
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019

1

Announcements
o HW1 posted yesterday on BB
– Due end of Friday 09/20

o OS/161 PA1 (Synchronization) will be posted on
BB this Thursday 09/19
– Due end of day 10/18

2

Review: Condition Variables

3

Condition Variables
o CV: Queue of sleeping threads

o Threads add themselves to the queue with wait

o Threads wake up threads on the queue with signal

4

Condition Variables
o cond_wait(cond_t *cv, mutex_t *lock)

– assume the lock is held when cond_wait() is called
– puts caller to sleep + release the lock (atomically)
– when awaken, reacquires lock before returning

o cond_signal(cond_t *cv)
– wake a single waiting thread (if >= 1 thread is waiting)
– if there is no waiting thread, just return, doing nothing

5

Review: Join

6

Review: Join

7

Parent: x y z

Child: a b c

Review: Join

8

Parent: x y z

Child: a b c
GOOD!

Review: Join

9

Review: Join

10

Parent: x y

Child: a b c

Review: Join

11

Parent: x y … sleeeeeeeeeep forever …

Child: a b c

Review: Join

12

Review: Join

13

Parent: w x y

Child: a b

Review: Join

14

Parent: w x y … sleeeeeeeeep forever …

Child: a b

Review: Join

15

Parent: w x y … sleeeeeeeeep forever …

Child: a b

How to fix?

Review: Join

16

Parent: w x y … sleeeeeeeeep forever …

Child: a b

Mutex_lock(&m);

Mutex_unlock(&m);

while

Good Rule of Thumb
When Using CV

Always do wait and signal while holding the lock

17

Good Rule of Thumb
When Using CV

Always do wait and signal while holding the lock

Why? To prevent lost signals.

18

19

o Producer-Consumer Problem
– CV-based version

o Readers-Writers Problem

o Dining-Philosophers Problem

Classical Problems of Synchronization

CV-based Producer-Consumer Implementation 1

20

Single CV and if statement

Put and Get routines
Single buffer

CV-based Producer-Consumer Implementation 1

21

Single CV and if statement

Put and Get routines
Single buffer

What’s the problem of this
approach?

CV-based Producer-Consumer Implementation 1

22

C1 running

CV-based Producer-Consumer Implementation 1

23

P running

CV-based Producer-Consumer Implementation 1

24

P running

CV-based Producer-Consumer Implementation 1

25

P running

CV-based Producer-Consumer Implementation 1

26

P running

CV-based Producer-Consumer Implementation 1

27

P running

CV-based Producer-Consumer Implementation 1

28

C1 runnable

CV-based Producer-Consumer Implementation 1

29

C2 running

CV-based Producer-Consumer Implementation 1

30

C2 running

CV-based Producer-Consumer Implementation 1

31

C2 running

CV-based Producer-Consumer Implementation 1

32

C2 running

CV-based Producer-Consumer Implementation 1

33

C1 running

CV-based Producer-Consumer Implementation 2

34

Single CV and while

CV-based Producer-Consumer Implementation 2

35

Single CV and while

What’s the problem of this
approach?

36

C1 running

37

C2 running

38

P running

39

P running

40

P sleeping

41

C1 running

42

C1 running

43

C1 running

44

C1 sleeping

45

C2 running

46

C2 sleeping

CV-based Producer-Consumer Implementation 3

47

Two CVs and while

CV-based Producer-Consumer Implementation 3

48

Two CVs and while

Using two CVs to distinguish two
types of threads; in order to properly
signal which thread should wake up

• Producer waits on empty
• Consumer waits on full

Readers-Writers Problem

49

Readers-Writers Problem

50

o A data object (e.g. a file) is to be shared among
several concurrent processes/threads

o A writer process/thread must have exclusive
access to the data object

o Multiple reader processes/threads may access
the shared data simultaneously without a
problem

Reader-Writer Lock

51

Reader-Writer Lock

52

Reader-Writer Lock

53

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

Reader-Writer Lock

54

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

Reader-Writer Lock

55

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

Reader-Writer Lock

56

Writer cannot
be in CS when
readers are!

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

rwlock_acquire_writelock(rw);
…

write is performed
…

rwlock_release_writelock(rw);

57

Readers-Writers Problem:
Writer Thread

Readers-Writers Problem:
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?

58

Readers-Writers Problem:
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?
A: Technically it works. But
starvation may happen

59

Starvation
o A process/thread that is forced to wait
indefinitely in a synchronization program is said
to be subject to starvation
– In some execution scenarios, that process does not

make any progress
– Deadlocks imply starvation, but the reverse is not true

60

Dining-Philosophers Problem

61

Shared data
sem_t forks[5];

Initially all semaphore values are 1

• 5 philosophers share a common
circular table. There are 5 forks (or
chopsticks) and food (in the middle).
When a philosopher gets hungry, he
tries to pick up the closest forks

• A philosopher may pick up only one
fork at a time, and cannot pick up a
fork already in use. When done, he
puts down both of his forks, one after
the other 62

Dining-Philosophers Problem

Dining-Philosophers Problem
o The basic loop of a philosopher

63

Critical section
??

??

The Helper Functions

sem_t forks[5]
– Each fork initialized to 1

64

Is this solution correct?

Simplest Example of A Deadlock

65

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

Simplest Example of A Deadlock

66

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

Simplest Example of A Deadlock

67

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

Simplest Example of A Deadlock

68

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])

Simplest Example of A Deadlock

69

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])

Simplest Example of A Deadlock

70

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Simplest Example of A Deadlock

71

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Q: Would the previous 5DP implementation cause
exactly the same form of a deadlock as shown below?

Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

72

Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

o Circular waiting
– Thread 0 waits for Thread 1 to signal(fork[1]) and
– Thread 1 waits for Thread 0 to signal(fork[0])

73

Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

o Circular waiting
– Thread 0 waits for Thread 1 to signal(fork[1]) and
– Thread 1 waits for Thread 0 to signal(fork[0])

o Hold and wait
– Holding either fork[0] or fork[1] while waiting on

the other

74

Review: Conditions for Deadlocks

o Mutually exclusive access of shared resources
– Binary semaphore fork[0] and fork[1]

o Circular waiting
– Thread 0 waits for Thread 1 to signal(fork[1]) and
– Thread 1 waits for Thread 0 to signal(fork[0])

o Hold and wait
– Holding either fork[0] or fork[1] while waiting on

the other
o No preemption

– Neither fork[0] and fork[1] can be removed from
their respective holding threads

75

Why 5DP is Interesting?
o How to eat with your fellows without causing

deadlocks
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no preemption)
– Infinite patience with half-baked schemes (hold some

& wait for more)
o Why starvation exists and what we can do about

it?

76

Why 5DP is Interesting?
o How to eat with your fellows without causing

deadlocks
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no preemption)
– Infinite patience with half-baked schemes (hold some

& wait for more)
o Why starvation exists and what we can do about

it?

77

How to mess with your fellows!

Dijkstra’s Solution:
Break the Circular Wait Condition

o Change how forks are acquired by at least one
of the philosophers

o Assume P0 – P4, 4 is the highest number

78

Again, Starvation
o Subtle difference between deadlock and

starvation
– Once a set of processes are in a deadlock, there is

no future execution sequence that can get them out
of it!

– In starvation, there does exist hope – some execution
order may be favorable to the starving process
although no guarantee it would ever occur

– Rollback and retry are prone to starvation
– Continuous arrival of higher priority process is

another common starvation situation

79

Building a Semaphore w/ CV
Worksheet

80

