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Process Creation
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Before, PC points to 
kernel code
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PC

Now, after process 
creation, CPU begins 
directly executing 
process code



Process Creation
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PC

Challenge: how to 
prevent process from 
doing “OS kernel stuff”?



Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)
o Low-level mechanism that implements the user-

kernel space separation

o Usually let processes run with no OS 
involvement

o Limit what processes can do
o Offer privileged operations through well-defined 

channels with help of OS
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Limited Direct Execution (LDE)
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What to limit?
o General memory access
o Disk I/O
o Certain x86 instructions
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How to limit?
o Need hardware support
o Add additional execution mode to CPU

o User mode: restricted, limited capabilities
o Kernel mode: privileged, not restricted

o Processes start in user mode
o OS starts in kernel mode
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LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do anything) 

if it’s not running?
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Taking Turns
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Taking Turns
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Question: when/how do we switch to OS?
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Interrupt
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System Call
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System Call
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System Call
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Exception Handling
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Exception Handling: Implementation

o Goal: Processes and hardware should be able 
to call functions in the OS

o Corresponding OS functions should be:
– At well-known locations
– Safe from processes

29



30

disk

network

timer
keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 
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disk

network

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows this through lidt instruction) 

tick
timer
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How to handle variable number of system calls?
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Safe Transfers
o Only certain kernel functions should be callable
o Privileges should escalate at the moment of the 

call
– Read/write disk
– Kill processes
– Access all memory
– … 
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LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do 

anything) if it’s not running?
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Sharing (virtualizing) the CPU
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How does OS share… 
o CPU?

o Memory?

o Disk?
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How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)
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How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)
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Today

Goal: processes should not know they are sharing
(each process will get its own virtual CPU)



What to do with processes that are 
not running?

o A: Store context in OS struct
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What to do with processes that are 
not running?

o A: Store context in OS struct

o Context:
– CPU registers
– Open file descriptors
– State (sleeping, running, etc.)
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Process State Transitions
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Process State Transitions
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Process State Transitions
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Running
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I/O: initiateI/O: done
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View process state with “ps xa”
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Descheduled



How to transition? (mechanism)
When to transition? (policy)
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Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process 

runs

o Can OS do anything while it’s not running?
o A: it can’t
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Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process 

runs

o Can OS do anything while it’s not running?
o A: it can’t

o Solution: Switch on interrupts
– But what interrupt?
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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– Special yield() system call
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Cooperative Approach
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– Special yield() system call
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Cooperative Approach
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– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

o Cooperative approach is a passive approach
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P1

Critiques?
What if P1 never calls yield()?



Non-Cooperative Approach
o Switch contexts on timer (hardware) interrupt

o Set up before running any processes

o Hardware does not let processes prevent this
– Hardware/OS enforces process preemption
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Non-Cooperative Approach



Preemptive Approach
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Preemptive Approach
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77

OS



Preemptive Approach

78

OS



Preemptive Approach

79

P2



Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Summary
o Smooth context switching makes each process 

think it has its own CPU (virtualization!)
o Limited direct execution makes processes fast
o Hardware provides a lot of OS support
– Limited direct execution
– Timer interrupt
– Automatic register saving
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