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Announcements
o HW1 posted yesterday on BB
– Due end of Friday 09/20

o OS/161 PA1 (Synchronization) will be posted on
BB this Thursday 09/19
– Due end of day 10/18

2



Review: Condition Variables
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Condition Variables
o CV: Queue of sleeping threads 

o Threads add themselves to the queue with wait

o Threads wake up threads on the queue with signal
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Condition Variables
o cond_wait(cond_t *cv, mutex_t *lock)

– assume the lock is held when cond_wait() is called
– puts caller to sleep + release the lock (atomically)
– when awaken, reacquires lock before returning

o cond_signal(cond_t *cv)
– wake a single waiting thread (if >= 1 thread is waiting)
– if there is no waiting thread, just return, doing nothing
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Review: Join
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Review: Join
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Parent:    x     y                                   z

Child:                   a    b    c



Review: Join
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Parent:    x     y                                   z

Child:                   a    b    c
GOOD!



Review: Join
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Review: Join
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Parent:                      x     y

Child:       a    b    c



Review: Join
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Parent:                      x     y     … sleeeeeeeeeep forever …

Child:       a    b    c



Review: Join
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Review: Join
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Parent:     w    x            y     

Child:                  a    b  



Review: Join
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Parent:     w    x            y     … sleeeeeeeeep forever …

Child:                  a    b  



Review: Join
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Parent:     w    x            y     … sleeeeeeeeep forever …

Child:                  a    b  

How to fix?



Review: Join
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Parent:     w    x            y     … sleeeeeeeeep forever …

Child:                  a    b  

Mutex_lock(&m);

Mutex_unlock(&m);

while



Good Rule of Thumb 
When Using CV

Always do wait and signal while holding the lock
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Good Rule of Thumb 
When Using CV

Always do wait and signal while holding the lock

Why? To prevent lost signals.
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o Producer-Consumer Problem
– CV-based version

o Readers-Writers Problem

o Dining-Philosophers Problem

Classical Problems of Synchronization



CV-based Producer-Consumer Implementation 1
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Single CV and if statement

Put and Get routines
Single buffer



CV-based Producer-Consumer Implementation 1
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Single CV and if statement

Put and Get routines
Single buffer

What’s the problem of this
approach?



CV-based Producer-Consumer Implementation 1
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C1 running



CV-based Producer-Consumer Implementation 1
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P running



CV-based Producer-Consumer Implementation 1
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P running



CV-based Producer-Consumer Implementation 1
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P running



CV-based Producer-Consumer Implementation 1
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P running



CV-based Producer-Consumer Implementation 1
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P running



CV-based Producer-Consumer Implementation 1
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C1 runnable



CV-based Producer-Consumer Implementation 1
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C2 running



CV-based Producer-Consumer Implementation 1
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C2 running



CV-based Producer-Consumer Implementation 1
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C2 running



CV-based Producer-Consumer Implementation 1
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C2 running



CV-based Producer-Consumer Implementation 1
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C1 running



CV-based Producer-Consumer Implementation 2
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Single CV and while



CV-based Producer-Consumer Implementation 2
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Single CV and while

What’s the problem of this
approach?
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C1 running
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C2 running
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P running
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P running



40

P sleeping
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C1 running
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C1 running
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C1 running
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C1 sleeping
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C2 running
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C2 sleeping



CV-based Producer-Consumer Implementation 3
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Two CVs and while



CV-based Producer-Consumer Implementation 3
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Two CVs and while

Using two CVs to distinguish two 
types of threads; in order to properly 
signal which thread should wake up

• Producer waits on empty
• Consumer waits on full



Readers-Writers Problem
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Readers-Writers Problem
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o A data object (e.g. a file) is to be shared among 
several concurrent processes/threads 

o A writer process/thread must have exclusive 
access to the data object

o Multiple reader processes/threads may access 
the shared data simultaneously without a 
problem



Reader-Writer Lock
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Reader-Writer Lock
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Reader-Writer Lock
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Initially, # readers is 0
binary sem lock set to 1
writelock set to 1



Reader-Writer Lock
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Initially, # readers is 0
binary sem lock set to 1
writelock set to 1



Reader-Writer Lock
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Initially, # readers is 0
binary sem lock set to 1
writelock set to 1



Reader-Writer Lock
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Writer cannot
be in CS when 
readers are!

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1



rwlock_acquire_writelock(rw);
…

write is performed
…

rwlock_release_writelock(rw);

57

Readers-Writers Problem: 
Writer Thread



Readers-Writers Problem: 
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?
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Readers-Writers Problem: 
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?
A: Technically it works. But 
starvation may happen
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Starvation
o A process/thread that is forced to wait 
indefinitely in a synchronization program is said 
to be subject to starvation
– In some execution scenarios, that process does not 

make any progress
– Deadlocks imply starvation, but the reverse is not true
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Dining-Philosophers Problem
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Shared data 
sem_t forks[5];

Initially all semaphore values are 1

• 5 philosophers share a common 
circular table.  There are 5 forks (or 
chopsticks) and food (in the middle).  
When a philosopher gets hungry, he 
tries to pick up the closest forks

• A philosopher may pick up only one 
fork at a time, and cannot pick up a 
fork already in use. When done, he 
puts down both of his forks, one after 
the other 62

Dining-Philosophers Problem



Dining-Philosophers Problem
o The basic loop of a philosopher
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Critical section
??

??



The Helper Functions

sem_t forks[5]
– Each fork initialized to 1
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Is this solution correct?



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0]) 
sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…



Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Q: Would the previous 5DP implementation cause 
exactly the same form of a deadlock as shown below?



Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]
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Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

o Circular waiting
– Thread 0 waits for Thread 1 to signal(fork[1]) and
– Thread 1 waits for Thread 0 to signal(fork[0])
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Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

o Circular waiting
– Thread 0 waits for Thread 1 to signal(fork[1]) and
– Thread 1 waits for Thread 0 to signal(fork[0])

o Hold and wait
– Holding either fork[0] or fork[1] while waiting on 

the other
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Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

o Circular waiting
– Thread 0 waits for Thread 1 to signal(fork[1]) and
– Thread 1 waits for Thread 0 to signal(fork[0])

o Hold and wait
– Holding either fork[0] or fork[1] while waiting on 

the other
o No preemption

– Neither fork[0] and fork[1] can be removed from 
their respective holding threads
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Why 5DP is Interesting?
o How to eat with your fellows without causing 

deadlocks
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no preemption)
– Infinite patience with half-baked schemes (hold some 

& wait for more)
o Why starvation exists and what we can do about 

it?
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Why 5DP is Interesting?
o How to eat with your fellows without causing 

deadlocks
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no preemption)
– Infinite patience with half-baked schemes (hold some 

& wait for more)
o Why starvation exists and what we can do about 

it?
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How to mess with your fellows!



Dijkstra’s Solution: 
Break the Circular Wait Condition

o Change how forks are acquired by at least one 
of the philosophers

o Assume P0 – P4, 4 is the highest number
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Again, Starvation
o Subtle difference between deadlock and 

starvation
– Once a set of processes are in a deadlock, there is 

no future execution sequence that can get them out 
of it!

– In starvation, there does exist hope – some execution 
order may be favorable to the starving process 
although no guarantee it would ever occur

– Rollback and retry are prone to starvation
– Continuous arrival of higher priority process is 

another common starvation situation
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Building a Semaphore w/ CV
Worksheet
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