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Review: Threads
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Threads
o Processes vs. threads
– Parent and child processes do not share address 

space
– Inter-process communication w/ message passing or 

shared memory

– Threads created by one process share address 
space, open files, global variables, etc.

– Much cheaper and more flexible inter-thread 
communication and cooperation
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A Simple Example Using pthread
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Thread Trace 1
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Thread Trace 1
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Thread Trace 1
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Thread Trace 1
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Thread Trace 1
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Thread Trace 2
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Thread Trace 2
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Thread Trace 2
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Thread Trace 2

13



Thread Trace 2
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Thread Trace 2

15What would a 3rd thread trace look like?



Synchronization

o Race Conditions

o The Critical Section Problem

o Synchronization Hardware and Locks
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Threaded Counting Example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$ ./t1 <loop_count>

Try it yourself

https://github.com/tddg/demo-ostep-code


Back-to-Back Runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)

Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)

18



What exactly Happened??
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What exactly Happened??
% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1,   %eax
0000000100000d5b movl %eax,  0x2f8e

…
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counter = counter + 1;



Concurrent Access to the Same 
Memory Address
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OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax
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o Observe: In a time-shared system, the exact 
instruction execution order cannot be 
predicted
– Deterministic vs. Non-deterministic

o Any possible orders can happen, which result in 
different output across runs

Race Conditions
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o Situations like this, where multiple processes 
are writing or reading some shared data and the 
final result depends on who runs precisely 
when, are called race conditions
– A serious problem for any concurrent system using 

shared variables

o Programmers must make sure that some high-
level code sections are executed atomically
– Atomic operation: It completes in its entirety without 

worrying about interruption by any other potentially 
conflict-causing process

Race Conditions



The Critical-Section Problem
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o N processes/threads all competing to access the 
shared data

o Each process/thread has a code segment, called 
critical section (critical region), in which the shared 
data is accessed

o Problem – ensure that when one process is 
executing in its critical section, no other process is 
allowed to execute in that critical section

o The execution of the critical sections by the 
processes must be mutually exclusive in time



Mutual Exclusion
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Solving Critical-Section Problem 
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Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two processes may be simultaneously inside the same critical 
section

Bounded Waiting: 
No process should have to wait forever to enter a critical section

Progress:
No process executing a code segment unrelated to a given critical 
section can block another process trying to enter the same critical      
section

Arbitrary Speed:
No assumption can be made about the relative speed of different 
processes (though all processes have a non-zero speed)



Using Lock to Protect Shared Data

o Suppose that two threads A and B have access 
to a shared variable “balance”

Thread A:                       Thread B:
balance = balance + 1       balance = balance + 1
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Locks
o A lock is a variable

o Two states
– Available or free
– Locked or held

o lock(): tries to acquire the lock
o unlock(): releases the lock that has been 

acquired by caller
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Building a Lock
o Needs help from hardware + OS
o A number of hardware primitives to support a 

lock
o Goals of a lock

– Basic task: Mutual exclusion
– Fairness
– Performance
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First Attempt: A Simple Flag
o How about just using Loads/Stores instructions?
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First Attempt: A Simple Flag
o How about just using Loads/Stores instructions?
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A spin lock



First Attempt: A Simple Flag
o How about just using Loads/Stores instructions?
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What’s the problem?

A spin lock



First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is 0 initially



First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is 0 initially



First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is set to 1 by T2



First Attempt: A Simple Flag
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Flag is set to 1 again! Two threads both in 
Critical Section



First Attempt: A Simple Flag
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Reason: 
Lock operation is not atomic!
And therefore, no mutual exclusion!

Flag is set to 1 again! Two threads both in 
Critical Section



Getting Help from the Hardware

o One solution supported by hardware may be to 
use interrupt capability

do {
lock()

critical section;
unlock()

remainder section;
} while (1);
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Getting Help from the Hardware

o One solution supported by hardware may be to 
use interrupt capability

do {
lock()

critical section;
unlock()

remainder section;
} while (1);
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Are we done??



Synchronization Hardware
o Many machines provide special hardware 

instructions to help achieve mutual exclusion 

o The TestAndSet(TAS) instruction tests and 
modifies the content of a memory word atomically

o TAS returns old value pointed to by old_ptr and 
updates said value to new
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Operations 
performed 
atomically!



Mutual Exclusion with TAS
o Initially, lock’s flag set to 0
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A correct spin lock



Busy Waiting and Spin Locks
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o This approach is based on busy waiting
– If the critical section is being used, waiting processes 

loop continuously at the entry point
o A binary “lock” variable that uses busy waiting 

is called a spin lock
– Processes that find the lock unavailable �spin� at the entry

o It actually works (mutual exclusion)
o Disadvantages?
– Fairness?
– Performance?



Busy Waiting and Spin Locks
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o This approach is based on busy waiting
– If the critical section is being used, waiting processes 

loop continuously at the entry point
o A binary “lock” variable that uses busy waiting 

is called a spin lock
– Processes that find the lock unavailable �spin� at the entry

o It actually works (mutual exclusion)
o Disadvantages?
– Fairness? (A: No. Heavy contention may cause 

starvation)
– Performance? (A: Busy waiting wastes CPU cycles)



A Simple Approach: 
Just Yield (Win)!

o When you are going to Spin, just give up the 
CPU to another process/thread
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Lock Worksheet
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