
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019

1

Semaphores

2

Semaphores
o Introduced by E. W. Dijkstra
o Motivation: Avoid busy waiting by blocking a

process execution until some condition is
satisfied

o Two operations are defined on a semaphore
variable s:
sem_wait(s) (also called P(s) or down(s))
sem_post(s) (also called V(s) or up(s))

3

Semaphores
o Introduced by E. W. Dijkstra
o Motivation: Avoid busy waiting by blocking a

process execution until some condition is
satisfied

o Two operations are defined on a semaphore
variable s:
sem_wait(s) (also called P(s) or down(s))
sem_post(s) (also called V(s) or up(s))

4

OS/161

Semaphore Operations
o Conceptually, a semaphore has an integer value. This

value is greater than or equal to 0

o sem_wait(s):
s.value-- ; /* Executed atomically */
/* wait/block if s.value < 0 (or negative) */

o A process/thread executing the wait operation on a
semaphore with value < 0 being blocked until the
semaphore’s value becomes greater than 0
– No busy waiting

o sem_post(s):
s.value++; /* Executed atomically */
/* if one or more process/thread waiting, wake one */

5

Semaphore Operations (cont.)
o If multiple processes/threads are blocked on the

same semaphore ‘s’, only one of them will be
awakened when another process performs
post(s) operation

o Who will have higher priority?

6

Semaphore Operations (cont.)
o If multiple processes/threads are blocked on the

same semaphore ‘s’, only one of them will be
awakened when another process performs
post(s) operation

o Who will have higher priority?
– A: FIFO, or whatever queuing strategy

7

o Declare and define a semaphore:
sem_t s;
sem_init(&s, 0, 1); /* initially s = 1 */

o Routine of Thread 0 & 1:
do {

sem_wait(s);
critical section

sem_post(s);
remainder section

} while (1);

Attacking Critical Section Problem
with Semaphores

8

Binary semaphore,
which is a lock

Attacking Critical Section Problem
with Semaphores

o Single thread using a binary semaphore

9

Attacking Critical Section Problem
with Semaphores

o Single thread using a binary semaphore

10

Attacking Critical Section Problem
with Semaphores

o Single thread using a binary semaphore

11

Attacking Critical Section Problem
with Semaphores

o Single thread using a binary semaphore

12

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

13

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

14

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

15

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

16

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

17

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

18

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

19

Attacking Critical Section Problem
with Semaphores

o Two threads using a binary semaphore

20

22

o Producer-Consumer Problem
– Semaphore version
– Condition Variable

• A CV-based version

o Readers-Writers Problem

o Dining-Philosophers Problem

Classical Problems of Synchronization

Producer-Consumer Problem
o The bounded-buffer producer-consumer problem assumes

that there is a buffer of size N
o The producer process puts items to the buffer area
o The consumer process consumes items from the buffer
o The producer and the consumer execute concurrently

producer consumer

.

23

Example: UNIX Pipes
o A pipe may have many writers and readers

o Internally, there is a finite-sized buffer

o Writers add data to the buffer

o Readers remove data from the buffer

24

Example: UNIX Pipes

25

Buffer

end

start

Example: UNIX Pipes

26

Buffer

end

start

Write

Example: UNIX Pipes

27

Buffer

end

start

Example: UNIX Pipes

28

Buffer

end

start

Write

Example: UNIX Pipes

29

Buffer

end

start

Example: UNIX Pipes

30

Buffer

end

start

Read

Example: UNIX Pipes

31

Buffer

end

start

Example: UNIX Pipes

32

Buffer

end

start

Write

Example: UNIX Pipes

33

Buffer

end

start

Example: UNIX Pipes

34

Buffer

end

start

Read

Example: UNIX Pipes

35

Buffer

end

start

Read

Example: UNIX Pipes

36

Buffer

end

start

Read

Note: reader must wait

Example: UNIX Pipes

37

Buffer

end

start

Write

Example: UNIX Pipes

38

Buffer

end

start

Write

Example: UNIX Pipes

39

Buffer

end

start

Write

Note: writer must wait

Example: UNIX Pipes
o Implementation

– Reads/writes to buffer require locking
– When buffers are full, writers (producers) must wait
– When buffers are empty, readers (consumers) must

wait

40

Example: UNIX Pipes

Demo
% ps aux | less

% cat file | grep <str>

41

Pipe

Pipe

Producer-Consumer Model:
Parameters

o Shared data:
sem_t full, empty;

o Initially:

full = 0 /* The number of full buffers */
empty = MAX /* The number of empty buffers */

42

First Attempt: MAX = 1

43

Put and Get routines

First Attempt: MAX = 10?

44

Put and Get routines

First Attempt: MAX = 10?

45

Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10

First Attempt: MAX = 10?

46

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

47

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

48

Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

49

Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

50

Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

empty = 8

One More Parameter: A mutex lock

o Shared data:
sem_t full, empty;

o Initially:

full = 0; /* The number of full buffers */
empty = MAX; /* The number of empty buffers */
mutex = 1; /* Semaphore controlling the access

to the buffer pool */

51

Add “Mutual Exclusion”

52

Add “Mutual Exclusion”

53

What if consumer
gets to run first??

Adding “Mutual Exclusion”

54

Producer 0: Runnable Consumer 0: Running
empty = 10
full = 0
mutex = 1

Adding “Mutual Exclusion”

55

Producer 0: Runnable Consumer 0: Running

Consumer 0 is waiting
for full to be greater
than or equal to 0

empty = 10
full = 0
mutex = 0

Adding “Mutual Exclusion”

56

Producer 0: Running Consumer 0: Runnable

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting
for full to be greater
than or equal to 0

Adding “Mutual Exclusion”

57

Producer 0: Running Consumer 0: Runnable

Deadlock!!

Producer 0 gets stuck at
acquiring mutex which has
been locked by Consumer 0!

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting
for full to be greater
than or equal to 0

Deadlocks
o A set of threads are said to be in a deadlock

state when every thread in the set is waiting for
an event that can be caused only by another
thread in the set

58

A typical deadlock
dependency graph

Conditions for Deadlock
o Mutual exclusion

– Threads claim exclusive control of resources that require
e.g., a thread grabs a lock

o Hold-and-wait
– Threads hold resources allocated to them while waiting for

additional resources
o No preemption

– Resources cannot be forcibly removed from threads that
are holding them

o Circular wait
– There exists a circular chain of threads such that each

holds one or more resources that are being requests by
next thread in chain

59

Correct Mutual Exclusion

60

Mutex wraps
just around
critical section!

Mutex wraps
just around
critical section!

Producer-Consumer Solution

o Make sure that
1. The producer and the consumer do not access the buffer

area and related variables at the same time
2. No item is made available to the consumer if all the buffer

slots are empty
3. No slot in the buffer is made available to the producer if all the

buffer slots are full

61

Condition Variables

62

Condition Variables
A parent waiting for its child

63

Spin-based Approach
Using a shared variable, parent spins until child set it to 1

64

Spin-based Approach
Using a shared variable, parent spins until child set it to 1

65

What’s the problem of this approach?

Condition Variables (CV)
o Definition:

– An explicit queue that threads can put themselves
when some condition is not as desired (by waiting
on the condition)

– Other thread can wake one of those waiting threads
to allow them to continue (by signaling on the
condition)

o Pthread CV

66

67

CV-based Approach

??

??

Broken Implementation 1

68

Broken Implementation 1

69

If parent comes after child,
parent sleeps forever

Broken Implementation 2

70

Broken Implementation 2

71

No mutual exclusion, hence
child may signal before parent
calls cond_wait(). In this
case, parent sleeps forever!

Trap 1 When Using CV

72

Condition Variable
thread

wait

thread
wait

Trap 1 When Using CV

73

Condition Variable
thread

wait

thread
waitthread

signal

Trap 1 When Using CV

74

Condition Variable thread
wait

Trap 1 When Using CV

75

Condition Variable thread
wait

Only one thread gets a signal

Trap 2 When Using CV

76

Condition Variable

Trap 2 When Using CV

77

Condition Variablethread
signal

Trap 2 When Using CV

78

Condition Variable

Trap 2 When Using CV

79

Condition Variable
thread

wait

Trap 2 When Using CV

80

Condition Variable
thread

wait

waits forever…

Trap 2 When Using CV

81

Condition Variable
thread

wait

waits forever…

Signal lost if nobody waiting at that time

Guarantee

82

Condition Variable
thread

wait

thread
wait

Upon signal, there has to be at least one thread waiting;
If there are threads waiting, at least one thread will wake

thread
signal

83

CV-based Parent-wait-for-child
Approach

84

CV-based Parent-wait-for-child
Approach

Good Rule of Thumb
Always do 1. wait and 2. signal while holding the lock

To prevent lost signal

Worksheet

85

