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What to Evict?



Page Replacement
o Page replacement completes the separation 

between the logical memory and the physical 
memory 
– Large virtual memory can be provided on a smaller 

physical memory

o Impact on performance
– If there are no free frames, two page transfers needed at 

each page fault!

o We can use a modify (dirty) bit to reduce overhead 
of page transfers – only modified pages are written 
back to disk
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Page Replacement Policy
o Formalizing the problem

– Cache management: Physical memory is a cache for 
virtual memory pages in the system

– Primary objective:
• High performance
• High efficiency
• Low cost

– Goal: Minimize cache misses
• To minimize # times OS has to fetch a page from disk 
• -OR- maximize cache hits 
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Average Memory Access Time
o Average (or effective) memory access time (AMAT) 

is the metric to calculate the effective memory 
performance

o TM: Cost of accessing memory
o TD: Cost of accessing disk
o PHit: Probability of finding data in cache (hit)

– Hit rate
o PMiss: Probability of not finding data in cache (miss)

– Miss rate
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An Example
o Assuming 

– TM is 100 nanoseconds (ns), TD is 10 milliseconds 
(ms)

– PHit is 0.9, and PMiss is 0.1
o AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms = 

1.00009ms

– Or around 1 millisecond
o What if the hit rate is 99.9%?

– Result changes to 10.1 microseconds (or us)
– Roughly 100 times faster!
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First-In First-Out (FIFO)



First-in First-out (FIFO)
o Simplest page replacement algorithm 

o Idea: items are evicted in the order they are 
inserted

o Implementation: FIFO queue holds identifiers of 
all the pages in memory
– We replace the page at the head of the queue
– When a page is brought into memory, it is inserted at 

the tail of the queue
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FIFO Replacement Policy
o Idea: items are evicted in the order they are 

inserted
o Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
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FIFO Replacement Policy
o Idea: items are evicted in the order they are 

inserted

o Issue: the “oldest” page may contain a heavily 
used data
– Will need to bring back that page in near future
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FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
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Belady’s Anomaly
o Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

– Size-3 (3-frames) case results in 9 page faults
– Size-4 (4-frames) case results in 10 page faults

o Program runs potentially slower w/ more memory!

o Belady’s anomaly
– More frames è more page faults for some access pattern
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Random



Random Policy
o Idea: picks a random page to replace

o Simple to implement like FIFO

o No intelligence of preserving locality
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Random Policy
o Idea: picks a random page to replace
o Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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How Random Policy Performs?
o Depends entirely on how lucky you are
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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How Random Policy Performs?
o Depends entirely on how lucky you are
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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Same as 
optimal

Extremely 
bad result!

Random performance over 10000 trials
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Belady’s Optimal



OPT: The Optimal Replacement Policy

o Many years ago Belady demonstrated that there 
is a simple policy (OPT or MIN) which always 
leads to fewest number of misses

o Idea: evict the page that will be accessed 
furthest in the future

o Assumption: we know about the future
o Impossible to implement OPT in practice!

o But it is extremely useful as a practical best-case 
baseline for comparison purpose
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Proof of Optimality for Belady’s
Optimal Replacement Policy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf


OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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35

assume 
cache size 3

What to evict??
Page 2 happens to 
be the one that will 

be accessed 
furthest in future!
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assume 
cache size 3

What to evict??

Page 1 will be 
accessed right 
after page 2. 

Hence 1 is safe!
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OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3

The optimal number of cache hits is 6 for this workload!
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Least-Recently-Used 
(LRU)



Least-Recently-Used Policy (LRU)
o Use the recent pass as an approximation of the 

near future (using history)
o Idea: evict the page that has not been used for 

the longest period of time
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Least-Recently-Used Policy (LRU)
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o Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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LRU Stack Implementation
o Stack implementation: keep a stack of page 

numbers in a doubly linked list form
– Page referenced, move it to the top
– Requires quite a few pointers to be changed
– No search required for replacement operation!
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Using a Stack to Approximate LRU
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Most recently 
used

Least recently 
used



Using a Stack to Approximate LRU
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Most recently 
used

Least recently 
used

7 moved to 
MRU position



LRU Hardware Support
o Sophisticated hardware support may involve high 

overhead/cost!

o Some limited HW support is common: 
Reference (or use) bit

– With each page associate a bit, initially set to 0
– When the page is referenced, bit set to 1
– By examining the reference bits, we can determine which 

pages have been used
– We do not know the order of use, however!

o Cheap approximation
– Useful for clock algorithm
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Clock: Look For a Page
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0 1 2 3 …Physical mem:

clock hand

use=1 use=1 use=0 use=1



Clock: Look For a Page
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Clock: Look For a Page
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0 1 2 3 …Physical mem:

clock hand

use=0 use=0 use=0 use=1

Mem is full, and to evict a 
page to make room

Evict page 2 because it has not been recently used



Clock: Look For a Page
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0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=1



Clock: Access a Page
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0 1 4 3 …Physical mem:

clock hand

use=1 use=0 use=1 use=1

page 0 is accessed



Clock: Look For a Page
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0 1 4 3 …Physical mem:
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0 1 4 3 …Physical mem:
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Clock: Look For a Page

69

0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=0

Mem is full, and to evict a 
page to make room

Evict page 1 because it has not been recently used



Clock: Look For a Page
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0 5 4 3 …Physical mem:

clock hand

use=0 use=1 use=1 use=0



Summary: 
Page Replacement Policies

o FIFO
– Why it might work? Maybe the one brought in the longest ago is one 

we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”
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Summary: 
Page Replacement Policies

o FIFO
– Why it might work? Maybe the one brought in the longest ago is one 

we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

o Random
– Sometimes non intelligence is better

o OPT
– Assume we know about the future
– Not practical in real cases: offline policy
– However, can be used as a best case baseline for comparison 

purpose
o LRU

– Intuition: we can’t look into the future, but let’s look at past 
experience to make a good guess

– Out “bet” is that pages used recently are ones which will be used 
again (principle of locality)
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Page Replacement Workload 
Examples



Workload Examples
o A simple workload

– Workload consists of a working set of 100 pages
– Workload issues 10,000 access requests

o Four replacement policies
– OPT: The optimal 
– LRU: Least-recently used
– FIFO: First-in first-out
– RAND: Random
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The No-Locality Workload

77Each reference is to a random page within the set of accessed pages



The 80-20 Workload

7880-20: 80% of the refs are made to 20% of the pages (“hot” pages)



The Looping-Sequential Workload

79Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses



The Looping-Sequential Workload

80Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses
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Thrashing



Thrashing
o High-paging activity: The system is spending more 

time paging than executing

o How can this happen? 
– OS observes low CPU utilization and increases the degree 

of multiprogramming
– Global page-replacement algorithm is used, it takes away 

frames belonging to other processes
– But these processes need those pages, they also cause 

page faults
– Many processes join the waiting queue for the paging 

device, CPU utilization further decreases
– OS introduces new processes, further increasing the 

paging activity
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CPU Utilization vs. the Degree of 
Multiprogramming
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How to Avoid Thrashing?
o To avoid thrashing, earlier OS did admission 

control to only run a subset of processes 

o Some current OS takes more draconian 
approach
– E.g., some Linux runs an out-of-memory killer to 

choose a memory-intensive process and kill it
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Review: Demand Paging
o Bring a page into memory only when it is needed

– Less I/O needed
– Less memory needed 
– Faster response
– Support more processes/users

o Page is needed Þ use the reference to page
– If not in memory Þ must bring from the disk

o Demand paging versus swapping
– Fetching the page in only on demand vs. kicking out one 

victim then paging in one under mem pressure
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Demand Paging and Thrashing
o Why does demand paging work?

Locality model
– Process migrates from one locality to another
– Localities may overlap

o Why does thrashing occur?
S size of locality > total memory size
Or S working set size > total memory size

o Definition of working set size (WSS): number of 
unique items that are accessed 
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Impact of Program Structures 
on Memory Performance



Impact of Program Structure on 
Memory Performance

o Consider an array named data with 128*128 elements
o Each row is stored in one page (of size 128 words)
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Memory Performance

o Consider an array named data with 128*128 elements
o Each row is stored in one page (of size 128 words)
o Program 1 

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)
data[i][j] = 0;

128 x 128 = 16,384 page faults 
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Impact of Program Structure on 
Memory Performance

o Consider an array named data with 128*128 elements
o Each row is stored in one page (of size 128 words)
o Program 1 

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)
data[i][j] = 0;

128 x 128 = 16,384 page faults 

o Program 2 
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i][j] = 0;

Only 128 page faults
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