CS 471 Operating Systems

Yue Cheng

George Mason University
Fall 2019

Review: Threads

Threads

o Processes vs. threads

— Parent and child processes do not share address
space

— Inter-process communication w/ message passing or
shared memory

— Threads created by one process share address
space, open files, global variables, etc.

— Much cheaper and more flexible inter-thread
communication and cooperation

O 0 N9 O UG b W N =

BNNP—‘P—‘P—‘P—‘)—*P—‘P—‘P—‘P—‘%—‘
= O WO 00NN U N =R O

A Simple Example Using pthread

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void xmythread(void =*xarg) {
princE {"%s\n", (char %) arqg):;
return NULL;

int
main (int argc, char xargv[]) {
pthread_t pl, p2;

1k o S < o

printf ("main: begin\n");

rc = pthread_create(&pl, NULL, mythread, "A"); assert(rc == 0);
rc = pthread create(&p2, NULL, mythread, "B"); assert(rc == 0);
// join waits for the threads to finish

rc = pthread_join(pl, NULL); assert(rc == 0);

rc = pthread_join(p2, NULL); assert(rc == 0);

printf ("main: end\n");
return 0;

Thread Trace 1

main Thread1 Thread?2

starts running
prints “main: begin”
creates Thread 1

creates Thread 2
waits for T1

Thread Trace 1

main Thread1 Thread?2

starts running

prints “main: begin”

creates Thread 1

creates Thread 2

waits for T1
runs
prints “A”
returns

Thread Trace 1

main Thread1 Thread?2

starts running
prints “main: begin”

creates Thread 1

creates Thread 2

waits for T1
runs
prints “A”
returns

waits for T2

Thread Trace 1

main

Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1

creates Thread 2
waits for T1

waits for T2

runs
prints “A”
returns

runs
prints “B”
returns

Thread Trace 1

main

Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1

creates Thread 2
waits for T1

waits for T2

prints “main: end”

runs

prints “A”

returns
runs
prints “B”
returns

Thread Trace 2

main Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1

10

Thread Trace 2

main Thread1 Thread2

starts running

prints “main: begin”

creates Thread 1
runs
prints “A”
returns

11

Thread Trace 2

main Thread1 Thread2

starts running

prints “main: begin”

creates Thread 1
runs
prints “A”
returns

creates Thread 2

12

Thread Trace 2

main

Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1

creates Thread 2

runs
prints “A”
returns

runs

prints “B”
returns

13

Thread Trace 2

main

Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1

creates Thread 2

waits for T1

returns immediately; T1 is done
waits for T2

returns immediately; T2 is done
prints “main: end”

runs

prints “A”

returns
runs
prints “B”
returns

14

Thread Trace 2

main Thread1 Thread2

starts running
prints “main: begin”

creates Thread 1
runs
prints “A”
returns
creates Thread 2
runs
prints “B”
returns

waits for T1

returns immediately; T1 is done
waits for T2

returns immediately; T2 is done
prints “main: end”

What would a 3 thread trace look like?

15

Synchronization
o Race Conditions
o The Critical Section Problem

o Synchronization Hardware and Locks

kom\JO\U'l-bWNl—“

#include <stdio.h>
#include "common.h"

static volatile int counter = 0; Th readed Cou nting Example

i/
// mythread()
//
// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.
//
void xmythread(void *arg)
{

printf("“%s: begin\n", (char %) arg);

inEar

for (i = 0; i < 1e7; i++) {

counter = counter + 1;

;rintf("%s: done\n", (charx) arg);

return NULL; $ git clone https://github.com/tddg/demo-ostep-code
¥ $ cd demo-ostep-code/threads-intro
// $ make
;;manﬂ) $./tl <loop count>

// Just launches two threads (pthread_create) .
// and then waits for them (pthread_join) Try |t yOU I’SGlf
//
int main(int argc, char xargv[])
{
pthread_t pl, p2;
printf("main: begin (counter = %d)\n", counter);
Pthread_create(&pl, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(pl, NULL);

Pthread_join(p2, NULL);

printf("main: done with both (counter = %d)\n", counter);

return 0; 17

https://github.com/tddg/demo-ostep-code

Back-to-Back Runs

Run 1...

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done

main: done with both (counter = 107064 38)

Run 2...

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done

main: done with both (counter = 11852529)

What exactly Happened??

What exactly Happened??

% otool -t -v thread rc [Mac OS X]
% objdump -d thread rc [Linux]

0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1, Y%eax
0000000100000d5b movl %eax, 0x2f8e

counter = counter + 1;
20

Concurrent Access to the Same

Memory Address
OS Thread 1 Thread 2 Value
v
Enter into critical section
movl 0x2f8e, %eax 50
add| $0x1, Y%eax 51

Time

Concurrent Access to the Same
Memory Address

0S Thread 1 Thread 2 Value
v

I
1
Enter into critical section I
movl 0x2f8e, %eax :
add| $0x1, Y%eax :

|

I

50
51
Interrupt
Time Save T1’s state I
Restore T2's state

movl Ox2f8e, %eax
add| $0x1, Y%eax
movl %eax, 0x2f8e

Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value
I I
v :
Enter into critical section I
movl 0x2f8e, %eax : 50
add| $0x1, %eax : 51
Interrupt '
Time Save T1’s state '+
Restore T2's state
movl 0x2f8e, %eax 50
add| $0x1, %eax 51
movl %eax, 0x2f8e 51

Concurrent Access to the Same
Memory Address

0S Thread 1 Thread 2 Value
v

Enter into critical section

|
|
I
movl 0x2f8e, %eax : 50
I
|
!

add| $0x1, %eax 51
Interrupt
Time Save T1’s state I

Restore T2's state
movl Ox2f8e, %eax 50
add| $0x1, %eax 51
movl %eax, 0x2f8e 51

Interrupt

Save T2’s state
Restore T1’s state

Time

Concurrent Access to the Same
Memory Address

0S Thread 1 Thread 2
v

Enter into critical section
movl 0x2f8e, %eax
add| $0x1, %eax
Interrupt
Save T1’s state
Restore T2's state

v
movl 0x2f8e, %eax
add| $0x1, %eax
movl %eax, 0x2f8e
Interrupt
Save T2’s state
Restore T1's state

<4

movl %eax, 0x2f8e

Value

50
51

50
51
51

Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value
! |
v I
Enter into critical section I
movl 0x2f8e, %eax : 50
add| $0x1, Y%eax | 51
Interrupt : !
Time | Save T1's state : '+
Restore T2's state I
I movl Ox2f8e, %eax 50
; addl $0x1, %eax 51
| movl %eax, 0x2f8e 51
Interrupt :
Save T2’s state |
Restore T1’s state :
v
movl %eax, 0x2f8e 51

Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value
! |
v :
Enter into critical section I
movl 0x2f8e, %eax : 50
add| $0x1, Y%eax | 51
Interrupt : !
Time | Save T1's state : '+
Restore T2's state I
I movl Ox2f8e, %eax 50
; addl $0x1, %eax 51
| movl %eax, 0x2f8e 51
Interrupt :
Save T2’s state |
Restore T1’s state :
v
movl %eax, 0x2f8e 51

Race Conditions

o Observe: In a time-shared system, the exact
instruction execution order cannot be
predicted

— Deterministic vs. Non-deterministic

o Any possible orders can happen, which result in
different output across runs

28

Race Conditions

o Situations like this, where multiple processes
are writing or reading some shared data and the
final result depends on who runs precisely
when, are called race conditions

— A serious problem for any concurrent system using
shared variables

o Programmers must make sure that some high-
level code sections are executed atomically
— Atomic operation: It completes in its entirety without

worrying about interruption by any other potentially
conflict-causing process

29

The Critical-Section Problem

o N processes/threads all competing to access the
shared data

o Each process/thread has a code segment, called
critical section (critical region), in which the shared
data is accessed

o Problem — ensure that when one process is |
executing in its critical section, no other process is
allowed to execute in that critical section

o The execution of the critical sections by the
processes must be mutually exclusive in time

Mutual Exclusion

A enters critical region

/ A leaves critical region

Process A | I
I I I I
I I I I
| | B attempts to | B enters : B leaves
| : enter critical I critical region | critical region
region
I | I I
I |
ProceSS B
I I J
| | ki | |
l l B blocked [|
T T, T, Ty

Solving Critical-Section Problem

Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two processes may be simultaneously inside the same critical
section

Bounded Waiting:

No process should have to wait forever to enter a critical section
Progress:

NoO process executing a code segment unrelated to a given critical

section can block another process trying to enter the same critical
section

Arbitrary Speed:

No assumption can be made about the relative speed of different
processes (though all processes have a non-zero speed)

32

Ul = W N =

Using Lock to Protect Shared Data

o Suppose that two threads A and B have access
to a shared variable “balance’

Thread A: Thread B:

balance = balance + 1 balance = balance + 1

lock_t mutex; // some globally—-allocated lock ’'mutex’

lock (&mutex) ;
balance = balance + 1;
unlock (&mutex) ;

Locks

o Alock is a variable

o Two states

— Available or free
— Locked or held

o lock (): tries to acquire the lock

o unlock () : releases the lock that has been
acquired by caller

34

Building a Lock

o Needs help from hardware + OS

o A number of hardware primitives to support a
lock

o Goals of a lock

— Basic task: Mutual exclusion
— Fairness
— Performance

35

First Attempt: A Simple Flag

o How about just using Loads/stores Instructions?

O 0 NN O O b W N =

e T o T
N Gl b W N = O

typedef struct _ lock_t { int flag; } lock_t;

void init (lock_t *mutex) {
// 0 —> lock is available, 1 -> held
mutex—>flag = 0;

}

void lock (lock_t =*mutex) {

while (mutex->flag == 1) // TEST the flag
; // spin-wait (do nothing)
mutex->flag = 1; // now SET it!

}
void unlock (lock_t *mutex) {

mutex—->flag = 0;
}

36

First Attempt: A Simple Flag

o How about just using Loads/stores instructions?

1 typedef struct _ lock_t { int flag; } lock_t;
2

3 void init (lock_t =*mutex) {

4 // 0 —> lock is available, 1 -> held

5 mutex—>flag = 0;

6 }

7

8 void lock (lock_t =mutex) {

9 while (mutex->flag == 1) // TEST the flag
10 ; // spin-wait (do nothing) » A spin lock
11 mutex—->flag = 1; // now SET it!

—
N

}

=
= W

void unlock (lock_t *mutex) {
mutex—->flag = 0;

=
N U

}

37

First Attempt: A Simple Flag

o How about just using Loads/stores Instructions?

1 typedef struct _ lock_t { int flag; } lock_t;
2

3 void init (lock_t =*mutex) {

4 // 0 —> lock is available, 1 -> held

5 mutex—>flag = 0;

6 }

74

8 void lock (lock_t =mutex) {

9 while (mutex->flag == 1) // TEST the flag
10 ; // spin-wait (do nothing) » A spin lock
11 mutex—->flag = 1; // now SET it!

—
N

}

=
= W

void unlock (lock_t *mutex) {
mutex—>flag = 0;

} What’s the problem?

38

=
N U

First Attempt: A Simple Flag
Flag is 0 initially

Thread 1 Thread 2

call lock ()
while (flag == 1)
interrupt: switch to Thread 2

39

First Attempt: A Simple Flag
Flag is 0 initially

Thread 1 Thread 2

call lock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag == 1)

40

First Attempt: A Simple Flag

Flag is setto 1 by T2

Thread 1 Thread 2

call lock ()
while (flag == 1)
interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag =1,
interrupt: switch to Thread 1

41

First Attempt: A Simple Flag

Flag is set to 1 again! Two threads both in

Critical Section

Thread 1 Thread 2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag = 1;

flag =1; // set flag to 1 (too!)

interrupt: switch to Thread 1

42

First Attempt: A Simple Flag

Flag is set to 1 again! Two threads both in

Critical Section
Thread 1 Thread 2

call 1lock ()
while (flag == 1)
interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1
flag = 1; // set flag to 1 (too!)

Reason:
Lock operation is not atomic!
And therefore, no mutual exclusion!

43

Getting Help from the Hardware

o One solution supported by hardware may be to
use interrupt capability

do { 1 void lock() {
lock() 2 DisablelInterrupts();
critical section; 3}
unlock() 4 void unlock () {
remainder section; s EnableInterrupts () ;
} while (1); 6 1}

44

Getting Help from the Hardware

o One solution supported by hardware may be to
use interrupt capability

do { 1 void lock() {
lock() 2 DisablelInterrupts();
critical section; 3
unlock() 4 void unlock () {
remainder section; s EnableInterrupts () ;
} while (1); 6 1}

Are we done??

45

Ul B W N =

Synchronization Hardware

o Many machines provide special hardware
iInstructions to help achieve mutual exclusion

o The TestAndSet (TAS) instruction tests and
modifies the content of a memory word atomically

o TAS returns old value pointed to by o1d ptr and
updates said value to new
int TestAndSet (int xold_ptr, int new) {]
int old = xold_ptr; // fetch old value at oldptr} Operations

x0ld_ptr = new; // store 'new’ into old_ptr performed
return old; // return the old value atomically!

46

Mutual Exclusion with TAS

o Initially, lock’s flag set to O

typedef struct __ lock_t {
int f£lag;
} doclk T

waid dndit (lock ‘€ #1lock)y 1
// 0 indicates that lock is available, 1 that it is held
lock->flag = 0;

}

O 00 N N U W N

—_
o

void Jlock (lock © *lock) |
while (TestAndSet(&lock—>flag, 1) == 1

) .
;_// spin-wait (do nothing)]—> A correct spin lock

—_
[

—
N

[}
W

}

[Y
(62" -8

void unlock (lock_t =*xlock) {
lock—->flag = 0;

_
N

}

47

Busy Waiting and Spin Locks

o This approach is based on busy waiting

— If the critical section is being used, waiting processes
loop continuously at the entry point

o A binary “lock” variable that uses busy waiting

IS called a spin lock
— Processes that find the lock unavailable “spin” at the entry

o It actually works (mutual exclusion)

o Disadvantages?
— Fairness?
— Performance?

48

Busy Waiting and Spin Locks

o This approach is based on busy waiting

— If the critical section is being used, waiting processes
loop continuously at the entry point

o A binary “lock” variable that uses busy waiting
IS called a spin lock
— Processes that find the lock unavailable “spin” at the entry

o It actually works (mutual exclusion)

o Disadvantages?

— Fairness? (A: No. Heavy contention may cause
starvation)

— Performance? (A: Busy waiting wastes CPU cycles)

49

A Simple Approach:
Just Yield CA4R)!

o When you are going to Spin, just give up the
CPU to another process/thread

o NN G bW N

[S G
N = © O

vord anitif) -
flag = 0;
}
void lock () {
while (TestAndSet (&flag, 1) == 1)

yield(); // give up the CPU

}

void mnlockl) 4
flag = 0;
}

Lock Worksheet

