### CS 471 Operating Systems

### Yue Cheng

George Mason University Fall 2019

### Announcement

HW2 will be posted after Thursday's class
 – Due Nov 1<sup>st</sup>

# **Paging Problems**

- Page tables are too slow
- Page tables are too big

# Review: Page Table

### Virtual => Physical Addr Mapping

- $_{\odot}$  We need a general mapping mechanism
- What data structure is good?



### Virtual => Physical Addr Mapping

- $_{\odot}$  We need a general mapping mechanism
- o What data structure is good?



# A Simple Page Table Example



# A Simple Page Table Example



# Paging Problems

- Page tables are too slow (covered last week)
  TLB to the rescue!
- Page tables are too big (today)

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes
    - 2 ^ (32-log(4KB)) \* 4 = 4MB

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes

Num of virt pages

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes

# Page Tables are Too Big

- A linear page table array for 32-bit address space (2<sup>32</sup> bytes) and 4KB page (2<sup>12</sup> bytes)
  - How many pages: 2<sup>20</sup> pages
  - How much memory: 4MB assuming each page-table entry is of 4 bytes
    - 2 ^ (32-log(4KB)) \* 4 = 4MB
- One page table for one process!
  - A system with 100 process: 400MB only for storing page tables in memory

#### o Solution??

### Naïve Solution

- Reduce the granularity
  - by increasing the page size

### Naïve Solution

- Reduce the granularity
  - by increasing the page size
- o Why are 4MB pages bad?
  - Internal fragmentation!

### Fragmentation

Phys Mem

# An allocated 4MB huge page of P4



Assume each process consists of multiple 4MB pages

### Fragmentation



### Approaches

- Approach 1: Linear Inverted Page Table
- Approach 2: Hashed Inverted Page Table
- Approach 3: Multi-level Page Table

### Approaches

- Approach 1: Linear Inverted Page Table
- o Approach 2: Hashed Inverted Page Table
- o Approach 3: Multi-level Page Table

# Linear Inverted Page Table

- Idea: Instead of keeping one page table per process, the system keeps a single page table that has an entry for each physical frame of the system
- Each entry tells which process owns the page, and VPN to PFN translation

### Linear Inverted Page Table Example



# Linear Inverted Page Table

- Idea: Instead of keeping one page table per process, the system keeps a single page table that has an entry for each physical frame of the system
- Each entry tells which process owns the page, and VPN to PFN translation
- Goal: use linear search to find the index i
  - The reason why it's called "inverted"
- Pros: Extreme memory savings
- Cons: A linear search is expensive
  - Solution??

### Approaches

o Approach 1: Linear Inverted Page Table

Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

# Hashed Inverted Page Table

 For large address spaces, a hashed page table can be used, with the hash value being the VPN

o Idea:

- A PTE contains a chain of elements hashing to the same location (to handle collisions) within PT
- Each element has three fields: (a) VPN, (b) PFN, (c) a pointer to the next element in the linked list
- VPNs are compared in this chain searching for a match. If a match is found, the corresponding PFN is extracted

### Hashed Inverted Page Table Example



### Approaches

o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

Approach 3: Multi-level Page Table

# Multi-level Page Table

- o Idea:
  - Break the page table into pages (the entire page table is paged!)
  - Only have pieces with >0 valid entries
    - Don't allocate the page of page table if the entire page of page-table entries is invalid

Used by x86

• A simple technique is a two-level page table

### Two-level Page Table Example



# **Two-level Paging**

- A logical address (on 32-bit machine with 4KB page size) is divided into
  - a page number consisting of 20 bits
  - a page offset consisting of 12 bits
- A page table entry is 4 bytes
- Since the page table is paged, the page number is further divided into
  - $p_1$ : a 10-bit page directory index
  - $p_2$ : a 10-bit page table index
- The logical address is as follows:

| page number |       | page offset |
|-------------|-------|-------------|
| $p_1$       | $p_2$ | d           |
| 10          | 10    | 12          |

where  $p_1$  is an index into the outer page table, and  $p_2$  is the displacement within the page of the inner page table

### **Address Translation Scheme**

 Address translation scheme for a two-level 32-bit paging architecture



### > 2 Levels

- Problem: page directory may not fit in a page
- Solution:
  - Split page directories into pieces
  - Use another page dir to refer to the page dir pieces

### > 2 Levels

- Problem: page directory may not fit in a page
- Solution:
  - Split page directories into pieces
  - Use another page dir to refer to the page dir pieces
- Possible to extend to 3- or 4-level
- E.g., 64-bit Ultra-SPARC would need 7 levels of paging

### > 2 Levels

- Problem: page directory may not fit in a page
- Solution:
  - Split page directories into pieces
  - Use another page dir to refer to the page dir pieces



# Multi-level Page Table Example



http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html