CS 471 Operating Systems

Yue Cheng

George Mason University Fall 2019

Review: Threads

Threads

Processes vs. threads

- Parent and child processes do not share address space
- Inter-process communication w/ message passing or shared memory
- Threads created by one process share address space, open files, global variables, etc.
- Much cheaper and more flexible inter-thread communication and cooperation

A Simple Example Using pthread

```
#include <stdio.h>
1
    #include <assert.h>
2
3
    #include <pthread.h>
4
    void *mythread(void *arg) {
5
        printf("%s\n", (char *) arg);
6
7
        return NULL;
8
    }
9
10
    int
    main(int argc, char *argv[]) {
11
        pthread_t p1, p2;
12
        int rc;
13
        printf("main: begin\n");
14
        rc = pthread_create(&p1, NULL, mythread, "A"); assert(rc == 0);
15
        rc = pthread_create(&p2, NULL, mythread, "B"); assert(rc == 0);
16
        // join waits for the threads to finish
17
        rc = pthread_join(p1, NULL); assert(rc == 0);
18
        rc = pthread_join(p2, NULL); assert(rc == 0);
19
        printf("main: end\n");
20
        return 0;
21
    }
22
                                                                        4
```

main

Thread 1 Thread2

starts running prints "main: begin" creates Thread 1 creates Thread 2 waits for T1

main

Thread 1 Thread2

starts running prints "main: begin" creates Thread 1 creates Thread 2 waits for T1

> runs prints "A" returns

main

Thread 1 Thread2

starts running prints "main: begin" creates Thread 1 creates Thread 2 waits for T1

> runs prints "A" returns

waits for T2

main	Thread 1	Thread2
starts running		
prints "main: begin"		
creates Thread 1		
creates Thread 2		
waits for T1		
	runs	
	prints "A"	
	returns	
waits for T2		
		runs

_

prints "B" returns

_

main	Thread 1	Thread2
starts running		
prints "main: begin"		
creates Thread 1		
creates Thread 2		
waits for T1		
	runs	
	prints "A"	
	returns	
waits for T2		
		runs
		prints "B"
		returns
prints "main: end"		

main

Thread 1 Thread2

starts running prints "main: begin" creates Thread 1

main	Thread 1	Thread2
starts running prints "main: begin" creates Thread 1		
	runs	

_

runs prints "A" returns

main	Thread 1	Thread2
starts running		
prints "main: begin"		
creates Thread 1		
	runs	
	prints "A"	

creates Thread 2

returns

main	Thread 1	Thread2
starts running		
prints "main: begin"		
creates Thread 1		
	runs	
	prints "A"	
	returns	
creates Thread 2		
		rune

runs prints "B" returns

Thread2
runs
prints "B"
returns

main	Thread 1	Thread2
starts running		
prints "main: begin"		
creates Thread 1		
	runs	
	prints "A"	
	returns	
creates Thread 2		
		runs
		prints "B" returns
waits for T1		Tetums
returns immediately; T1 is done		
waits for T2		
returns immediately; T2 is done		
prints "main: end"		

What would a 3rd thread trace look like?

Synchronization

- Race Conditions
- The Critical Section Problem
- Synchronization Hardware and Locks

```
#include <stdio.h>
 1
    #include "common.h"
 2
 3
                                               Threaded Counting Example
    static volatile int counter = 0;
 4
 5
 6
    11
 7
    // mythread()
 8
    11
 9
    // Simply adds 1 to counter repeatedly, in a loop
    // No, this is not how you would add 10,000,000 to
10
    // a counter, but it shows the problem nicely.
11
12
    11
    void *mythread(void *arg)
13
14
     {
15
        printf("%s: begin\n", (char *) arg);
16
        int i;
17
        for (i = 0; i < 1e7; i++) {
            counter = counter + 1;
18
19
        }
20
        printf("%s: done\n", (char*) arg);
        return NULL;
21
                                             $ git clone https://github.com/tddg/demo-ostep-code
22
    }
                                             $ cd demo-ostep-code/threads-intro
23
                                             $ make
24
    11
25
    // main()
                                             $ ./t1 <loop count>
26
    11
27
    // Just launches two threads (pthread_create)
                                                                            Try it yourself
    // and then waits for them (pthread_join)
28
29
    11
30
    int main(int argc, char *argv[])
31
    {
32
        pthread_t p1, p2;
        printf("main: begin (counter = %d)\n", counter);
33
34
        Pthread_create(&p1, NULL, mythread, "A");
        Pthread_create(&p2, NULL, mythread, "B");
35
36
37
        // join waits for the threads to finish
38
        Pthread_join(p1, NULL);
39
        Pthread_join(p2, NULL);
        printf("main: done with both (counter = %d)\n", counter);
40
                                                                                                         17
        return 0:
41
```

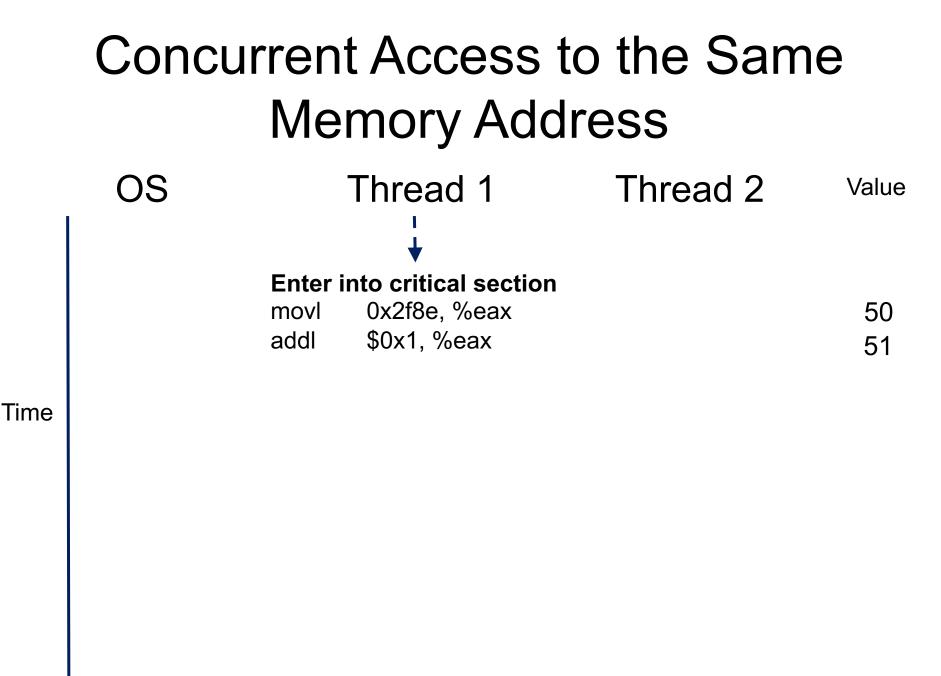
42

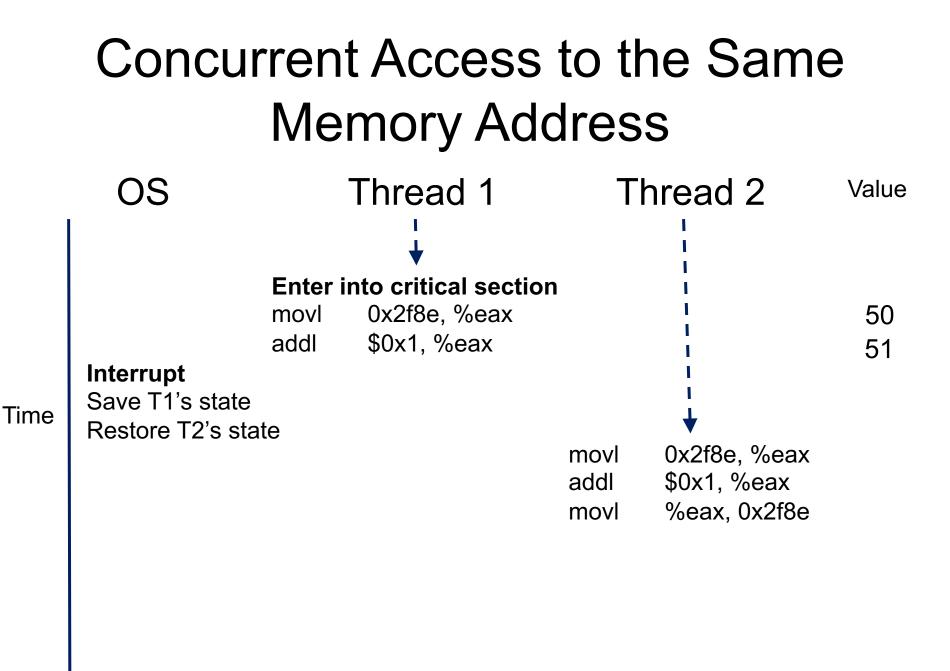
Back-to-Back Runs

Run 1... main: begin (counter = 0) A: begin B: begin A: done B: done main: done with both (counter = 10706438)

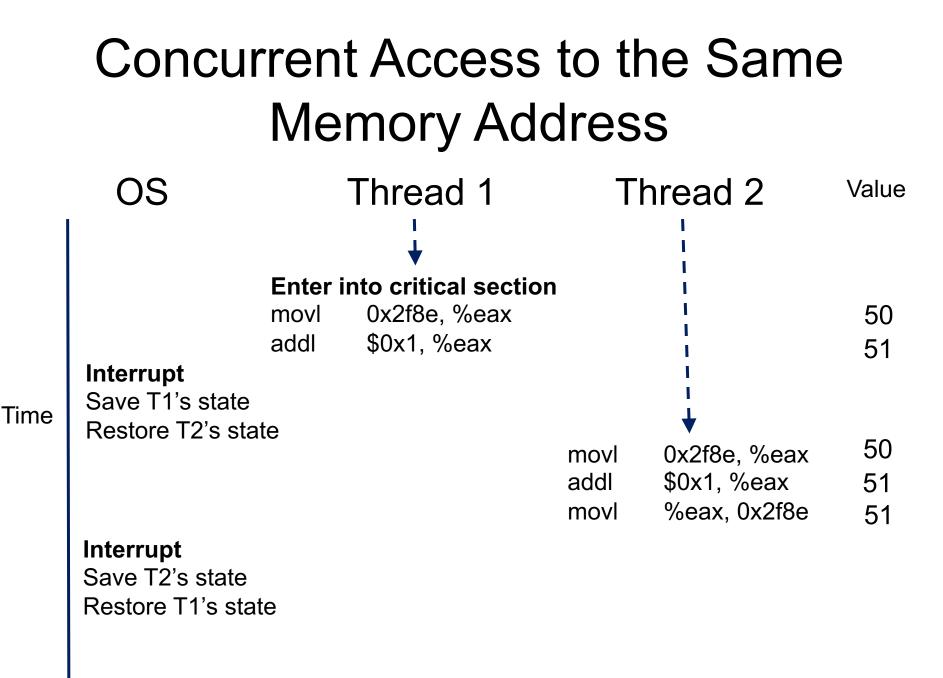
Run 2... main: begin (counter = 0) A: begin B: begin A: done B: done B: done main: done with both (counter = 11852529)

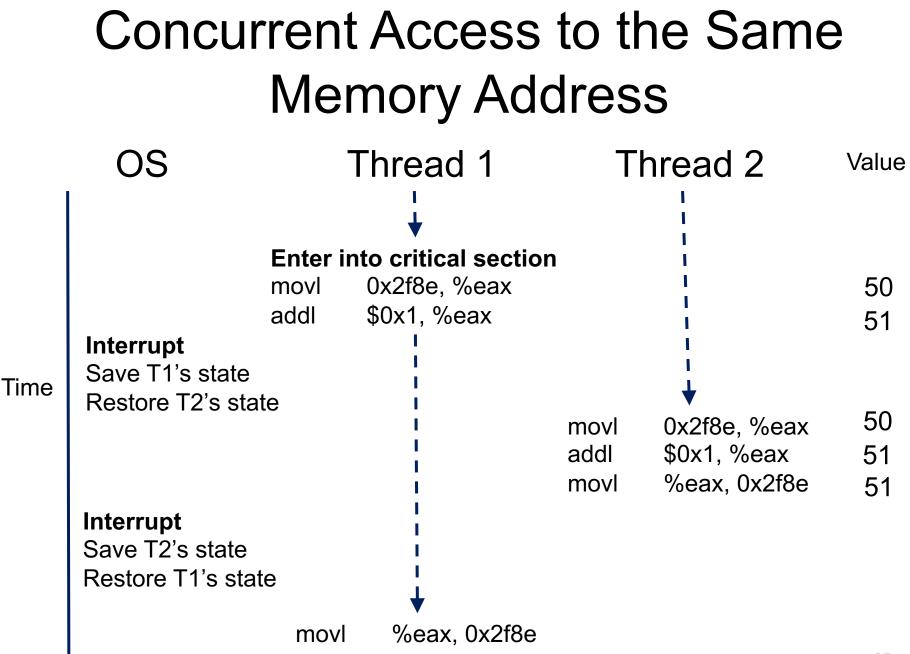
What exactly Happened??

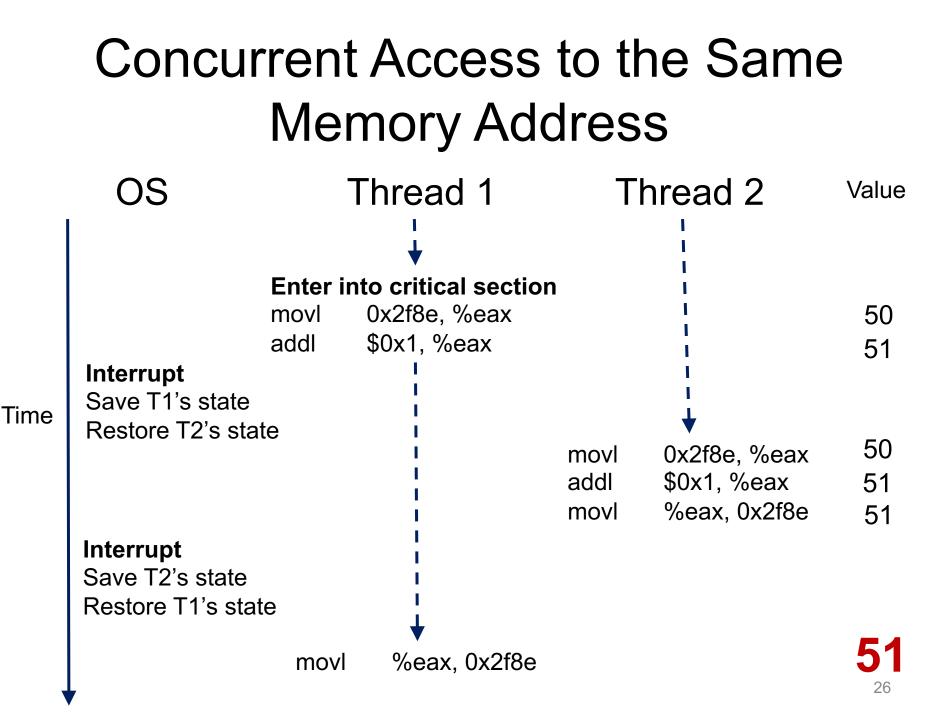

What exactly Happened??

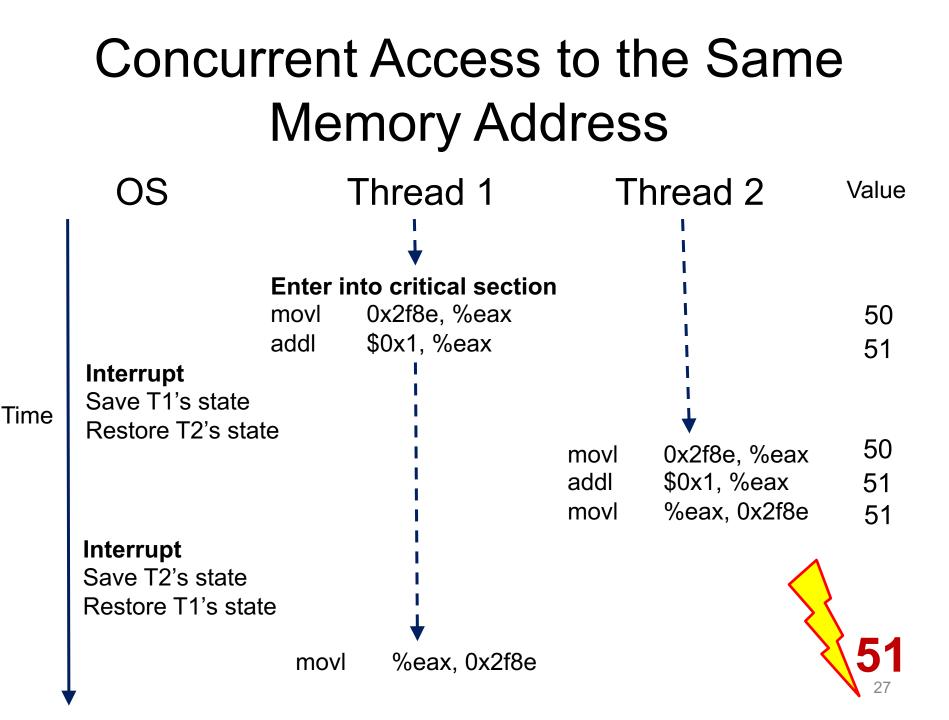

% otool -t -v thread_rc

% objdump -d thread rc


[Mac OS X] [Linux]



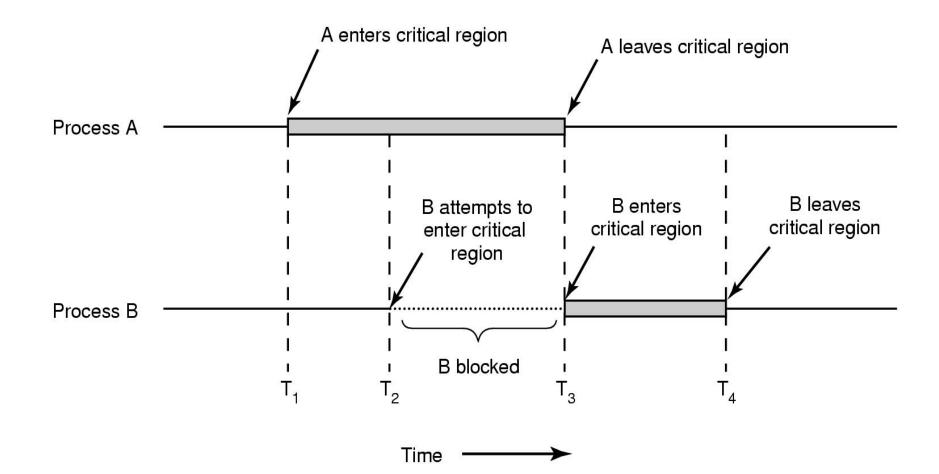




Concurrent Access to the Same Memory Address					Э	
	OS		Thread 1	Т	hread 2	Value
Time	Interrupt Save T1's state Restore T2's sta	movl addl	nto critical section 0x2f8e, %eax \$0x1, %eax	movl addl movl	0x2f8e, %eax \$0x1, %eax %eax, 0x2f8e	50 51 50 51 51

Race Conditions

- Observe: In a time-shared system, the exact instruction execution order cannot be predicted
 - Deterministic vs. Non-deterministic
- Any possible orders can happen, which result in different output across runs


Race Conditions

- Situations like this, where multiple processes are writing or reading some shared data and the final result depends on who runs precisely when, are called race conditions
 - A serious problem for any concurrent system using shared variables
- Programmers must make sure that some highlevel code sections are executed atomically
 - Atomic operation: It completes in its entirety without worrying about interruption by any other potentially conflict-causing process

The Critical-Section Problem

- N processes/threads all competing to access the shared data
- Each process/thread has a code segment, called critical section (critical region), in which the shared data is accessed
- Problem ensure that when one process is executing in its critical section, no other process is allowed to execute in that critical section
- The execution of the critical sections by the processes must be mutually exclusive in time

Mutual Exclusion

Solving Critical-Section Problem

Any solution to the problem must satisfy **four conditions**! Mutual Exclusion:

No two processes may be simultaneously inside the same critical section

Bounded Waiting:

No process should have to wait forever to enter a critical section

Progress:

No process executing a code segment unrelated to a given critical section can block another process trying to enter the same critical section

Arbitrary Speed:

No assumption can be made about the relative speed of different processes (though all processes have a non-zero speed)

Using Lock to Protect Shared Data

 Suppose that two threads A and B have access to a shared variable "balance"

Thread A:

Thread B:

balance = balance + 1

balance = balance + 1

1 lock_t mutex; // some globally-allocated lock 'mutex'

```
. . .
```

2

```
3 lock(&mutex);
```

```
4 balance = balance + 1;
```

```
5 unlock(&mutex);
```

Locks

- A lock is a variable
- Two states
 - Available or free
 - Locked or held
- o lock(): tries to acquire the lock
- unlock(): releases the lock that has been acquired by caller

Building a Lock

- Needs help from hardware + OS
- A number of hardware primitives to support a lock
- $\circ\,$ Goals of a lock
 - Basic task: Mutual exclusion
 - Fairness
 - Performance

First Attempt: A Simple Flag

• How about just using Loads/Stores instructions?

```
typedef struct _ lock t { int flag; } lock t;
1
2
   void init(lock t *mutex) {
3
        // 0 -> lock is available, 1 -> held
4
        mutex -> flag = 0;
5
   }
6
7
    void lock(lock_t *mutex) {
8
        while (mutex->flag == 1) // TEST the flag
9
            ; // spin-wait (do nothing)
10
        mutex->flag = 1; // now SET it!
11
    }
12
13
    void unlock(lock_t *mutex) {
14
        mutex -> flag = 0;
15
16
    }
```

• How about just using Loads/Stores instructions?

```
typedef struct __lock_t { int flag; } lock_t;
1
2
    void init(lock t *mutex) {
3
        // 0 -> lock is available, 1 -> held
4
        mutex -> flag = 0;
5
    }
6
7
    void lock(lock_t *mutex) {
8
        while (mutex->flag == 1) // TEST the flag
9
                                                    → A spin lock
                  spin-wait (do nothing)
10
        mutex - flag = 1;
                                    // now SET it!
11
    }
12
13
    void unlock(lock_t *mutex) {
14
        mutex -> flag = 0;
15
    }
16
```

• How about just using Loads/Stores instructions?

```
typedef struct __lock_t { int flag; } lock_t;
1
2
    void init(lock t *mutex) {
3
        // 0 -> lock is available, 1 -> held
4
        mutex -> flag = 0;
5
6
    }
7
    void lock(lock_t *mutex) {
8
        while (mutex->flag == 1) // TEST the flag
9
                                                  → A spin lock
                 spin-wait (do nothing)
10
        mutex - flag = 1;
                                   // now SET it!
11
    }
12
13
    void unlock(lock_t *mutex) {
14
        mutex -> flag = 0;
15
    }
16
                                   What's the problem?
```

Flag is 0 initially

Thread 1Thread 2call lock()while (flag == 1)interrupt: switch to Thread 2

Flag is 0 initially

Thread 1Thread 2call lock ()while (flag == 1)interrupt: switch to Thread 2

call lock()
while (flag == 1)

Flag is set to 1 by T2

Thread 1	Thread 2
call lock()	
while (flag $== 1$)	
interrupt: switch to Thread 2	
	call lock()
	while (flag $== 1$)
	flag = 1;
	interrupt: switch to Thread 1

Flag is set to 1 again! Two threads both in Critical Section

Thread 1	Thread 2
call lock()	
while (flag $== 1$)	
interrupt: switch to Thread 2	
	call lock()
	while (flag $== 1$)
	flag = 1;
	interrupt: switch to Thread 1
flag = 1; // set flag to 1 (too!)	-

Flag is set to 1 again! Two threads both in Critical Section

Thread 1	Thread 2
call lock()	
while (flag $== 1$)	
interrupt: switch to Thread 2	
	call lock()
	while (flag $== 1$)
	flag = 1;
	interrupt: switch to Thread 1
flag = 1; $//$ set flag to 1 (too!)	-

Reason: Lock operation is not atomic! And therefore, no mutual exclusion!

Getting Help from the Hardware

 One solution supported by hardware may be to use interrupt capability

```
do
                                  void lock() {
                               1
   lock()
                                      DisableInterrupts();
                               2
      critical section;
                               3
                                   }
   unlock()
                                 void unlock() {
                               4
      remainder section;
                                      EnableInterrupts();
                               5
  while (1);
                                   }
                               6
```

Getting Help from the Hardware

 One solution supported by hardware may be to use interrupt capability

```
do
                                  void lock() {
                               1
   lock()
                                      DisableInterrupts();
                               2
       critical section;
                               3
                                   }
   unlock()
                               4 void unlock() {
      remainder section;
                               5
                                      EnableInterrupts();
  while (1);
                                   }
                               6
```

Are we done??

Synchronization Hardware

- Many machines provide special hardware instructions to help achieve mutual exclusion
- The TestAndSet(TAS) instruction tests and modifies the content of a memory word atomically
- TAS returns old value pointed to by old_ptr and updates said value to new

1

2

3

5

Mutual Exclusion with TAS

Initially, lock's flag set to 0

```
typedef struct __lock_t {
1
        int flag;
2
    } lock_t;
3
4
    void init(lock t *lock) {
5
        // 0 indicates that lock is available, 1 that it is held
6
        lock -> flag = 0;
7
    }
8
9
    void lock(lock_t *lock) {
10
        while (TestAndSet(&lock->flag, 1) == 1)
11
                  spin-wait (do nothing) ----- A correct spin lock
12
    }
13
14
    void unlock(lock_t *lock) {
15
        lock -> flag = 0;
16
    }
17
```

Busy Waiting and Spin Locks

- This approach is based on busy waiting
 - If the critical section is being used, waiting processes loop continuously at the entry point
- A binary "lock" variable that uses busy waiting is called a spin lock
 - Processes that find the lock unavailable "spin" at the entry
- It actually works (mutual exclusion)
- o Disadvantages?
 - Fairness?
 - Performance?

Busy Waiting and Spin Locks

- This approach is based on busy waiting
 - If the critical section is being used, waiting processes loop continuously at the entry point
- A binary "lock" variable that uses busy waiting is called a spin lock
 - Processes that find the lock unavailable "spin" at the entry
- It actually works (mutual exclusion)
- o Disadvantages?
 - Fairness? (A: No. Heavy contention may cause starvation)
 - Performance? (A: Busy waiting wastes CPU cycles)

A Simple Approach: Just Yield (Win)!

 When you are going to Spin, just give up the CPU to another process/thread

```
void init() {
1
         flaq = 0;
2
3
     }
4
    void lock() {
5
         while (TestAndSet(&flag, 1) == 1)
6
              yield(); // give up the CPU
7
8
9
    void unlock() {
10
         flaq = 0;
11
12
     }
```


Lock Worksheet