CS 471 Operating Systems

Yue Cheng

George Mason University
Fall 2019

Announcement

o OS/161 Project 0 released on Blackboard

o Please complete the Google Form for OS/161
team composition

What is a Process?

What is a Process?

o Programs are code (static entity)
o Processes are running programs

o Java analogy
— class -> “program”
— object -> “process”

What is in a Process?

Process

What things change as a program runs?

What is in a Process?

Process

memory

Code
Heap

Stack

What things change as a program runs?

What is in a Process?

Process

registers memory

EAX Code
PC Heap
SP

BP Stack

What things change as a program runs?

What is in a Process?

Process

registers memory

EAX Code
PC Heap
SP

BP Stack

/0
FDs

What things change as a program runs?

Peeking Inside

o Processes share code, but each has its own
“context”

o CPU

— Instruction pointer (Program Counter)
— Stack pointer
o Memory

— Set of memory addresses (“address space”)
— cat /proc/<PID>/maps

o Disk

— Set of file descriptors
— cat /proc/<PID>/fdinfo/*

Process Creation

o Principle events that cause process creation
— System initialization
— Execution of a process creation system call by a
running process
— User request to create a process

Process Creation

CPU Memory

Process Creation

CPU Memory
code :
static data
' heap '
5 ! een
i stack i
Process

Program

Loading:
Takes on-disk program

and reads it into the
address space of process

Disk

12

Process Creation

CPU Memory
PC > code
. static data :
heap
stack
Process
i code
_Staticdata
Program

Process Creation (cont.)

o Parent process creates children processes,
which, in turn create other processes, forming a
tree (hierarchy) of processes

o Questions:
— Will the parent and child execute concurrently?

— How will the address space of the child be related to
that of the parent?

— Will the parent and child share some resources?

14

An Example Process Tree

Sched
pid|= 0

pageout
pid = 2

dtlogin
pid = 251

inetd
pid =} 140

Xsession
pid 4 294

telnetdaemon
pid =|7776

Csh
pid = 7778

Netscape emacs
pid = 7785 pid = 8105

sdt_shel
pid =* 340

Csh
pid = 1400

cat
pid = 2536

>

!

How to View Process Tree in Linux?

o0 % ps auxf
— ‘£’ Is the option to show the process tree

O % pstree

Process Creation in Linux

o Each process has a process identifier (pid)

o The parent executes fork () system call to spawn
a child

o The child process has a separate copy of the
parent’s address space

o Both the parent and the child continue execution at
the instruction following the fork () system call

o The return value for the fork () system call is

o zero value for the new (child) process
o hon-zerdpid for the parent process

o Typically{a o Ss can execute a system call like

execl () toloada ile into memory

Simply the return value of

. _ _ fork() in the context of the new
This is really the pid of the child process child proc 17

man page of fork ()

http://man7.org/linux/man-pages/man2/fork.2.html

RETURN VALUE

top

On success, the PID of the child process is returned in the parent,
and 0 is returned in the child. On failure, -1 is returned in the
parent, no child process is created, and errno is set appropriately.

ERRORS top

EAGAIN A system-imposed limit on the number of threads was
encountered. There are a number of limits that may trigger
this error:

*

the RLIMIT NPROC soft resource limit (set via
setrlimit(2)), which limits the number of processes and
threads for a real user ID, was reached;

the kernel's system-wide limit on the number of processes
and threads, /proc/sys/kernel/threads-max, was reached (see
proc(5));

the maximum number of PIDs, /proc/sys/kernel/pid max, was
reached (see proc(5)); or

the PID limit (pids.max) imposed by the cgroup "process
number"” (PIDs) controller was reached.

18

http://man7.org/linux/man-pages/man2/fork.2.html

Example Program with fork ()

void main () {
int pid;

pid = fork();

if (pid <0) {/* error_msg */}

else if (pid ==0) { /* child process */
execl(“/bin/Is”, “Is”, NULL); /* execute Is */

1} else { /* parent process */
/* parent will wait for the child to complete */
wait(NULL);
exit(0);

}

return;

19

A Very Simple Shell using fork ()

while (1) {

type_prompt();

read_command(cmd);

pid = fork();

if (pid <0) {/* error_msg */}

else if (pid ==0) { /* child process */
execute_command(cmd);

} else { /* parent process */
wait(NULL);

}

20

More example: fork 1

1 #include <sys/types.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <unistd.h>

5

6 int number = 7: What happens to the value of
7

e number?

9 pid_t pid;

10 printf("\nRunning the fork example\n");

11 printf("The initial value of number is %d\n", number);

12

13 pid = fork();

14 printf("PID is %d\n", pid);

15

16 if (pid == 0) {

117/ number *= number;

18 printf("\tIn the child, the number is %d —— PID is %d\n", number, pid);
19 return 0;
20 } else if (pid > 0) {
21 wait(NULL);
22 printf("In the parent, the number is %d\n", number);
23 }
24
25 return 0;
26 }

Results

Jtorkexample1

Running the fork example
The initial value of number is 7
PID is 2137
PID is 0
In the child, the number is 49 -- PID is O
In the parent, the number is 7

Further more example: fork 2

Ooo~NOOULTLE WNR

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

What happens to the value of
number?

int number = 7;

int main(void) {
pid_t pid;
printf("\nRunning the fork example\n");
printf("The initial value of number is %d\n", number);

pid = fork();
printf("PID is %d\n", pid);

if (pid = 0) {
number *= number;
fork();
printf("\tIn the child, the number is %d —— PID is %d\n", number, pid);
return 0;
} else if (pid > @) {
wait (NULL);
printf("In the parent, the number is %d\n'", number);

}

return 0;

23

Results

Jtorkexample2

Running the fork example
The initial value of number is 7
PID is 2164
PIDis O
In the child, the number is 49 -- PID is O
In the child, the numberis 49 -- PID is O
In the parent, the number is 7

execl vS. fork

1 #include <sys/types.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <unistd.h>

]

6 int number = 7;

7

8 int main(void) {

9 pid_t pid;

10 printf("\nRunning the execl example\n");

1 by | pid = fork();

12 printf("PID is %d\n", pid);

13

14 7 Wenla) = () Al

15 printf("\tIn the execl child, PID is %d\n", pid);
16 execl("./forkexample2", "forkexample2", NULL);
17 return 0;

18 } else if (pid > 0) {

19 wait (NULL);
20 printf("In the parent, done waiting\n");
21 }
22
23 return 0;

Results

Jexeclexample

Running the execl example
PID is 2179

PIDis O

In the execl child, PIDis O

Running the fork example

The initial value of number is 7
PID is 2180

PIDis O

In the child, the number is 49 -- PID is O
In the child, the number is 49 -- PID is O
In the parent, the number is 7

— forkexample2

In the parent, done waiting

26

