CS 471 Operating Systems

Yue Cheng

George Mason University Fall 2019

What to Evict?

Page Replacement

- Page replacement completes the separation between the logical memory and the physical memory
 - Large virtual memory can be provided on a smaller physical memory
- Impact on performance
 - If there are no free frames, two page transfers needed at each page fault!
- We can use a modify (dirty) bit to reduce overhead of page transfers – only modified pages are written back to disk

Page Replacement Policy

• Formalizing the problem

- Cache management: Physical memory is a cache for virtual memory pages in the system
- Primary objective:
 - High performance
 - High efficiency
 - Low cost
- Goal: Minimize cache misses
 - To minimize # times OS has to fetch a page from disk
 - -OR- maximize cache hits

Average Memory Access Time

 Average (or effective) memory access time (AMAT) is the metric to calculate the effective memory performance

 $AMAT = (P_{Hit} \cdot T_M) + (P_{Miss} \cdot T_D)$

- $\circ T_{M}$: Cost of accessing memory
- $\,\circ\,$ ${\bf T}_{\rm D}$: Cost of accessing disk
- P_{Hit}: Probability of finding data in cache (hit)
 Hit rate
- P_{Miss}: Probability of not finding data in cache (miss)
 Miss rate

An Example

- \circ Assuming
 - T_M is 100 nanoseconds (ns), T_D is 10 milliseconds (ms)
 - $\mathsf{P}_{\mathsf{Hit}}$ is 0.9, and $\mathsf{P}_{\mathsf{Miss}}$ is 0.1
- o AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms =
 1.00009ms
 - Or around 1 millisecond
- What if the hit rate is 99.9%?
 - Result changes to 10.1 microseconds (or us)
 - Roughly 100 times faster!

First-In First-Out (FIFO)

First-in First-out (FIFO)

- Simplest page replacement algorithm
- Idea: items are evicted in the order they are inserted
- Implementation: FIFO queue holds identifiers of all the pages in memory
 - We replace the page at the head of the queue
 - When a page is brought into memory, it is inserted at the tail of the queue

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0				
1				
2				
0				
1				
3				
0				
3				
1				
2				
1				10

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

	Access	Hit/Miss?	Evict	Resulting Cache State		assume cache size 3
-	0	Miss		$First-in \rightarrow$	0	
	1	Miss		$First-in \rightarrow$	0,1	
	2	Miss		$First-in \rightarrow$	0, 1, 2	
	0					
	1					
	3					
	0					
	3					
	1					
	2					
	1					11

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Result Cache S	0	assume cache size 3
0	Miss		First-in→	0	
1	Miss		$First-in \rightarrow$	0,1	
2	Miss		$First-in \rightarrow$	0, 1, 2	
0	Hit		$First-in \rightarrow$	0, 1, 2	
1					
3					
0					
3					
1					
2					
1					10

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

		- •	Resulting		assume cache size 3
Access	Hit/Miss?	Evict	Cache S	State	cache size s
0	Miss		$First-in \rightarrow$	0	
1	Miss		$First-in \rightarrow$	0,1	
2	Miss		$First-in \rightarrow$	0, 1, 2	
0	Hit		$First-in \rightarrow$	0, 1, 2	
1	Hit		$First-in \rightarrow$	0, 1, 2	
3					
0					
3					
1					
2					
1					10

.

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State		assume cache size 3
0	Miss		$First-in \rightarrow$	0	
1	Miss		$First-in \rightarrow$	0,1	
2	Miss		$First-in \rightarrow$	0, 1, 2	
0	Hit		$First-in \rightarrow$	0, 1, 2	
1	Hit		$First-in \rightarrow$	0, 1, 2	
3	Miss				
0					
3					
1					
2					
1					1.4
	0 1 2 0 1 3 0 3 1	0Miss1Miss2Miss0Hit1Hit3Miss0311	0Miss1Miss2Miss0Hit1Hit3Miss01	AccessHit/Miss?EvictCache S0MissFirst-in \rightarrow 1MissFirst-in \rightarrow 2MissFirst-in \rightarrow 0HitFirst-in \rightarrow 1HitFirst-in \rightarrow 3MissFirst-in \rightarrow 11Hit1111	AccessHit/Miss?EvictCache State0MissFirst-in \rightarrow 01MissFirst-in \rightarrow 0,12MissFirst-in \rightarrow 0,1,20HitFirst-in \rightarrow 0,1,21HitFirst-in \rightarrow 0,1,23Miss

.

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		assume
Access	Hit/Miss?	Evict	Cache S	State	cache size 3
0	Miss		$First-in \rightarrow$	0	
1	Miss		$First-in \rightarrow$	0,1	
2	Miss		$First-in \rightarrow$	0, 1, 2	
0	Hit		$First-in \rightarrow$	0, 1, 2	
1	Hit		$First-in \rightarrow$	0, 1, 2	
3	Miss	0	$First-in \rightarrow$	1, 2, 3	
0					
3					
1					
2					
1					15
					10

- Idea: items are evicted in the order they are inserted
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Result	ing
Access	Hit/Miss?	Evict	Cache S	state
0	Miss		$First-in \rightarrow$	0
1	Miss		$First-in \rightarrow$	0,1
2	Miss		$First-in \rightarrow$	0, 1, 2
0	Hit		$First-in \rightarrow$	0, 1, 2
1	Hit		$First-in \rightarrow$	0, 1, 2
3	Miss	0	$First-in \rightarrow$	1, 2, 3
0	Miss	1	$First-in \rightarrow$	2, 3, 0
3	Hit		$First-in \rightarrow$	2, 3, 0
1	Miss	2	$First-in \rightarrow$	3, 0, 1
2	Miss	3	$First-in \rightarrow$	0, 1, 2
1	Hit		First-in \rightarrow	0, 1, 2

assume cache size 3

- Idea: items are evicted in the order they are inserted
- Issue: the "oldest" page may contain a heavily used data
 - Will need to bring back that page in near future

- FIFO: items are evicted in the order they are inserted
- Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(a) size 3

(b) size 4

Access	Hit	State (after)	Access	Hit	State (after)
1			1		
2			2		
3			3		
4			4		
1			1		
2			2		
5			5		
1			1		
2			2		
3			3		
4			4		
5			5		

- FIFO: items are evicted in the order they are inserted
- Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(a) size 3

(b) size 4

Access	Hit	State (after)	Access	Hit	State (after)
1	no	1	1		
2	no	1,2	2		
3	no	1,2,3	3		
4	no	2,3,4	4		
1	no	3,4,1	1		
2	no	4,1,2	2		
5	no	1,2,5	5		
1	yes	1,2,5	1		
2	yes	1,2,5	2		
3	no	2,5,3	3		
4	no	5,3,4	4		
5	yes	5,3,4	5		

- FIFO: items are evicted in the order they are inserted
- Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(a) size 3

(b) size 4

Access	Hit	State (after)	Access	Hit	State (after)
1	no	1	1	no	1
2	no	1,2	2	no	1,2
3	no	1,2,3	3	no	1,2,3
4	no	2,3,4	4	no	1,2,3,4
1	no	3,4,1	1	yes	1,2,3,4
2	no	4,1,2	2	yes	1,2,3,4
5	no	1,2,5	5	no	2,3,4,5
1	yes	1,2,5	1	no	3,4,5,1
2	yes	1,2,5	2	no	4,5,1,2
3	no	2,5,3	3	no	5,1,2,3
4	no	5,3,4	4	no	1,2,3,4
5	yes	5,3,4	5	no	2,3,4,5

Belady's Anomaly

- Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 - Size-3 (3-frames) case results in 9 page faults
 - Size-4 (4-frames) case results in 10 page faults
- Program runs potentially slower w/ more memory!
- Belady's anomaly
 - − More frames → more page faults for some access pattern

Random

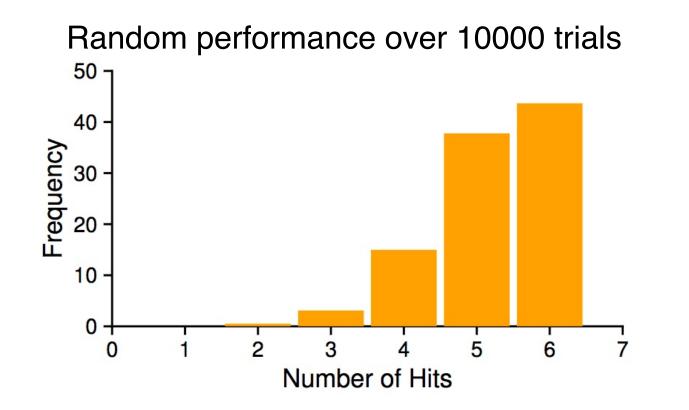
Random Policy

 $\circ\,$ Idea: picks a random page to replace

• Simple to implement like FIFO

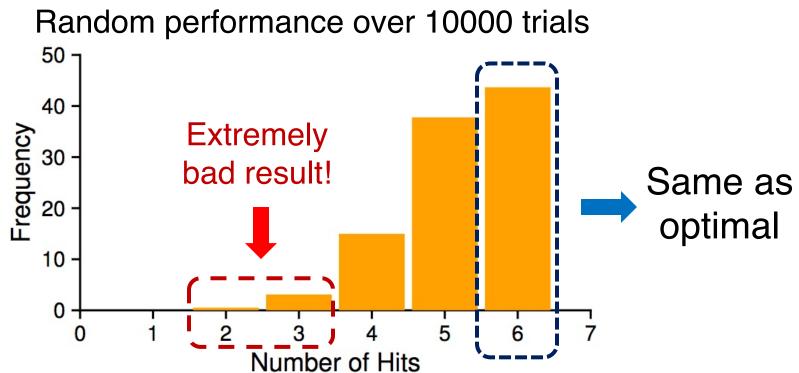
No intelligence of preserving locality

Random Policy


○ Idea: picks a random page to replace

Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting	
Access	Hit/Miss?	Evict	Cache State	
0	Miss		0	assume
1	Miss		0, 1	cache size 3
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3	Miss	0	1, 2, 3	
0	Miss	1	2, 3, 0	
3	Hit		2, 3, 0	
1	Miss	3	2, 0, 1	
2	Hit		2, 0, 1	
1	Hit		2, 0, 1	


How Random Policy Performs?

- Depends entirely on how lucky you are
- $_{\odot}$ Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

How Random Policy Performs?

- Depends entirely on how lucky you are
- $_{\odot}$ Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

Belady's Optimal

OPT: The Optimal Replacement Policy

- Many years ago **Belady** demonstrated that there is a simple policy (OPT or MIN) which always leads to fewest number of misses
- Idea: evict the page that will be accessed furthest in the future
- Assumption: we know about the future
- Impossible to implement OPT in practice!
- But it is extremely useful as a practical best-case baseline for comparison purpose

Proof of Optimality for Belady's Optimal Replacement Policy

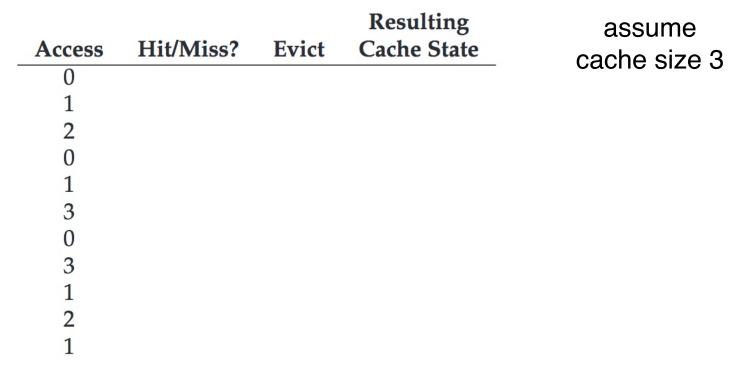
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

A Short Proof of Optimality for the **MIN** Cache Replacement Algorithm

Benjamin Van Roy Stanford University

December 2, 2010

Abstract


The **MIN** algorithm is an offline strategy for deciding which item to replace when writing a new item to a cache. Its optimality was first established by Mattson, Gecsei, Slutz, and Traiger [2] through a lengthy analysis. We provide a short and elementary proof based on a dynamic programming argument.

Keywords: analysis of algorithms, on-line algorithms, caching, paging

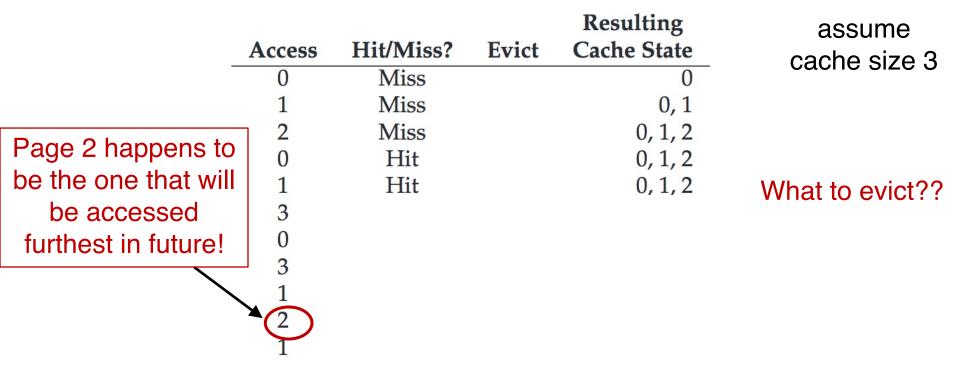
1 The MIN Algorithm

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	
1	Miss		0,1	
2	Miss		0, 1, 2	
0				
1				
3				
0				
3				
1				
2				
1				


- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	
1	Miss		0, 1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3				
0				
3				
1				
2				
1				

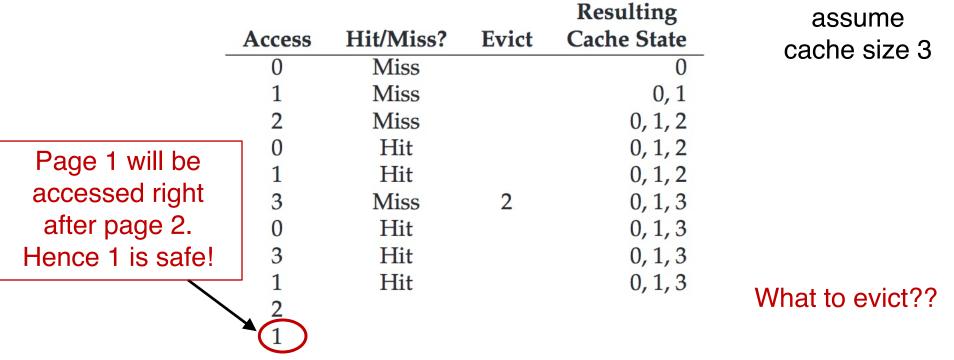
- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	cache size 5
1	Miss		0,1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	What to evict??
3				
0				
3				
1				
2				
1				

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	
1	Miss		0,1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3	Miss	2	0, 1, 3	
0				
3				
1				
2				
1				


- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	
1	Miss		0, 1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3	Miss	2	0, 1, 3	
0	Hit		0, 1, 3	
3	Hit		0, 1, 3	
1	Hit		0, 1, 3	
2				
1				

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	Caulie Size 3
1	Miss		0, 1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3	Miss	2	0, 1, 3	
0	Hit		0, 1, 3	
3	Hit		0, 1, 3	
1	Hit		0, 1, 3	What to oviat22
2				What to evict??
1				

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
Miss		0	
Miss		0, 1	
Miss		0, 1, 2	
Hit		0, 1, 2	
Hit		0, 1, 2	
Miss	2	0, 1, 3	
Hit		0, 1, 3	
Hit		0, 1, 3	
Hit		0, 1, 3	
Miss	3	0, 1, 2	
	Miss Miss Miss Hit Hit Miss Hit Hit Hit	Miss Miss Miss Hit Hit Miss 2 Hit Hit Hit Hit	Hit/Miss?EvictCache StateMiss0Miss0,1Miss0,1,2Hit0,1,2Hit0,1,2Miss2Miss2Miss1,3Hit0,1,3Hit0,1,3Hit0,1,3Hit0,1,3

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	
1	Miss		0,1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3	Miss	2	0, 1, 3	
0	Hit		0, 1, 3	
3	Hit		0, 1, 3	
1	Hit		0, 1, 3	
2	Miss	3	0, 1, 2	
1	Hit		0, 1, 2	

- Idea: evict the page that will be accessed furthest in the future
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State	assume cache size 3
0	Miss		0	
1	Miss		0,1	
2	Miss		0, 1, 2	
0	Hit		0, 1, 2	
1	Hit		0, 1, 2	
3	Miss	2	0, 1, 3	
0	Hit		0, 1, 3	
3	Hit		0, 1, 3	
1	Hit		0, 1, 3	
2	Miss	3	0, 1, 2	
1	Hit		0, 1, 2	

The optimal number of cache hits is 6 for this workload!

Least-Recently-Used (LRU)

- Use the recent pass as an approximation of the near future (using history)
- Idea: evict the page that has not been used for the longest period of time

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting
Access	Hit/Miss?	Evict	Cache State
0			
1			
2			
0			
1			
3			
0			
3			
1			
2			
1			

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting	
Access	Hit/Miss?	Evict	Cache State	
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0				
1				
3				
0				
3				
1				
2				
1				

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting	
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1				
3				
0				
3				
1				
2				
1				

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting	
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3				
0				
3				
1				
2				
1				

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting	
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0				
3				
1				
2				
1				

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0,1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU \rightarrow$	0, 1, 3	
0	Hit		$LRU \rightarrow$	1, 3, 0	
3					
1					
2					
1					

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

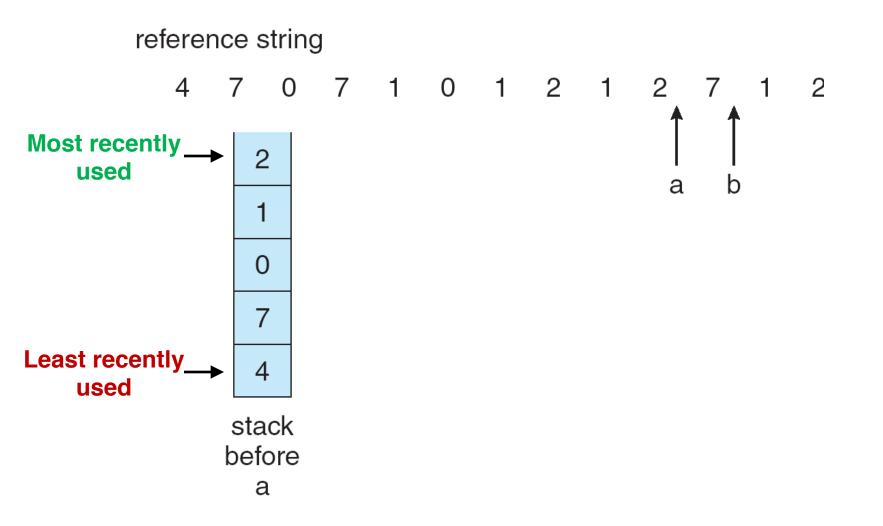
			Resulting	
Access	Hit/Miss?	Evict	Cache	State
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU \rightarrow$	1, 3, 0
3	Hit		$LRU \rightarrow$	1, 0, 3
1				
2				
1				

 Idea: evict the page that has not been used for the longest period of time

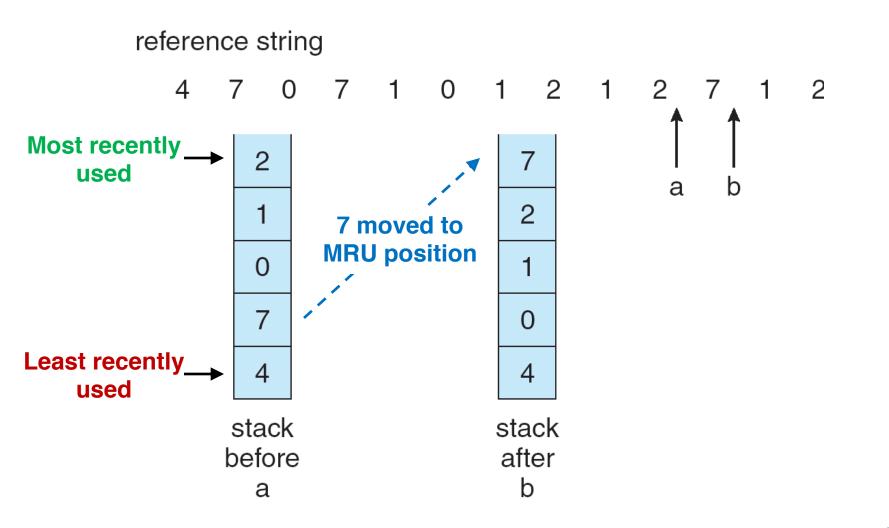
1 ...

Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting	
Access	Hit/Miss?	Evict	Cache State	
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU \rightarrow$	1, 3, 0
3	Hit		$LRU \rightarrow$	1, 0, 3
1	Hit		$LRU \rightarrow$	0, 3, 1
2				
1				

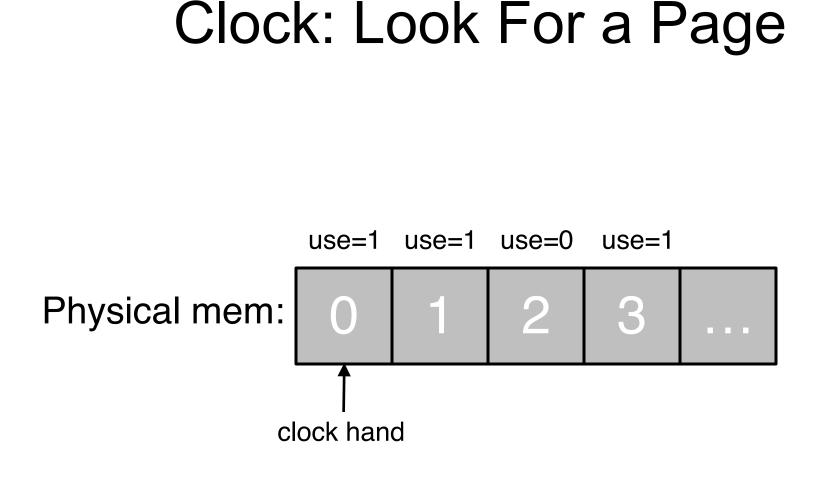

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

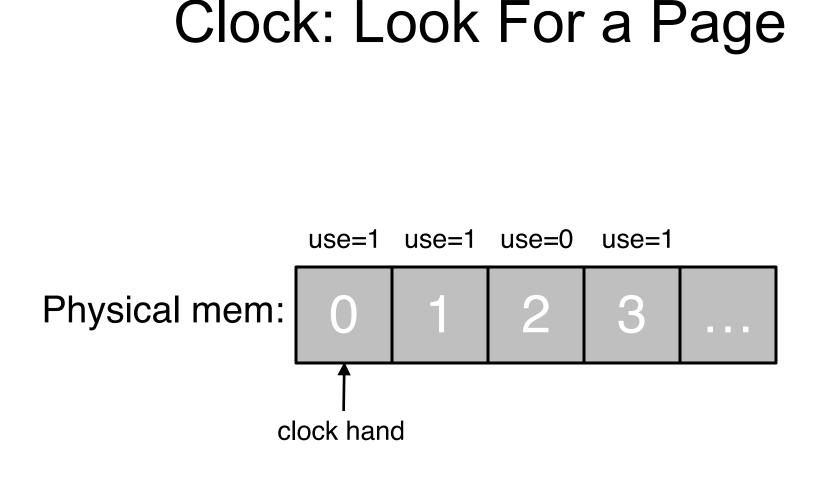
		Resulting	
Hit/Miss?	Evict	Cache State	
Miss		$LRU \rightarrow$	0
Miss		$LRU \rightarrow$	0,1
Miss		$LRU \rightarrow$	0, 1, 2
Hit		$LRU \rightarrow$	1, 2, 0
Hit		$LRU \rightarrow$	2, 0, 1
Miss	2	$LRU \rightarrow$	0, 1, 3
Hit		$LRU \rightarrow$	1, 3, 0
Hit		$LRU \rightarrow$	1, 0, 3
Hit		$LRU \rightarrow$	0, 3, 1
Miss	0	$LRU \rightarrow$	3, 1, 2
Hit		$LRU \rightarrow$	3, 2, 1
	Miss Miss Miss Hit Hit Miss Hit Hit Hit Hit Miss	Miss Miss Miss Hit Hit Miss 2 Hit Hit Hit Hit Miss 0	Hit/Miss?EvictCacheMiss $LRU \rightarrow$ Miss $LRU \rightarrow$ Miss $LRU \rightarrow$ Hit <t< td=""></t<>

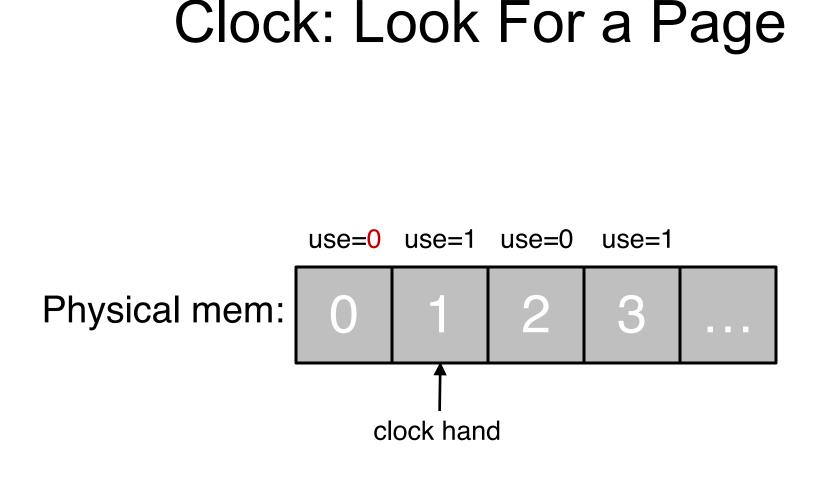

LRU Stack Implementation

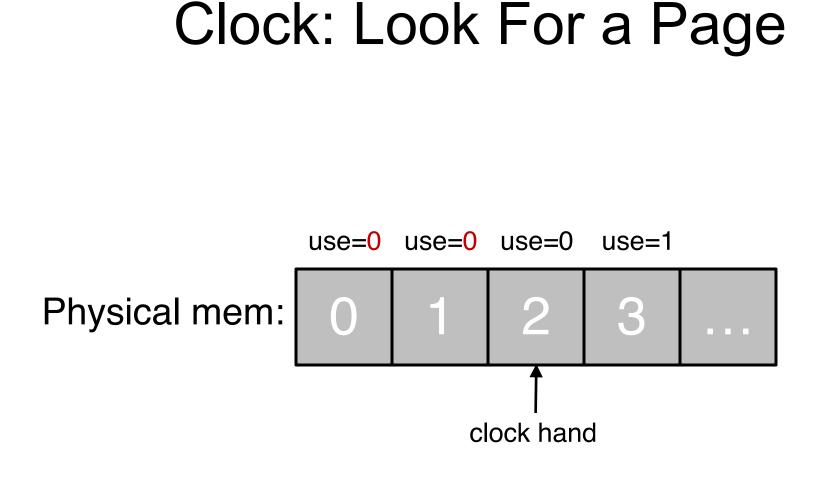
- Stack implementation: keep a stack of page numbers in a doubly linked list form
 - Page referenced, move it to the top
 - Requires quite a few pointers to be changed
 - No search required for replacement operation!

Using a Stack to Approximate LRU

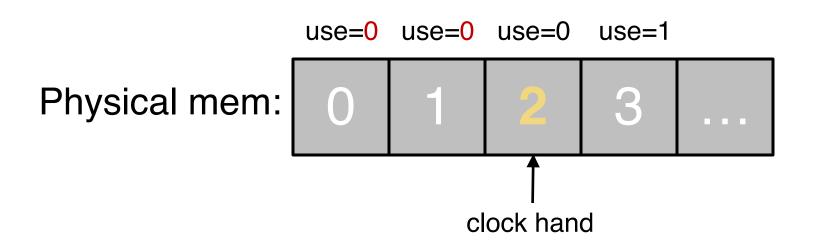


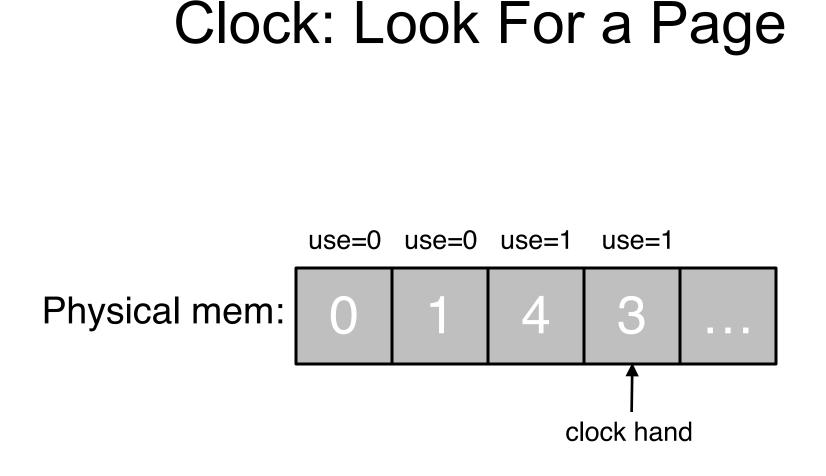

Using a Stack to Approximate LRU



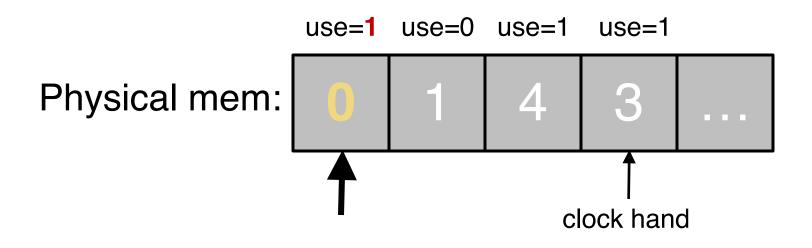

LRU Hardware Support

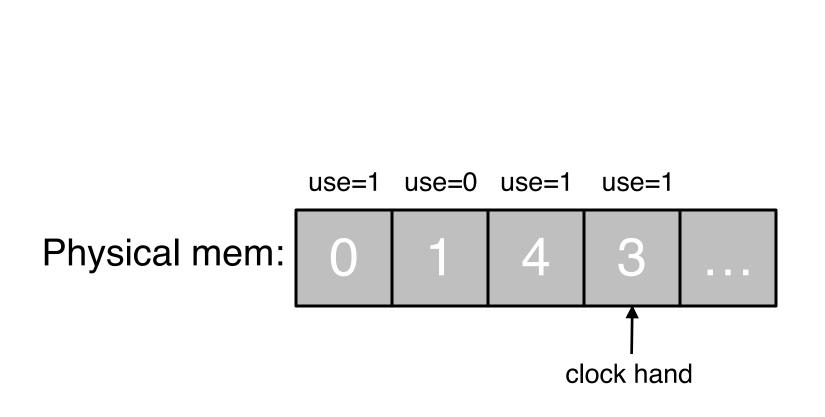
- Sophisticated hardware support may involve high overhead/cost!
- Some limited HW support is common:
 Reference (or use) bit
 - With each page associate a bit, initially set to 0
 - When the page is referenced, bit set to 1
 - By examining the reference bits, we can determine which pages have been used
 - We do not know the *order* of use, however!
- Cheap approximation
 - Useful for **clock** algorithm

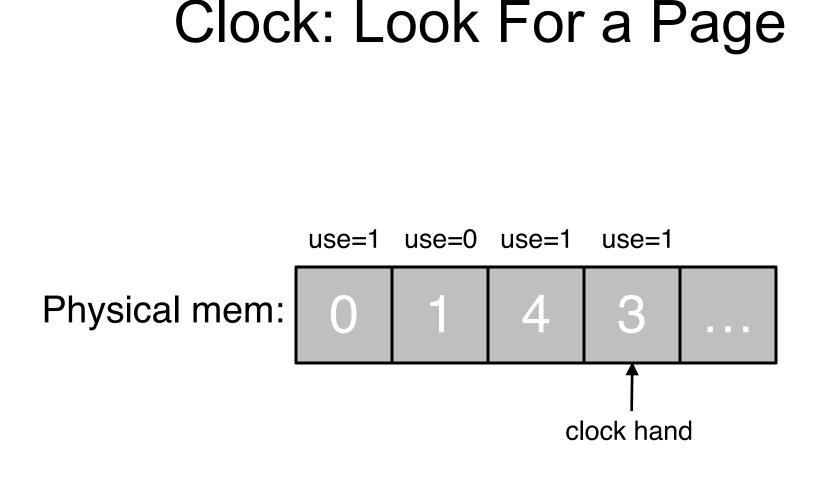


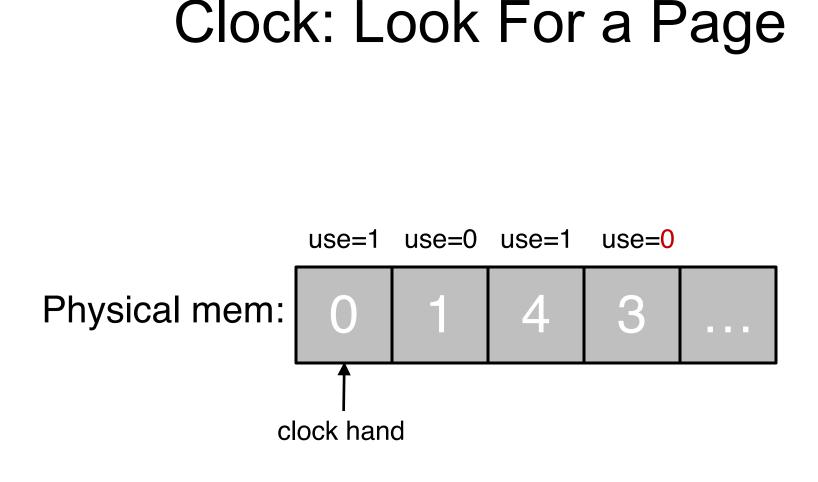


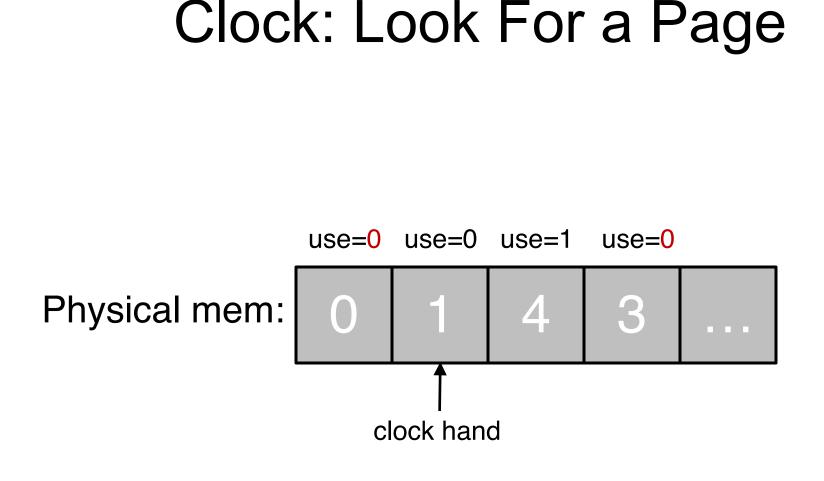
Clock: Look For a Page


Evict page 2 because it has not been recently used

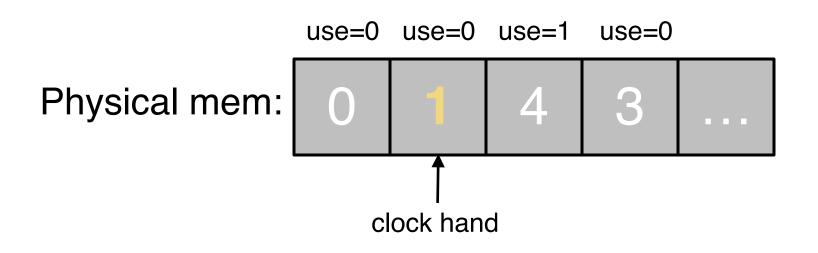


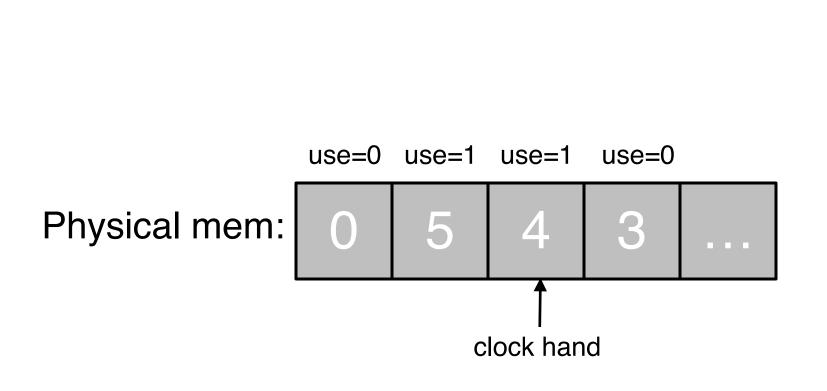

Clock: Access a Page


page 0 is accessed



Clock: Look For a Page





Clock: Look For a Page

Evict page 1 because it has not been recently used

Clock: Look For a Page

Summary: Page Replacement Policies

- o FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"

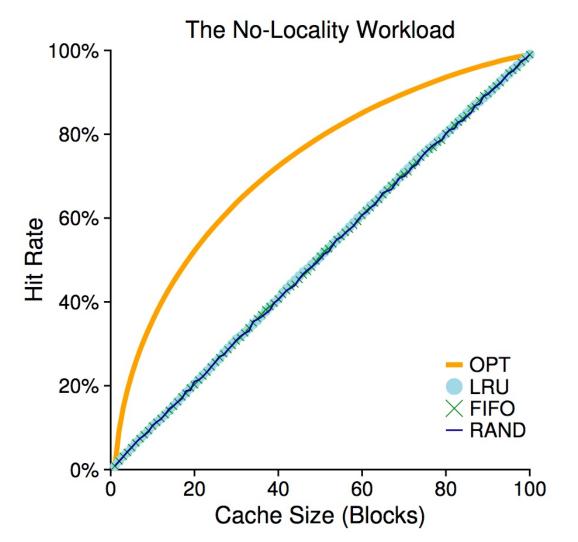
Summary: Page Replacement Policies

- o FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- o Random
 - Sometimes non intelligence is better

Summary: Page Replacement Policies

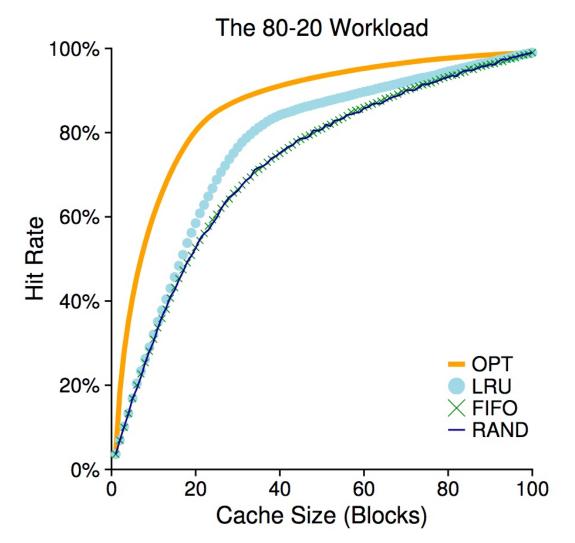
- o FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- o Random
 - Sometimes non intelligence is better
- OPT
 - Assume we know about the future
 - Not practical in real cases: offline policy
 - However, can be used as a **best case baseline** for comparison purpose

Summary: Page Replacement Policies

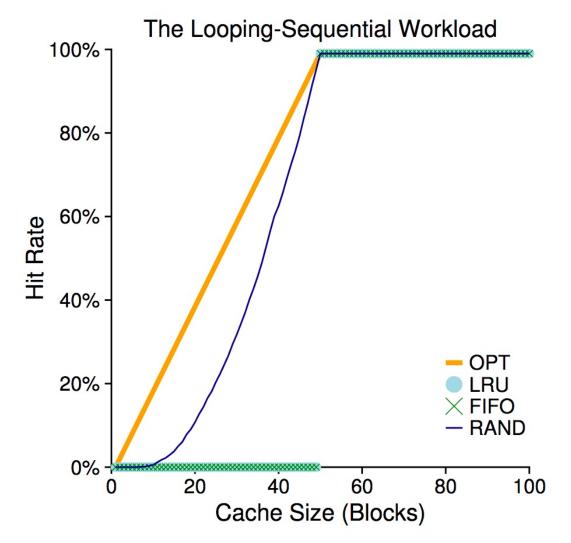

- o FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- o Random
 - Sometimes non intelligence is better
- OPT
 - Assume we know about the future
 - Not practical in real cases: offline policy
 - However, can be used as a **best case baseline** for comparison purpose
- o LRU
 - Intuition: we can't look into the future, but let's look at past experience to make a good guess
 - Out "bet" is that pages used recently are ones which will be used again (principle of locality)

Page Replacement Workload Examples

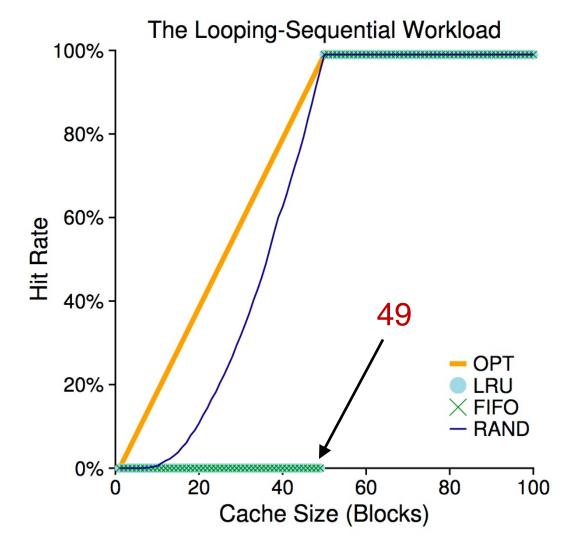
Workload Examples


- A simple workload
 - Workload consists of a working set of 100 pages
 - Workload issues 10,000 access requests
- Four replacement policies
 - OPT: The optimal
 - LRU: Least-recently used
 - FIFO: First-in first-out
 - RAND: Random

The No-Locality Workload


Each reference is to a random page within the set of accessed pages 77

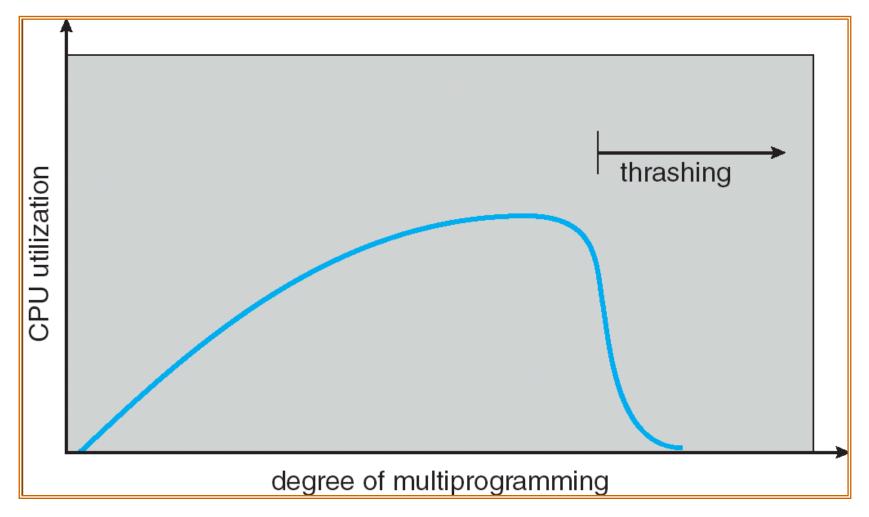
The 80-20 Workload


80-20: 80% of the refs are made to 20% of the pages ("hot" pages) 78

The Looping-Sequential Workload

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses 79

The Looping-Sequential Workload


Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses

Thrashing

Thrashing

- High-paging activity: The system is spending more time paging than executing
- How can this happen?
 - OS observes low CPU utilization and increases the degree of multiprogramming
 - Global page-replacement algorithm is used, it takes away frames belonging to other processes
 - But these processes need those pages, they also cause page faults
 - Many processes join the waiting queue for the paging device, CPU utilization further decreases
 - OS introduces new processes, further increasing the paging activity

CPU Utilization vs. the Degree of Multiprogramming

How to Avoid Thrashing?

- To avoid thrashing, earlier OS did admission control to only run a subset of processes
- Some current OS takes more draconian approach
 - E.g., some Linux runs an out-of-memory killer to choose a memory-intensive process and kill it

Review: Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed
 - Less memory needed
 - Faster response
 - Support more processes/users
- \circ Page is needed \Rightarrow use the reference to page
 - If not in memory \Rightarrow must bring from the disk
- Demand paging versus swapping
 - Fetching the page in only on demand vs. kicking out one victim then paging in one under mem pressure

Demand Paging and Thrashing

- Why does demand paging work? Locality model
 - Process migrates from one locality to another
 - Localities may overlap

• Why does thrashing occur?

- Σ size of locality > total memory size Or Σ working set size > total memory size
- Definition of working set size (WSS): number of unique items that are accessed

Impact of Program Structures on Memory Performance

Impact of Program Structure on Memory Performance

- Consider an array named data with 128*128 elements
- Each row is stored in one page (of size 128 words)

Impact of Program Structure on Memory Performance

- Consider an array named data with 128*128 elements
- Each row is stored in one page (of size 128 words)
- Program 1

128 x 128 = 16,384 page faults

Impact of Program Structure on Memory Performance

- Consider an array named data with 128*128 elements
- Each row is stored in one page (of size 128 words)
- Program 1

128 x 128 = 16,384 page faults

• Program 2

Only 128 page faults