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Announcement
o HW2 will be posted after Thursday’s class
– Due Nov 1st
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Paging Problems
o Page tables are too slow 

o Page tables are too big

3



4

Review: Page Table



Virtual => Physical Addr Mapping
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o What data structure is good?
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Virtual => Physical Addr Mapping

o We need a general mapping mechanism

o What data structure is good?
– Big array 
– (aka linear page table)
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A Simple Page Table Example
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A Simple Page Table Example

8

Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables 
2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

1st PTE
of P1

physical translation info important page status info



Paging Problems
o Page tables are too slow (covered last week)

– TLB to the rescue!

o Page tables are too big (today)
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How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

10



How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB
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page size



How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB
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How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB
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How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB
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How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

15

Num of virt pages
PTE size



Page Tables are Too Big
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

o One page table for one process!
– A system with 100 process: 400MB only for storing 

page tables in memory

o Solution??
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Naïve Solution
o Reduce the granularity

– by increasing the page size
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Naïve Solution
o Reduce the granularity

– by increasing the page size

o Why are 4MB pages bad?
– Internal fragmentation!
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Fragmentation
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Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table
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Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table
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Linear Inverted Page Table
o Idea: Instead of keeping one page table per 

process, the system keeps a single page table 
that has an entry for each physical frame of the 
system 

o Each entry tells which process owns the page, 
and VPN to PFN translation
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Linear Inverted Page Table Example
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Linear Inverted Page Table
o Idea: Instead of keeping one page table per 

process, the system keeps a single page table that 
has an entry for each physical frame of the system 

o Each entry tells which process owns the page, and 
VPN to PFN translation

o Goal: use linear search to find the index i
– The reason why it’s called “inverted”

o Pros: Extreme memory savings
o Cons: A linear search is expensive

– Solution??
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Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table
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Hashed Inverted Page Table
o For large address spaces, a hashed page table 

can be used, with the hash value being the VPN

o Idea:
– A PTE contains a chain of elements hashing to the 

same location (to handle collisions) within PT
– Each element has three fields: (a) VPN, (b) PFN, (c) a 

pointer to the next element in the linked list 
– VPNs are compared in this chain searching for a 

match. If a match is found, the corresponding PFN is 
extracted
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Hashed Inverted Page Table Example
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Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table
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Multi-level Page Table
o Idea: 

– Break the page table into pages (the entire page table 
is paged!)

– Only have pieces with >0 valid entries
• Don’t allocate the page of page table if the entire page of 

page-table entries is invalid

o Used by x86

o A simple technique is a two-level page table
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Two-level Page Table Example 
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Two-level Paging
o A logical address (on 32-bit machine with 4KB page size) is divided 

into
– a page number consisting of 20 bits
– a page offset consisting of 12 bits

o A page table entry is 4 bytes
o Since the page table is paged, the page number is further divided 

into
– p1: a 10-bit page directory index
– p2: a 10-bit page table index

o The logical address is as follows:

where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table
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Address Translation Scheme
o Address translation scheme for a two-level 32-bit 

paging architecture
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> 2 Levels
o Problem: page directory may not fit in a page

o Solution: 
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces
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> 2 Levels
o Problem: page directory may not fit in a page

o Solution: 
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of 
paging   
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> 2 Levels
o Problem: page directory may not fit in a page

o Solution: 
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of 
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Multi-level Page Table Example

37
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html
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