
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019

1

Review: Threads

2

Threads
o Processes vs. threads
– Parent and child processes do not share address

space
– Inter-process communication w/ message passing or

shared memory

– Threads created by one process share address
space, open files, global variables, etc.

– Much cheaper and more flexible inter-thread
communication and cooperation

3

A Simple Example Using pthread

4

Thread Trace 1

5

Thread Trace 1

6

Thread Trace 1

7

Thread Trace 1

8

Thread Trace 1

9

Thread Trace 2

10

Thread Trace 2

11

Thread Trace 2

12

Thread Trace 2

13

Thread Trace 2

14

Thread Trace 2

15What would a 3rd thread trace look like?

Synchronization

o Race Conditions

o The Critical Section Problem

o Synchronization Hardware and Locks

16

17

Threaded Counting Example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$./t1 <loop_count>

Try it yourself

https://github.com/tddg/demo-ostep-code

Back-to-Back Runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)

Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)

18

What exactly Happened??

19

What exactly Happened??
% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1, %eax
0000000100000d5b movl %eax, 0x2f8e

…

20

counter = counter + 1;

Concurrent Access to the Same
Memory Address

21

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Concurrent Access to the Same
Memory Address

22

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51

Value

Concurrent Access to the Same
Memory Address

23

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51

50
51
51

Value

Concurrent Access to the Same
Memory Address

24

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Interrupt
Save T2’s state
Restore T1’s state

50
51

50
51
51

Value

Concurrent Access to the Same
Memory Address

25

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e

50
51

50
51
51

Value

Concurrent Access to the Same
Memory Address

26

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e

50
51

50
51
51

Value

51

Concurrent Access to the Same
Memory Address

27

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e

50
51

50
51
51

Value

51

28

o Observe: In a time-shared system, the exact
instruction execution order cannot be
predicted
– Deterministic vs. Non-deterministic

o Any possible orders can happen, which result in
different output across runs

Race Conditions

29

o Situations like this, where multiple processes
are writing or reading some shared data and the
final result depends on who runs precisely
when, are called race conditions
– A serious problem for any concurrent system using

shared variables

o Programmers must make sure that some high-
level code sections are executed atomically
– Atomic operation: It completes in its entirety without

worrying about interruption by any other potentially
conflict-causing process

Race Conditions

The Critical-Section Problem

30

o N processes/threads all competing to access the
shared data

o Each process/thread has a code segment, called
critical section (critical region), in which the shared
data is accessed

o Problem – ensure that when one process is
executing in its critical section, no other process is
allowed to execute in that critical section

o The execution of the critical sections by the
processes must be mutually exclusive in time

Mutual Exclusion

31

Solving Critical-Section Problem

32

Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two processes may be simultaneously inside the same critical
section

Bounded Waiting:
No process should have to wait forever to enter a critical section

Progress:
No process executing a code segment unrelated to a given critical
section can block another process trying to enter the same critical
section

Arbitrary Speed:
No assumption can be made about the relative speed of different
processes (though all processes have a non-zero speed)

Using Lock to Protect Shared Data

o Suppose that two threads A and B have access
to a shared variable “balance”

Thread A: Thread B:
balance = balance + 1 balance = balance + 1

33

Locks
o A lock is a variable

o Two states
– Available or free
– Locked or held

o lock(): tries to acquire the lock
o unlock(): releases the lock that has been

acquired by caller

34

Building a Lock
o Needs help from hardware + OS
o A number of hardware primitives to support a

lock
o Goals of a lock

– Basic task: Mutual exclusion
– Fairness
– Performance

35

First Attempt: A Simple Flag
o How about just using Loads/Stores instructions?

36

First Attempt: A Simple Flag
o How about just using Loads/Stores instructions?

37

A spin lock

First Attempt: A Simple Flag
o How about just using Loads/Stores instructions?

38

What’s the problem?

A spin lock

First Attempt: A Simple Flag

39

Failed reason: No mutual exclusion!

Flag is 0 initially

First Attempt: A Simple Flag

40

Failed reason: No mutual exclusion!

Flag is 0 initially

First Attempt: A Simple Flag

41

Failed reason: No mutual exclusion!

Flag is set to 1 by T2

First Attempt: A Simple Flag

42

Flag is set to 1 again! Two threads both in
Critical Section

First Attempt: A Simple Flag

43

Reason:
Lock operation is not atomic!
And therefore, no mutual exclusion!

Flag is set to 1 again! Two threads both in
Critical Section

Getting Help from the Hardware

o One solution supported by hardware may be to
use interrupt capability

do {
lock()

critical section;
unlock()

remainder section;
} while (1);

44

Getting Help from the Hardware

o One solution supported by hardware may be to
use interrupt capability

do {
lock()

critical section;
unlock()

remainder section;
} while (1);

45

Are we done??

Synchronization Hardware
o Many machines provide special hardware

instructions to help achieve mutual exclusion

o The TestAndSet(TAS) instruction tests and
modifies the content of a memory word atomically

o TAS returns old value pointed to by old_ptr and
updates said value to new

46

Operations
performed
atomically!

Mutual Exclusion with TAS
o Initially, lock’s flag set to 0

47

A correct spin lock

Busy Waiting and Spin Locks

48

o This approach is based on busy waiting
– If the critical section is being used, waiting processes

loop continuously at the entry point
o A binary “lock” variable that uses busy waiting

is called a spin lock
– Processes that find the lock unavailable �spin� at the entry

o It actually works (mutual exclusion)
o Disadvantages?
– Fairness?
– Performance?

Busy Waiting and Spin Locks

49

o This approach is based on busy waiting
– If the critical section is being used, waiting processes

loop continuously at the entry point
o A binary “lock” variable that uses busy waiting

is called a spin lock
– Processes that find the lock unavailable �spin� at the entry

o It actually works (mutual exclusion)
o Disadvantages?
– Fairness? (A: No. Heavy contention may cause

starvation)
– Performance? (A: Busy waiting wastes CPU cycles)

A Simple Approach:
Just Yield (Win)!

o When you are going to Spin, just give up the
CPU to another process/thread

50

Lock Worksheet

51

