is, information used directly from the cache (fast)
– If not, data copied to cache and used there

o Cache smaller than storage being cached
– Cache management important design problem
– Cache size and replacement policy
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 
cycles

Block size: 64 bytes 
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Migration of Integer A from Disk to Register

o Multitasking environments must be careful to use most 
recent value, no matter where it is stored in the storage 
hierarchy

o Multiprocessor environment must provide cache 
coherency in hardware such that all CPUs have the most 
recent value in their cache

o Distributed environment situation even more complex
– Several copies of a piece of data can exist
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CPU Memory

Storage

• Hard disk drives
• RAID
• Flash SSDs
• File and I/O systems

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling

Advanced Topics (Miscellaneous)

• Distributed systems



Distributed Systems as a DC/OS
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Distributed Systems as a DC/OS
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Distributed Systems as a DC/OS

41



Why do you take this course?

42



General Learning Goals
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1. Grasp basic knowledge about Operating 
Systems and Computer Systems software

2. Learn important systems concepts in general
– Multi-processing/threading, synchronization
– Scheduling
– Caching, memory, storage
– And more…

3. Gain hands-on experience in 
writing/hacking/designing large systems 
software



Why do you take this course?
o The OS concepts are everywhere

– Fundamental OS techniques broadly generalize to 
widely-used systems technique

• Scheduling
• Concurrency
• Memory management
• Caching
• … 
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One example: Memcached
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On-disk data

Scheduler

Worker 
thread pool

In-memory data

Ring-buffer

Thread 
Scheduling

Producer-
consumer sync

Race condition,  
RW locks

Virtual memory 
& caching 

o Memcached is a 
distributed in-memory 
object cache system
– Written in C
– In-memory hash table
– Multi-threading

Memcached can be treated as a 
user-space mini-OS



Next class… 
o Process abstraction
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