
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019



Announcement
o HW2 posted on BB after today’s class
– Due at 11:59pm Nov 1st (end of day next Friday)

2



3

Swapping: 
Beyond Physical Memory



4

Virtual memory

Program

code
data

Disk



5

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1



6

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

What’s in code?



7

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

Many large libraries, some of which are rarely/never used

LibA LibB

LibC Prog

LibA LibB

LibC Prog

What’s in code?



8

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

How to avoid wasting physical pages to 
back rarely used virtual pages?

LibA LibB

LibC Prog

LibA LibB

LibC Prog



9

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog



10

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog



11

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgProcess 1 accesses LibB



12

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgOS copies LibB to mem
LibB



13

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Progcalled “swapping in” or
“paging in” LibB



14

How to Know Where a Page Lives?



Present Bit
o With each PTE a present is associated 

– 1 è in-memory, 0 è out in disk

o During address translation, if present bit in PTE 
is 0 è page fault

15

An 32-bit X86 page table entry (PTE)

Present bit



Present Bit

16

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Page table



Present Bit

17

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory



Present Bit

18

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access



Present Bit

19

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

8 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access



20

What if NO Memory is Left?



Present Bit

21

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

FULL



Present Bit

22

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL



Present Bit

23

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

evict



Present Bit

24

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict



Present Bit

25

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

called “swapping out” 
or “paging out”



Present Bit

26

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access



Present Bit

27

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

5 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

again, another “swapping in” 
or “paging in”



28

Why not Leave Page on Disk?



Storage Hierarchy

29

Main memory:
Smaller capacity
Faster accesses

Secondary storage:
Larger capacity

Way slower accesses



Why not Leave Page on Disk?
o Performance: Memory vs. Disk

o How long does it take to access a 4-byte int
from main memory vs. disk?
– DRAM: ~100ns
– Disk: ~10ms

30



Beyond the Physical Memory
o Idea: use the disk space as an extension of main 

memory

o Two ways of interaction b/w memory and disk
– Demand paging
– Swapping

31



Demand Paging
o Bring a page into memory only when it is 

needed (demanded)
– Less I/O needed
– Less memory needed 
– Faster response
– Support more processes/users

o Page is needed Þ use the reference to page
– If not in memory Þ must bring from the disk

32



Swapping
o Swapping allows OS to support the illusion of a 

large virtual memory for multiprogramming
– Multiple programs can run “at once”
– Better utilization
– Ease of use

o Demand paging vs. swapping
– On demand vs. page replacement under memory 

pressure 

33



Swapping
o Swapping allows OS to support the illusion of a 

large virtual memory for multiprogramming
– Multiple programs can run “at once”
– Better utilization
– Ease of use

34



Swap Space
o Part of disk space reserved for moving pages 

back and forth 
– Swap pages out of memory
– Swap pages into memory from disk

o OS reads from and writes to the swap space at 
page-sized unit

35

In this example,
Process 3 is all swapped to 

disk



Address Translation Steps
o Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??

36



Address Translation Steps
o Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??

37

(cheap)

(expensive)

(cheap)

(cheap)

(cheap)

(expensive)
(expensive)
(expensive)



Page Fault
o The act of accessing a page that is not in 

physical memory is called a page fault

o OS is invoked to service the page fault
– Page fault handler

o Typically, PTE contains the page address on 
disk

38



Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

39



Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?
40



Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?
41

(expensive)

(cheap)

(cheap)

(depends)

(cheap)

(cheap)

(cheap)



Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

42

(expensive)

(cheap)

(cheap)

(depends)

(cheap)

(cheap)

(cheap)

What to evict?
What to read?



Major Steps of A Page Fault

43



Impact of Page Faults
o Each page fault affects the system performance 

negatively
– The process experiencing the page fault will not be 

able to continue until the missing page is brought to 
the main memory

– The process will be blocked (moved to the waiting 
state)

– Dealing with the page fault involves disk I/O 
• Increased demand to the disk drive 
• Increased waiting time for process experiencing page fault

44



Memory as a Cache
o As we increase the degree of multiprogramming, 

over-allocation of memory becomes a problem

o What if we are unable to find a free frame at the 
time of the page fault? 

o OS chooses to page out one or more pages to 
make room for new page(s) OS is about to bring 
in
– The process to replace page(s) is called page 

replacement policy

45



Memory as a Cache
o OS keeps a small portion of memory free 

proactively
– High watermark (HW) and low watermark (LW)

o When OS notices free memory is below LW (i.e., 
memory pressure)
– A background thread (i.e., swap/page daemon) starts 

running to free memory
– It evicts pages until there are HW pages available

46


