CS 471 Operating Systems

Yue Cheng

George Mason University
Fall 2019

Announcement

o HW2 will be posted after Thursday’s class
— Due Nov 1st

Paging Problems

o Page tables are too slow

o Page tables are 100 big

Review: Page Table

Virtual => Physical Addr Mapping

o We need a general mapping mechanism

o What data structure is good?
— Big array VPN offset

0 1 0 0 1 0 1

vV V. vV

Addr mapper

0 1 0 1 0 1

| |
PFN offset

Virtual => Physical Addr Mapping

o We need a general mapping mechanism

o What data structure is good?
— Big array VPN offset

— (aka linear page table) |

o[1] o
vV V. V

> Page table

0 1 0 1 0 1

| |
PFN offset

A Simple Page Table Example

P1 P2
O 1 2 3 O 1 2 3
Virtual mem
Phys mem
P2
Page tables

W D = O

A Simple Page Table Example

physical translation info important page status info
| A
I 1 i 1
1tPTE 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5§ 4 3 2 1 O
of P1 PPN o|g|o|<|g|E|3|E|

Page tables

N
W N = O

Paging Problems

O (covered last week)

o Page tables are too big (today)

How Large are Page Tables?

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table

entry is of 4 bytes
« 2 A (32-log(4KB)) * 4 = 4MB

How Large are Page Tables?

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table
entry is of 4 bytes
* 2 A (32-log(4KB)) * 4 = 4MB

—

page size

How Large are Page Tables?

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table
entry is of 4 bytes
* 2 A (32-log(4KB)) * 4 = 4MB

_Y_I

offset bits

How Large are Page Tables?

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table

entry is of 4 bytes
« 2 A (32-log(4KB)) * 4 = 4MB
\ J

Y
VPN bits

How Large are Page Tables?

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table

entry is of 4 bytes
« 2 A (32-log(4KB)) * 4 = 4MB
\

J

Y
Num of virt pages

How Large are Page Tables?

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table

entry is of 4 bytes
« 2 A (32-log(4KB)) * 4 = 4MB
\

S

Num of virt pages _
PTE size

Page Tables are Too Big

o Alinear page table array for 32-bit address
space (232 bytes) and 4KB page (212 bytes)
— How many pages: 220 pages
— How much memory: 4MB assuming each page-table
entry is of 4 bytes
. 2 A (32-log(4KB)) * 4 = 4MB
o One page table for one process!

— A system with 100 process: 400MB only for storing
page tables in memory

o Solution??

Nalve Solution

o Reduce the granularity
— by increasing the page size

Nalve Solution

o Reduce the granularity
— by increasing the page size

o Why are 4MB pages bad?

— Internal fragmentation!

18

Fragmentation
An allocated 4MB
Phys Mem huge page of P4

allocated data

External frag.

Internal frag.

Assume each process consists of multiple 4MB pages

19

Fragmentation

Approaches

o Approach 1: Linear Inverted Page Table
o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

Approaches

o Approach 1: Linear Inverted Page Table

Linear Inverted Page Table

o ldea: Instead of keeping one page table per
process, the system keeps a single page table
that has an entry for each physical frame of the
system

o Each entry tells which process owns the page,
and translation

23

Linear Inverted Page Table Example

logical
address J'

cPU ¥ pid| p [d

search l

physical
address

physical
memory

P>

(oL

g_(._J

=
o}
o)

page table

Linear Inverted Page Table

o ldea: Instead of keeping one page table per
process, the system keeps a single page table that
has an entry for each physical frame of the system

o Each entry tells which process owns the page, and
translation

o Goal: use linear search to find the index 1
— The reason why it’s called “inverted”

o Pros: Extreme memory savings

o Cons: Alinear search is expensive

— Solution??
25

Approaches

o Approach 2: Hashed Inverted Page Table

Hashed Inverted Page Table

o For large address spaces, a hashed page table
can be used, with the hash value being the VPN

o ldea:

— A PTE contains a chain of elements hashing to the
same location (to handle collisions) within PT

— Each element has three fields: (a) VPN, (b) PFN, (c) a
pointer to the next element in the linked list

— VPNs are compared in this chain searching for a
match. If a match is found, the corresponding PFN is
extracted

Hashed Inverted Page Table Example

llogical address

P

d

v

physical
address

r [d

—>

st T Lot

hash table

physical
memory

28

Approaches

o Approach 3: Multi-level Page Table

Multi-level Page Table

o ldea:

— Break the page table into pages (the entire page table
IS paged!)

— Only have pieces with >0 valid entries

« Don’t allocate the page of page table if the entire page of
page-table entries is invalid

o Used by x86

o A simple technigue is a two-level page table

Two-level Page Table Example

also called a
page directory

outer page
table

0
1 _——-"’/’T
e 100
500 N
° /
100 500
708 -"\\)
708
9?9 BN 900
900 /><
page of 929
page table
page table

memory

31

Two-level Paging

A logical address (on 32-bit machine with 4KB page size) is divided
into

— a page number consisting of 20 bits

— a page offset consisting of 12 bits

A page table entry is 4 bytes

Since the page table is paged, the page number is further divided
into

— p;: a 10-bit page directory index

— Pp,: a 10-bit page table index

The logical address is as follows:

page number page offset
P1 P2 d
10 10 12

where p; is an index into the outer page table, and p. is the
displacement within the page of the inner page table
32

Address Translation Scheme

o Address translation scheme for a two-level 32-bit
paging architecture

logical address

P+

Po

d

3

>

outer page
table

-

page of
page table

33

> 2 Levels

o Problem: page directory may not fit in a page

o Solution:
— Split page directories into pieces
— Use another page dir to refer to the page dir pieces

> 2 Levels

o Problem: page directory may not fit in a page

o Solution:
— Split page directories into pieces
— Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of
paging

> 2 Levels

o Problem: page directory may not fit in a page

o Solution:
— Split page directories into pieces
— Use another page dir to refer to the page dir pieces

VPN

]‘10 10’\ 10 12

First-level Second-level
page directory page directory

Multi-level Page Table Example

0

Entry0
|
16
%
e
15
%‘

13

Entries
252-255

10

11

Page 4, Addresses 0x1000-0x13ff

Page 5, Addresses 0x1400-0x171f

Page 6, Addresses 0x1800-0x1bif

Page 7, Addresses 0x1c00-0x1fff

Page 8, Addresses 0=2000-0=23ff

Page 12, Addresses 0x3000-0x3fff

Page 13, Addresses 0x3400-0=37f

Page 14, Addresses 0x3800-0x3bff

Page Ox3ffffc, Addresses OxfffffO00-OxfifE3

Page Ox3ffffd, Addresses OxfffffA00-Ox=fiiff7 ff

Page Ox3ffffe, Addresses OxfffffS00-Oxftiffbif

Page Ox3fffff, Addresses OxfffffcO0-Oxfffffftt

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

37

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

