
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019



Process Creation

2

Before, PC points to 
kernel code

PC



Process Creation

3

PC

Now, after process 
creation, CPU begins 
directly executing 
process code



Process Creation

4

PC

Challenge: how to 
prevent process from 
doing “OS kernel stuff”?



Limited Direct Execution (LDE)

5



Limited Direct Execution (LDE)
o Low-level mechanism that implements the user-

kernel space separation

o Usually let processes run with no OS 
involvement

o Limit what processes can do
o Offer privileged operations through well-defined 

channels with help of OS

6



Limited Direct Execution (LDE)

7



Limited Direct Execution (LDE)

8

User-level process

OS

LDE 
mechanism



What to limit?
o General memory access
o Disk I/O
o Certain x86 instructions

9



How to limit?
o Need hardware support
o Add additional execution mode to CPU

o User mode: restricted, limited capabilities
o Kernel mode: privileged, not restricted

o Processes start in user mode
o OS starts in kernel mode

10



LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do anything) 

if it’s not running?

11



LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do anything) 

if it’s not running?

12



Taking Turns

13

Process

OS

Hardware



Taking Turns

14

Process

OS

Hardware

Running

T1
Time:



Taking Turns

15

Process

OS

Hardware

Running

T1
Time:

T2



Taking Turns

16

Process

OS

Hardware

Running

T1
Time:

T2 T3



Taking Turns

17

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4



Taking Turns

18

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Question: when/how do we switch to OS?



Exceptions

19



Interrupt

20

Process

OS

Hardware



Interrupt

21

Process

OS

Hardware key



Interrupt

22

Process

OS

Hardware key

handler Hardware interrupt



Interrupt

23

Process

OS

Hardware



System Call

24

Process

OS

Hardware



System Call

25

Process

OS

Hardware

open



System Call

26

Process

OS

Hardware

open

handler System call “trap”



System Call

27

Process

OS

Hardware



Exception Handling

28



Exception Handling: Implementation

o Goal: Processes and hardware should be able 
to call functions in the OS

o Corresponding OS functions should be:
– At well-known locations
– Safe from processes

29



30

disk

network

timer
keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 



31

disk

network

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows this through lidt instruction) 

tick
timer



32

disk

network

timer
keyboard

system call

Trap table

How to handle variable number of system calls?



33

disk

network

timer
keyboard

system call

Trap table

open
read
write

syscall table



34

disk

network

timer
keyboard

system call

Trap table

open
read
write

syscall table

syscall



35

disk

network

timer
keyboard

system call

Trap table

read
write

syscall table
open

syscall



Safe Transfers
o Only certain kernel functions should be callable
o Privileges should escalate at the moment of the 

call
– Read/write disk
– Kill processes
– Access all memory
– … 

36



LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do 

anything) if it’s not running?

37



Sharing (virtualizing) the CPU

38



How does OS share… 
o CPU?

o Memory?

o Disk?

39



How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)

40



How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)

41

Today



How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)

42

Today

Goal: processes should not know they are sharing
(each process will get its own virtual CPU)



What to do with processes that are 
not running?

o A: Store context in OS struct

43



What to do with processes that are 
not running?

o A: Store context in OS struct

o Context:
– CPU registers
– Open file descriptors
– State (sleeping, running, etc.)

44



What to do with processes that are 
not running?

o A: Store context in OS struct

o Context:
– CPU registers
– Open file descriptors
– State (sleeping, running, etc.)

45



Process State Transitions

46

Running

Blocked

Scheduled

Descheduled

Event waitEvent occurs

Ready



Process State Transitions

47

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled



Process State Transitions

48

Running

Blocked

I/O: initiateI/O: done

Ready

View process state with “ps xa”

Scheduled

Descheduled



How to transition? (mechanism)
When to transition? (policy)

49

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled



Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process 

runs

o Can OS do anything while it’s not running?
o A: it can’t

50



Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process 

runs

o Can OS do anything while it’s not running?
o A: it can’t

o Solution: Switch on interrupts
– But what interrupt?

51



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

52



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

53

P1



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

54

P1
yield() call



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

55

yield() call

OS



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

56

OS



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

57

yield() return

OS



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

58

yield() return

P2



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

59

P2



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

60

yield() call

P2



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

61

yield() call

OS



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

62

OS



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

63

yield() return

OS



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

64

yield() return

P1



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

65

P1



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

66

P1

Critiques?



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

o Cooperative approach is a passive approach

67

P1

Critiques?
What if P1 never calls yield()?



Non-Cooperative Approach
o Switch contexts on timer (hardware) interrupt

o Set up before running any processes

o Hardware does not let processes prevent this
– Hardware/OS enforces process preemption

68



69

Non-Cooperative Approach



70

Non-Cooperative Approach



71

Non-Cooperative Approach



72

Non-Cooperative Approach



73

Non-Cooperative Approach



Preemptive Approach

74

P1



Preemptive Approach

75

P1

tick



Preemptive Approach

76

tickOS



Preemptive Approach

77

OS



Preemptive Approach

78

OS



Preemptive Approach

79

P2



Preemptive Approach

80

P2



Preemptive Approach

81

P2

tick



Preemptive Approach

82

tickOS



Preemptive Approach

83

OS



Preemptive Approach

84

OS



Preemptive Approach

85

P1



Preemptive Approach

86

P1



Summary
o Smooth context switching makes each process 

think it has its own CPU (virtualization!)
o Limited direct execution makes processes fast
o Hardware provides a lot of OS support
– Limited direct execution
– Timer interrupt
– Automatic register saving

87


