CS 471 Operating Systems

Yue Cheng

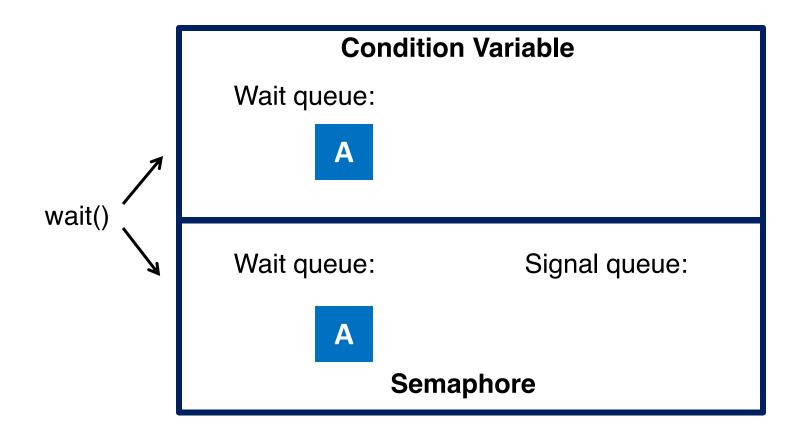
George Mason University Fall 2019

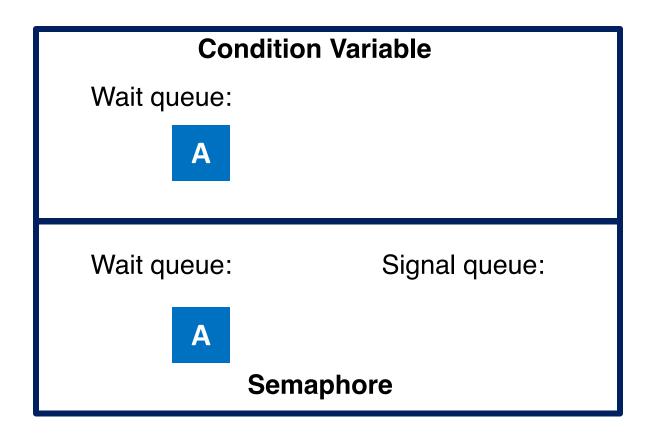
Announcement

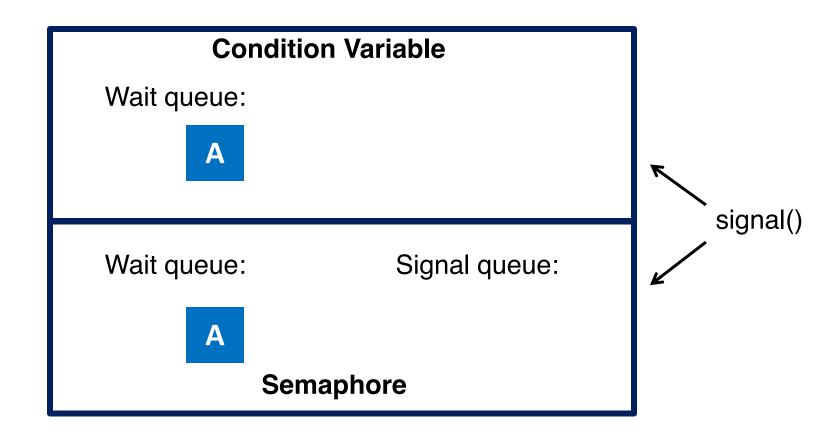
OS/161 PA1 posed on BB – Due 11:59PM 10/18

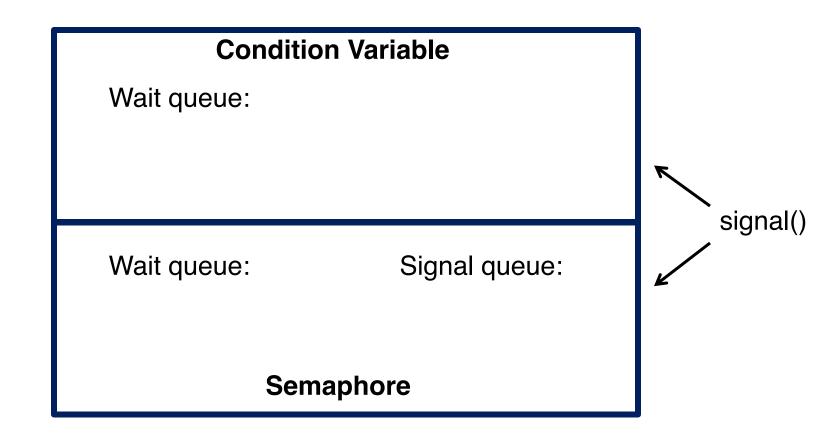
Review: CV vs. Semaphores

CV != Semaphores

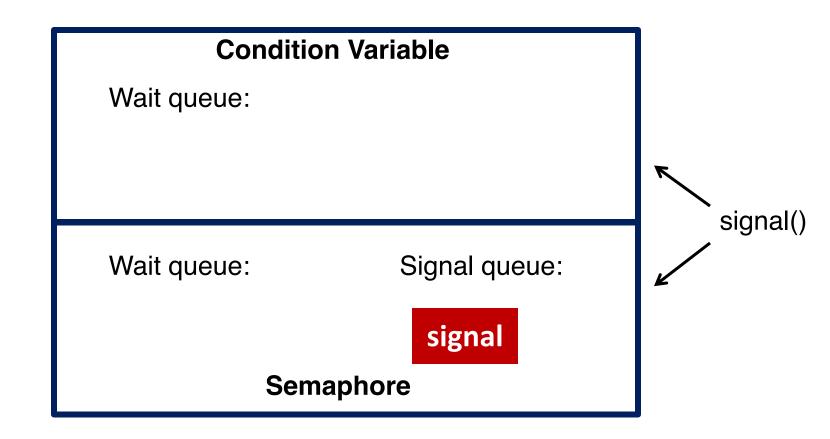

- Condition variables != semaphores
 - Although their operations have similar names, they have entirely different semantics
 - However, they each can be used to implement the other
- Access to the CV is controlled by a lock
 - wait() blocks the caller, who gives up the lock
 - Semaphore::wait() just blocks the thread on the queue
 - signal() causes a waiting thread to wake up
 - If no waiting thread, the signal is lost
 - Semaphore::post() increases the semaphore count, allowing future entry even if no thread is waiting
 - CV has no history

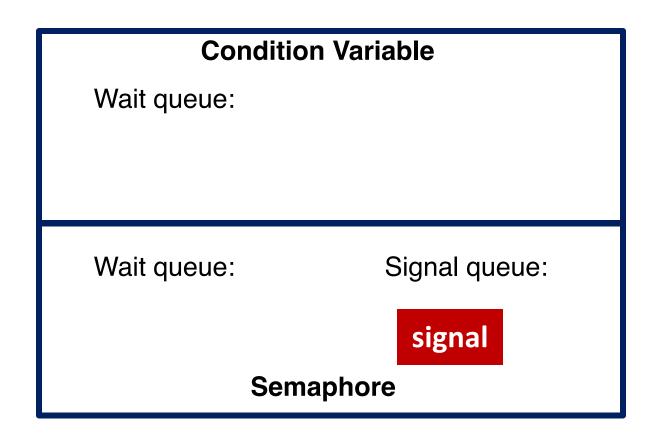

- CV rule of thumb:
 - Keep state in addition to CV
 - Empty, full in PCP
 - Always do wait and signal while holding a lock
 - Whenever you acquire a lock, re-check state
 - by using while() instead of if()

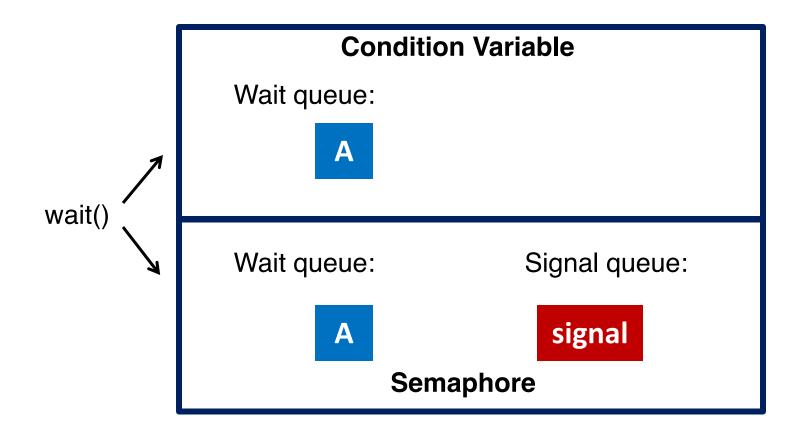

- CV rule of thumb:
 - Keep state in addition to CV
 - Empty, full in PCP
 - Always do wait and signal while holding a lock
 - Whenever you acquire a lock, re-check state
 - by using while() instead of if()

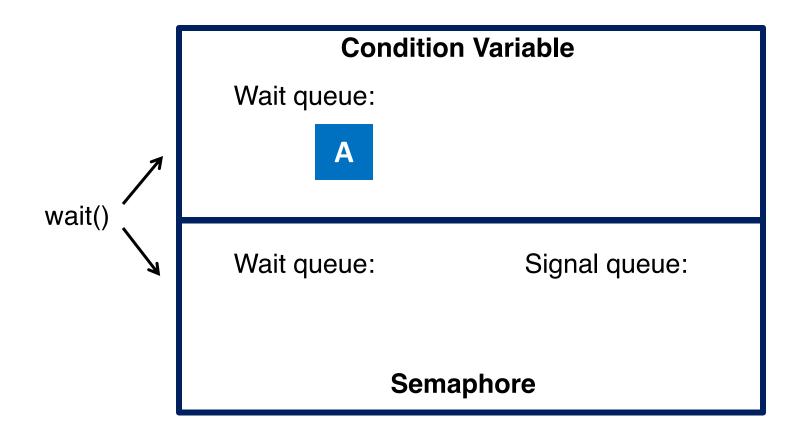

How do semaphores eliminate these needs?

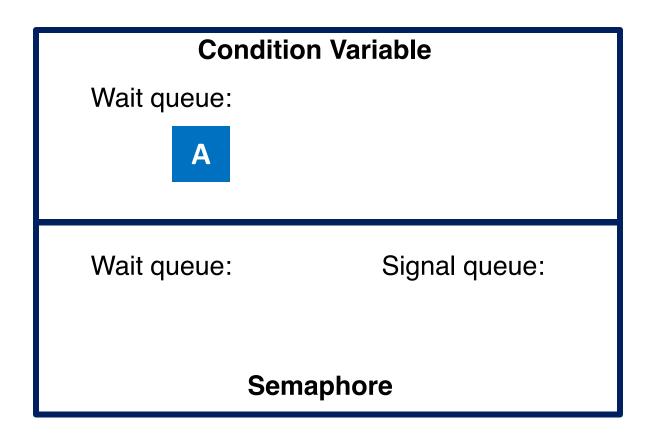
Condition Variable					
Wait queue:					
Wait queue:	Signal queue:				
Semaphore					

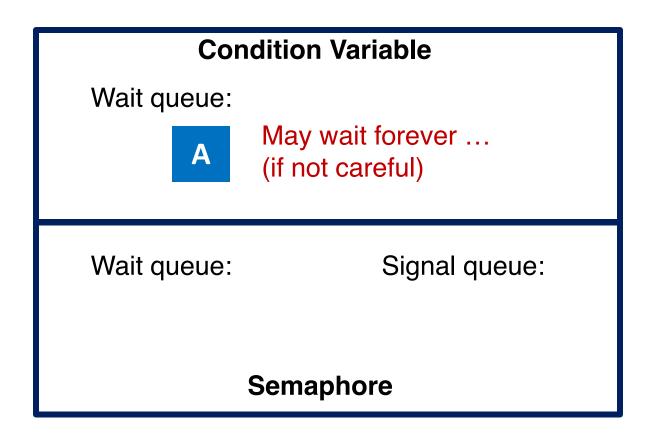


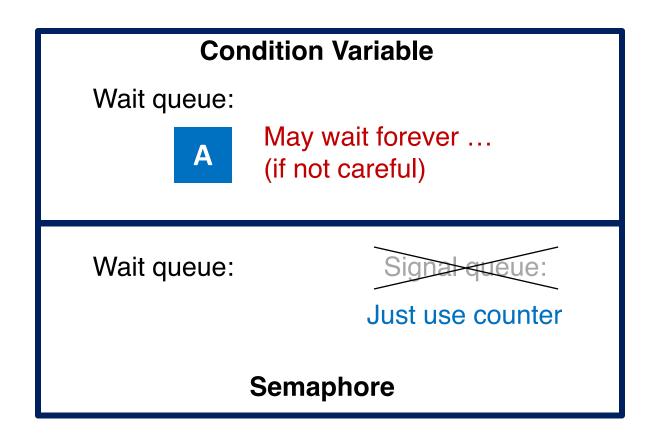




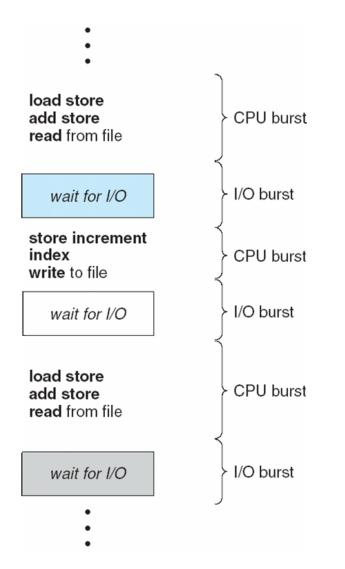



Condition Variable					
Wait queue:					
Wait queue:	Signal queue:				
Semaphore					





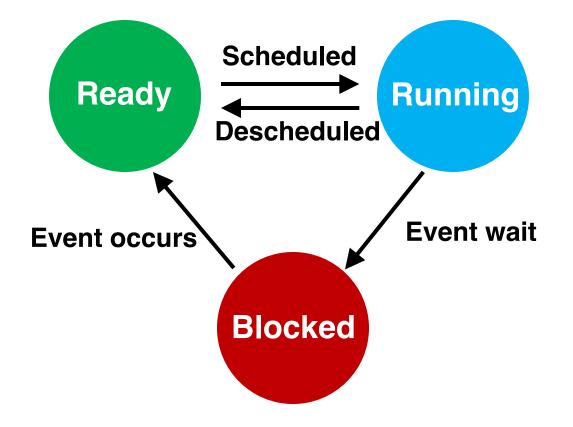
CPU Scheduling

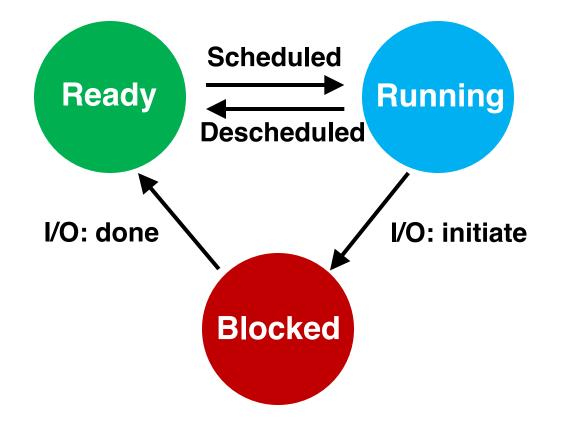

Outline

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
 - First-In-First-Out
 - Shortest-Job-First, Shortest-Remaining-Time-First
 - Priority Scheduling
 - Round Robin
 - Multi-level Queue
 - Multi-level Feedback Queue

Basic Concepts

- During its lifetime, a process goes through a sequence of CPU and I/O bursts
- The CPU scheduler (a.k.a. short-term scheduler) will select one of the processes in the ready queue for execution
- The CPU scheduler algorithm may have tremendous effects on the system performance
 - Interactive systems: Responsiveness
 - Real-time systems: Not missing the deadlines


Alternating Sequence of CPU and I/O Bursts


When to Schedule?

- Under the simple process state transition model, CPU scheduler can be potentially invoked at five different points:
 - 1. When a process switches from the new state to the ready state
 - 2. When a process switches from the running state to the waiting (or blocked) state
 - 3. When a process switches from the running state to the ready state
 - 4. When a process switches from the waiting state to the ready state
 - 5. When a process terminates

Process State Transitions

Process State Transitions

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper (previously saved) location in the user program to restart that program
- \circ Scheduler \rightarrow Policy: When and how to schedule
- Dispatcher → Mechanism: Actuator following the commands of the scheduler

Scheduling Metrics

- To compare the performance of scheduling algorithms
 - CPU utilization percentage of time CPU is busy executing jobs
 - Throughput # of processes that complete their execution per time unit
 - Turnaround time amount of time to execute a particular process
 - Waiting time amount of time a process has been waiting in the ready queue
 - Response time amount of time it takes from when a request was submitted until the first response is produced, not the complete output
 - Meeting the deadlines (real-time systems)

Optimization Goals

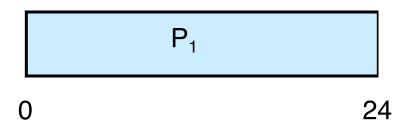
• To **maximize**:

- Maximize the CPU utilization
- Maximize the throughput

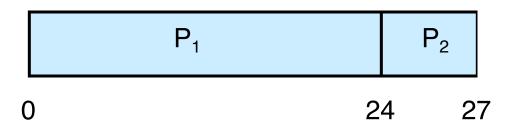
• To **minimize**:

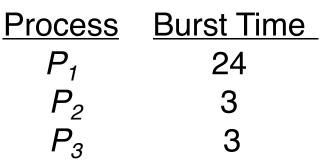
- $_{\odot}$ Minimize the (average) turnaround time
- $_{\odot}$ Minimize the (average) waiting time
- $_{\odot}$ Minimize the (average) response time

Waiting Time

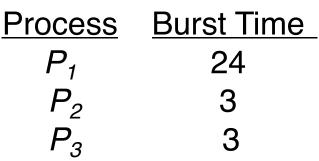

Waiting time definition

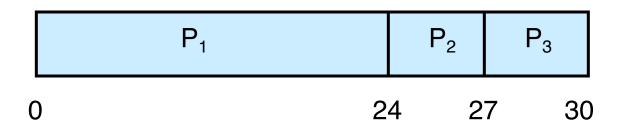
 $T_{waiting} = T_{start} - T_{arrival}$ • Average waiting time = Sum($T_{waiting}$)/ #processes


$\,\circ\,$ For now, we assume

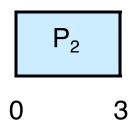

- -Average waiting time is the performance measure
- –Only one CPU burst (e.g., in milliseconds or ms) per process
- –Only CPU, No I/O
- -All processes arrive at the same time
- -Once started, each process runs to completion

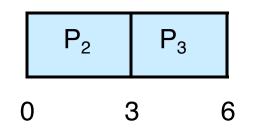
Process	Burst Time	
P_1	24	




Process	Burst Time	
P_1	24	
P_2	3	

	P ₁	P ₂	P ₃
0	2	4 2	.7 30



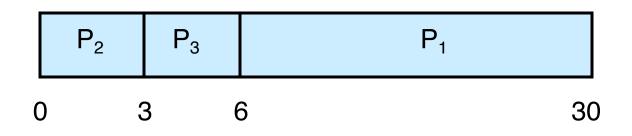

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: 17

FIFO (cont.)

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

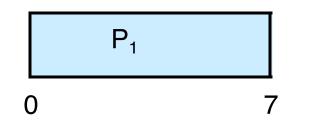

	P ₂	P ₃		P ₁	
0		3	6		30

- \circ Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

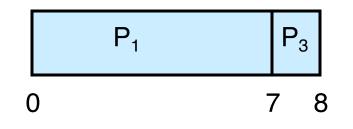
	P ₂	P ₃		P ₁	
0		3	6		30

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:


- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Problems:
 - Convoy effect (short processes behind long processes)
 - Non-preemptive: Not suitable for time-sharing systems

Shortest-Job-First (SJF)


Shortest-Job-First (SJF)

- Associate with each process the length of its next CPU burst
- The CPU is assigned to the process with the smallest (next) CPU burst (run_time)
- Two schemes (modes):
 - Non-preemptive
 - Preemptive: Also known as the Shortest-Remaining-Time-First (SRTF)

Process	<u>Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

<u>st Time</u>

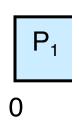
Process	<u>Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

P ₁	P ₃	P ₂
0	78	12

<u>Arrival Time</u>	Burst Time
0.0	7
2.0	4
4.0	1
5.0	4
	2.0 4.0

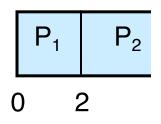
Р	1	P ₃	P ₂		P ₄	
0		7 8	3	12	1	6

	Process	<u>A</u>	<u>rrival Tin</u>	<u>ne Burst</u>	<u>Time</u>
	P_1	().0	7	
	P_2	2	2.0	4	
	P_{3}	Z	1.0	1	
	P_4	5	5.0	4	
,	SJF (non-preem	nptiv	ve)		
	P ₁	P ₃	P ₂	P ₄	

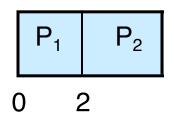

0	7	8	12	16

 \bigcirc

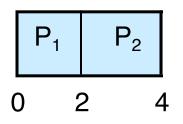
• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

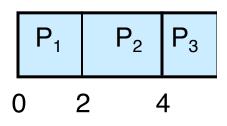

Example for Preemptive SJF (SRTF) $\frac{Process}{P_1} \quad \frac{Arrival Time}{0.0} \quad \frac{Burst Time}{7}$

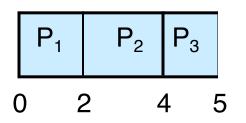
Example for Preemptive SJF(SRTF)ProcessArrival Time Burst TimeLeft Time P_1 0.075 P_2 2.04



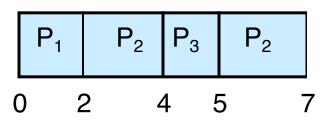
Example for Preemptive SJF (SRTF) $\frac{Process}{P_1} \quad \frac{Arrival Time}{0.0} \quad \frac{Burst Time}{7} \quad \frac{Left Time}{5}$

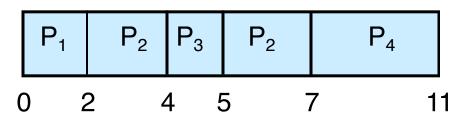

 P_2 2.0 4 4

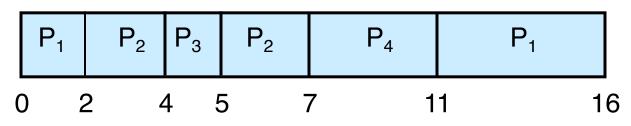

Process	<u>Arrival T</u>	<u>ime</u> Burst Time	Left Time
P_1	0.0	7	5
P_2	2.0	4	4
P_3	4.0	1	1


Process	<u>Arrival T</u>	<u>ime</u> Burst Time	Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3	4.0	1	1

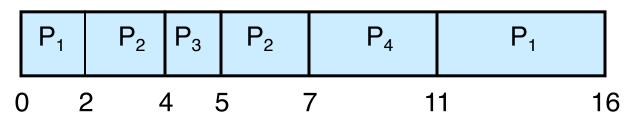

Process	<u>Arrival T</u>	<u>ime Burst Time</u>	Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3	4.0	1	1


Process	<u>Arrival</u>	<u>Time</u> Burst Time	Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3	4.0	1	0
P_4	5.0	4	4


Process	<u>Arrival</u>	<u>Time</u> Burst Time	Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3	4.0	1	0
P_4	5.0	4	4


Process	<u>Arrival</u>	Time Burst Time	Left Time
P_1	0.0	7	5
P_2	2.0	4	0
P_3	4.0	1	0
P_4	5.0	4	4

Process	<u>Arrival</u>	<u>Time</u> Burst Time	Left Time
P_1	0.0	7	5
P_2	2.0	4	0
P_3	4.0	1	0
P_4	5.0	4	0



Process	<u>Arrival </u> 7	<u>Time Burst Time</u>	Left Time
P_1	0.0	7	0
P_2	2.0	4	0
P_3	4.0	1	0
P_4	5.0	4	0

Process	<u>Arrival</u>	<u>Time</u> Burst Time	Left Time
P_1	0.0	7	0
P_2	2.0	4	0
P_3	4.0	1	0
P_4	5.0	4	0

SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3