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Semaphores
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Semaphores
o Introduced by E. W. Dijkstra
o Motivation:  Avoid busy waiting by blocking a 

process execution until some condition is 
satisfied

o Two operations are defined on a semaphore 
variable s:
sem_wait(s) (also called P(s) or down(s))
sem_post(s) (also called V(s) or up(s))
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Semaphore Operations
o Conceptually, a semaphore has an integer value. This 

value is greater than or equal to 0

o sem_wait(s):
s.value-- ;  /*  Executed atomically */ 
/* wait/block if s.value < 0 (or negative) */

o A process/thread executing the wait operation on a 
semaphore  with value < 0 being blocked until the 
semaphore’s value becomes greater than 0
– No busy waiting

o sem_post(s):
s.value++;  /* Executed atomically */
/* if one or more process/thread waiting, wake one */
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Semaphore Operations (cont.)
o If multiple processes/threads are blocked on the 

same semaphore ‘s’, only one of them will be 
awakened when another process performs 
post(s) operation

o Who will have higher priority?

6



Semaphore Operations (cont.)
o If multiple processes/threads are blocked on the 

same semaphore ‘s’, only one of them will be 
awakened when another process performs 
post(s) operation

o Who will have higher priority?
– A: FIFO, or whatever queuing strategy
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o Declare and define a semaphore:
sem_t s;  
sem_init(&s, 0, 1);  /* initially s = 1 */

o Routine of Thread 0 & 1: 
do {

sem_wait(s);
critical section

sem_post(s);
remainder section

} while (1);

Attacking Critical Section Problem
with Semaphores
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Binary semaphore, 
which is a lock
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o Producer-Consumer Problem
– Semaphore version
– Condition Variable

• A CV-based version

o Readers-Writers Problem

o Dining-Philosophers Problem

Classical Problems of Synchronization



Producer-Consumer Problem
o The bounded-buffer producer-consumer problem assumes 

that there is a buffer of size N
o The producer process puts items to the buffer area
o The consumer process consumes items from the buffer
o The producer and the consumer execute concurrently

producer consumer

. . . . . . . .
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Example: UNIX Pipes
o A pipe may have many writers and readers

o Internally, there is a finite-sized buffer

o Writers add data to the buffer

o Readers remove data from the buffer
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Example: UNIX Pipes
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Example: UNIX Pipes
o Implementation

– Reads/writes to buffer require locking
– When buffers are full, writers (producers) must wait
– When buffers are empty, readers (consumers) must 

wait
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Example: UNIX Pipes

Demo
% ps aux | less

% cat file | grep <str>
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Pipe

Pipe



Producer-Consumer Model: 
Parameters

o Shared data:
sem_t full, empty;

o Initially:

full = 0       /* The number of full buffers */
empty = MAX    /* The number of empty buffers */

42



First Attempt: MAX = 1
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Put and Get routines
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Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10



First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
fill = (fill + 1) % MAX; 

} 

empty = 9



First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9



First Attempt: MAX = 10?
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Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9



First Attempt: MAX = 10?
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Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9



First Attempt: MAX = 10?
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Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

void put(int value) { 
buffer[fill] = value; 
fill = (fill + 1) % MAX; 

} 

empty = 8



One More Parameter: A mutex lock

o Shared data:
sem_t full, empty;

o Initially:

full = 0;    /* The number of full buffers */
empty = MAX; /* The number of empty buffers */
mutex = 1;   /* Semaphore controlling the access  

to the buffer pool */
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Add “Mutual Exclusion”
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Add “Mutual Exclusion”
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What if consumer
gets to run first??



Adding “Mutual Exclusion”
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Producer 0: Runnable Consumer 0: Running
empty = 10
full = 0
mutex = 1



Adding “Mutual Exclusion”
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Producer 0: Runnable Consumer 0: Running

Consumer 0 is waiting 
for full to be greater 
than or equal to 0

empty = 10
full = 0
mutex = 0



Adding “Mutual Exclusion”
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Producer 0: Running Consumer 0: Runnable

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting 
for full to be greater 
than or equal to 0



Adding “Mutual Exclusion”
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Producer 0: Running Consumer 0: Runnable

Deadlock!!

Producer 0 gets stuck at 
acquiring mutex which has 
been locked by Consumer 0!

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting 
for full to be greater 
than or equal to 0



Deadlocks
o A set of threads are said to be in a deadlock

state when every thread in the set is waiting for 
an event that can be caused only by another 
thread in the set 
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A typical deadlock 
dependency graph



Conditions for Deadlock
o Mutual exclusion

– Threads claim exclusive control of resources that require 
e.g., a thread grabs a lock

o Hold-and-wait
– Threads hold resources allocated to them while waiting for 

additional resources
o No preemption

– Resources cannot be forcibly removed from threads that 
are holding them

o Circular wait
– There exists a circular chain of threads such that each 

holds one or more resources that are being requests by 
next thread in chain
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Correct Mutual Exclusion
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Mutex wraps 
just around 
critical section!

Mutex wraps 
just around 
critical section!



Producer-Consumer Solution

o Make sure that
1. The producer and the consumer do not access the buffer 

area and related variables at the same time
2. No item is made available to the consumer if all the buffer 

slots are empty
3. No slot in the buffer is made available to the producer if all the  

buffer slots are full
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Condition Variables

62



Condition Variables
A parent waiting for its child
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Spin-based Approach
Using a shared variable, parent spins until child set it to 1
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Spin-based Approach
Using a shared variable, parent spins until child set it to 1
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What’s the problem of this approach?



Condition Variables (CV)
o Definition: 

– An explicit queue that threads can put themselves 
when some condition is not as desired (by waiting
on the condition)

– Other thread can wake one of those waiting threads 
to allow them to continue (by signaling on the 
condition)

o Pthread CV
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CV-based Approach

??

??



Broken Implementation 1
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Broken Implementation 1
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If parent comes after child, 
parent sleeps forever



Broken Implementation 2
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Broken Implementation 2
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No mutual exclusion, hence 
child may signal before parent 
calls cond_wait(). In this 
case, parent sleeps forever!



Trap 1 When Using CV
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Condition Variable
thread

wait

thread
wait
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Condition Variable
thread

wait

thread
waitthread

signal



Trap 1 When Using CV
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Trap 1 When Using CV
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Condition Variable thread
wait

Only one thread gets a signal



Trap 2 When Using CV
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Condition Variable



Trap 2 When Using CV
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Condition Variablethread
signal



Trap 2 When Using CV
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Condition Variable



Trap 2 When Using CV
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Condition Variable
thread

wait



Trap 2 When Using CV
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Condition Variable
thread

wait

waits forever…



Trap 2 When Using CV
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Condition Variable
thread

wait

waits forever…

Signal lost if nobody waiting at that time



Guarantee
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Condition Variable
thread

wait

thread
wait

Upon signal, there has to be at least one thread waiting;
If there are threads waiting, at least one thread will wake

thread
signal



83

CV-based Parent-wait-for-child 
Approach
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CV-based Parent-wait-for-child 
Approach

Good Rule of Thumb
Always do 1. wait and 2. signal while holding the lock

To prevent lost signal



Worksheet
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