
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019

Introduction
o Instructor of Section 002
– Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
– Email: yuecheng@gmu.edu
– Office: 5324 Engineering
– Office hours: T 15:00pm-16:30pm
– Research interests: Distributed and storage systems,

serverless and cloud computing, operating systems

2

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu

Introduction
o Instructor of Section 002

– Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
– Email: yuecheng@gmu.edu
– Office: 5324 Engineering
– Office hours: T 15:00pm-16:30pm
– Research interests: Distributed and storage systems,

serverless and cloud computing, operating systems

o Teaching assistant
– Zhemin An
– Email: zan2@gmu.edu
– Office hours:

• W 10am-12pm; R: 3:30pm-5:30pm

3

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu
mailto:zzhang20@gmu.edu

Administrivia

4

o Required textbook
– Operating Systems: Three Easy Pieces,
By Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

o Recommended textbook
– Operating Systems Principles & Practices
By T. Anderson and M. Dahlin

o Prerequisites are enforced!!
– CS 310 Data Structures
– CS 367 Computer Systems & Programming -OR-
– ECE 445 Computer Organization
– Be comfortable with C programming language

o Class web page
– https://cs.gmu.edu/~yuecheng/teaching/cs471_fall19/index.html
– Class materials will all be available on the class web page

https://cs.gmu.edu/~yuecheng/teaching/cs471_fall19/index.html

Administrivia (cont.)
o Syllabus

– https://cs.gmu.edu/media/syllabi/Fall2019/CS_471ChengY002.html

o Grading
– 30% projects
– 10% homework
– 15%+15% two midterm exams
– 30% final exam

o Reminders
– Honor code
– Late policy: 15% deducted each day. No credit after 3 days

5

https://cs.gmu.edu/media/syllabi/Fall2019/CS_471ChengY002.html

Course format
o (Review) + lecture + (worksheets)

– A short overview of the previous lecture to make sure
the old content is not completely forgotten

– Worksheet practices to make sure the lecture is well
understood

6

OS/161 Projects
o Three coding projects

– Project 0: Intro to OS/161 (due Sep 13) – 6%
– Project 1: Synchronization – 12%
– Project 2: Syscalls and processes – 12%

7

Homework and system
programming assignments

o Two written homework assignments

o + Extra credits for some system programming
assignments
– For those who are ahead of the schedule and are

interested in more work :)
– Expect more as the semester approaches…

• A baseline hash table based key-value store implemented
using C

• Adding multi-threading and concurrency support
• Adding memory management

8

What is an OS?

9

What is an OS?
o OS manages resources

– Memory, CPU, storage, network
– Data (file systems, I/O)

o Provides low-level abstractions to applications
– Files
– Processes, threads
– Virtual machines (VMs), containers
– …

10

OS abstracts away low-level details

11

OS abstracts away low-level details

o Under the surface
– Complex and dirty

implementations of
abstractions and a lot
more…

12

Sched

I/O
File system

Virtual mem

Dev drivers
Dev drivers

Dev drivers

OS abstracts away low-level details

o User’s perspective
– User interface:

• Terminal, GUI
– Application interface:

• System calls

13

Syscall Interface

Users
Applications

Sched

I/O
File system

Virtual mem

Dev drivers
Dev drivers

Dev drivers

o Under the surface
– Complex and dirty

implementations of
abstractions and a lot
more…

The goals of an OS
o OS manages resources

– Memory, CPU, storage, network
– Data (file systems, I/O)

o Provides low-level abstractions to applications
– Files
– Processes, threads
– Virtual machines (VMs), containers
– …

o Goals
– Resource efficiency (resource virtualization)
– Ease-of-use (interfaces)
– Reliability (user-kernel space separation)

14

System Calls
o System calls provide the interface between a running

program and the operating system
– Generally available in routines written in C and C++
– Certain low-level tasks may have to be written using

assembly language

o Typically, application programmers design programs
using an application programming interface (API)

o The runtime support system (runtime libraries)
provides a system-call interface, that intercepts
function calls in the API and invokes the necessary
system call within the operating system

o Major differences in how they are implemented (e.g.,
Windows vs. Unix)

15

Example System Call Processing

16

Major System Calls in Linux:
File Management

o fd = open(file, how, …)
– Open a file for reading, writing, or both

o s = close(file)
– Close an open file

o n = read(fd, buf, nbytes)
– Read data from a file into a buffer

o n = write(fd, buf, nbytes)
– Write data from a buffer into a file

o pos = lseek(fd, offset, whence)
– Move the file pointer

o s = stat(name, &buf)
– Get a file’s status info

17

3 Major Topics

18

CPU Memory

Storage

OS Provides Virtualization on Hardware

19

CPU Memory

Storage

Topic 1: Concurrency, Synchronization, and
CPU Scheduling

20

CPU Memory

Storage

• Process/thread abstraction
• Synchronization
• CPU scheduling

Process Abstraction

21

o A process is a program in execution
– It is a unit of work within the system. A program is a passive entity, a process is

an active entity.
o Process needs resources to accomplish its task

– CPU, memory, I/O, files
– Initialization data

o Process termination requires reclaim of any reusable resources
o Single-threaded process has one program counter specifying

location of next instruction to execute
– Process executes instructions sequentially, one at a time, until

completion
o Multi-threaded process has one program counter per thread
o A software system may have many processes, some user, some

operating system running concurrently on one or more CPUs
– Concurrency by multiplexing the CPUs among the processes / threads

Loading from Program to Process

22

Computation – Increased
Complexity

23

Computation – Increased
Complexity

24

Topic 2: Memory Management and
Virtual Memory

25

CPU Memory

Storage

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling

Memory Management
o All data in memory before and after processing
o All instructions in memory in order to execute
o Memory management determines what is in memory

when
– Optimizing CPU utilization and computer response to users

o Memory management activities
– Keeping track of which parts of memory are currently being used

and by whom
– Deciding which processes (or parts thereof) and data to move

into and out of memory
– Allocating and deallocating memory space as needed

o Virtual memory management is an essential part of
most operating systems

26

Topic 3: Storage, I/O, and
Filesystems

27

CPU Memory

Storage

• Hard disk drives
• RAID
• Flash SSDs
• File and I/O systems

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling

Storage Management
o OS provides a uniform, logical view of information

storage
– Abstracts physical properties to logical storage unit - file
– Each medium is controlled by device type (i.e., disk

drive, tape drive)
• Varying properties include access speed, capacity, data-

transfer rate, access method (sequential or random)
o Filesystem management

– Files usually organized into directories
– Access control on most systems to determine who can

access what
– OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and dirs
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media

28

Storage Hierarchy

29

Storage Structure
o Main memory – relatively large storage media that

the CPU can access directly
– Small CPU cache memories are used to speed up average

access time to the main memory at run-time
– Volatile (data loss at power-off)
– Byte-addressable

o Secondary storage – extension of main memory that
provides large nonvolatile storage capacity.
– Magnetic disks
– Electronic disks -- Solid state disks (SSDs)
– Non-volatile (i.e., persistent)
– Non byte-addressable

30

Storage Systems Tradeoffs
o Storage systems organized in hierarchy

– Speed
– Cost
– Volatility
– Density

o Faster access time, greater cost per bit
o Greater capacity (density), lower cost per bit
o Greater capacity (density), slower access

speed

31

32

Storage hierarchy – Increased
Complexity

33

Storage hierarchy – Increased
Complexity

The CPU-Memory Gap
The gap widens between memory, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Disk

DRAM

CPU

SSD

SRAM

34Data decades ago, but trends are the same

Caching
o Skew rule: 80% requests hit on 20% hottest data
o Important principle, performed at many levels in a

computer (in hardware, operating system, software)
o Information in use copied from slower to faster

storage temporarily
o Faster storage (cache) checked first to determine if

information is there
– If it is, information used directly from the cache (fast)
– If not, data copied to cache and used there

o Cache smaller than storage being cached
– Cache management important design problem
– Cache size and replacement policy

35

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40
cycles

Block size: 64 bytes

36

Migration of Integer A from Disk to Register

o Multitasking environments must be careful to use most
recent value, no matter where it is stored in the storage
hierarchy

o Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have the most
recent value in their cache

o Distributed environment situation even more complex
– Several copies of a piece of data can exist

37

38

CPU Memory

Storage

• Hard disk drives
• RAID
• Flash SSDs
• File and I/O systems

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling

Advanced Topics (Miscellaneous)

• Distributed systems

Distributed Systems as a DC/OS

39

Distributed Systems as a DC/OS

40

Distributed Systems as a DC/OS

41

Why do you take this course?

42

General Learning Goals

43

1. Grasp basic knowledge about Operating
Systems and Computer Systems software

2. Learn important systems concepts in general
– Multi-processing/threading, synchronization
– Scheduling
– Caching, memory, storage
– And more…

3. Gain hands-on experience in
writing/hacking/designing large systems
software

Why do you take this course?
o The OS concepts are everywhere

– Fundamental OS techniques broadly generalize to
widely-used systems technique

• Scheduling
• Concurrency
• Memory management
• Caching
• …

44

One example: Memcached

45

On-disk data

Scheduler

Worker
thread pool

In-memory data

Ring-buffer

Thread
Scheduling

Producer-
consumer sync

Race condition,
RW locks

Virtual memory
& caching

o Memcached is a
distributed in-memory
object cache system
– Written in C
– In-memory hash table
– Multi-threading

Memcached can be treated as a
user-space mini-OS

Next class…
o Process abstraction

47

