
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019

Announcement
o HW2 will be posted after Thursday’s class
– Due Nov 1st

2

Paging Problems
o Page tables are too slow

o Page tables are too big

3

4

Review: Page Table

Virtual => Physical Addr Mapping

5

0 0 1 0 1

VPN offset

10

1 0 1 0 10

Addr mapper

PFN offset

o We need a general mapping mechanism

o What data structure is good?
– Big array

Virtual => Physical Addr Mapping

o We need a general mapping mechanism

o What data structure is good?
– Big array
– (aka linear page table)

6

0 0 1 0 1

VPN offset

10

1 0 1 0 10

Page table

PFN offset

A Simple Page Table Example

7

Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables

2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

0 1 2 3 0 1 2 3

A Simple Page Table Example

8

Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables
2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

1st PTE
of P1

physical translation info important page status info

Paging Problems
o Page tables are too slow (covered last week)

– TLB to the rescue!

o Page tables are too big (today)

9

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

10

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

11

page size

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

12

offset bits

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

13

VPN bits

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

14

Num of virt pages

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

15

Num of virt pages
PTE size

Page Tables are Too Big
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

o One page table for one process!
– A system with 100 process: 400MB only for storing

page tables in memory

o Solution??
16

Naïve Solution
o Reduce the granularity

– by increasing the page size

17

Naïve Solution
o Reduce the granularity

– by increasing the page size

o Why are 4MB pages bad?
– Internal fragmentation!

18

Fragmentation

19

P1

P2

P3

P4

allocated data

Phys Mem
An allocated 4MB
huge page of P4

free

free

free

free

External frag.

Internal frag.

free

Assume each process consists of multiple 4MB pages

Fragmentation

20

P1

P2

P3

P4

allocated data

Phys Mem
An allocated 4MB
huge page of P4

free

free

free

free

External frag.

Internal frag.

free

Assume each process consists of multiple 4MB pages

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

21

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

22

Linear Inverted Page Table
o Idea: Instead of keeping one page table per

process, the system keeps a single page table
that has an entry for each physical frame of the
system

o Each entry tells which process owns the page,
and VPN to PFN translation

23

Linear Inverted Page Table Example

24

Linear Inverted Page Table
o Idea: Instead of keeping one page table per

process, the system keeps a single page table that
has an entry for each physical frame of the system

o Each entry tells which process owns the page, and
VPN to PFN translation

o Goal: use linear search to find the index i
– The reason why it’s called “inverted”

o Pros: Extreme memory savings
o Cons: A linear search is expensive

– Solution??
25

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

26

Hashed Inverted Page Table
o For large address spaces, a hashed page table

can be used, with the hash value being the VPN

o Idea:
– A PTE contains a chain of elements hashing to the

same location (to handle collisions) within PT
– Each element has three fields: (a) VPN, (b) PFN, (c) a

pointer to the next element in the linked list
– VPNs are compared in this chain searching for a

match. If a match is found, the corresponding PFN is
extracted

27

Hashed Inverted Page Table Example

28

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

29

Multi-level Page Table
o Idea:

– Break the page table into pages (the entire page table
is paged!)

– Only have pieces with >0 valid entries
• Don’t allocate the page of page table if the entire page of

page-table entries is invalid

o Used by x86

o A simple technique is a two-level page table

30

Two-level Page Table Example

31

also called a
page directory

Two-level Paging
o A logical address (on 32-bit machine with 4KB page size) is divided

into
– a page number consisting of 20 bits
– a page offset consisting of 12 bits

o A page table entry is 4 bytes
o Since the page table is paged, the page number is further divided

into
– p1: a 10-bit page directory index
– p2: a 10-bit page table index

o The logical address is as follows:

where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

32

Address Translation Scheme
o Address translation scheme for a two-level 32-bit

paging architecture

33

> 2 Levels
o Problem: page directory may not fit in a page

o Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

34

> 2 Levels
o Problem: page directory may not fit in a page

o Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of
paging

35

> 2 Levels
o Problem: page directory may not fit in a page

o Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of

36

OFFSETPT idxPD idx 1PD idx 0

VPN

12101010

First-level
page directory

Second-level
page directory

Multi-level Page Table Example

37
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

