CS 471 Operating Systems

Yue Cheng

George Mason University
Fall 2019

What to Evict?

Page Replacement

o Page replacement completes the separation
between the logical memory and the physical
memory

— Large virtual memory can be provided on a smaller
physical memory

o Impact on performance

— If there are no free frames, two page transfers needed at
each page fault!

o We can use a modify (dirty) bit to reduce overhead
of page transfers — only modified pages are written
back to disk

Page Replacement Policy

o Formalizing the problem

— Cache management: Physical memory is a cache for
virtual memory pages in the system

— Primary objective:
* High performance
» High efficiency
* Low cost
— Goal: Minimize cache misses

« To minimize # times OS has to fetch a page from disk
* -OR- maximize cache hits

Average Memory Access Time

o Average (or effective) memory access time (AMAT)
IS the metric to calculate the effective memory
performance

o Ty: Cost of accessing memory

o Tp: Cost of accessing disk

o Py;.: Probability of finding data in cache (hit)
— Hit rate

o Pyisq: Probability of not finding data in cache (miss)
— Miss rate

An Example

o Assuming

— Ty is 100 nanoseconds (ns), Tp is 10 milliseconds
(ms)

— Py 1s 0.9, and Py IS 0.1

o AMAT = 0.9*%100ns + 0.1*10ms = 90ns + 1lms =
1.00009ms

— Or around 1 millisecond
o What if the hit rate is 99.9%7?

— Result changes to 10.1 microseconds (or us)
— Roughly 100 times faster!

First-In First-Out (FIFO)

First-in First-out (FIFO)
o Simplest page replacement algorithm

o ldea: items are evicted in the order they are
inserted

o Implementation: FIFO queue holds identifiers of
all the pages in memory
— We replace the page at the head of the queue

— When a page is brought into memory, it is inserted at
the tail of the queue

FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 01201303121

FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3

NP, QOO WRFRrRONRFRO

FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2

NP, QOO WRFRrRONRFRO

FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1, 2

NP, QOO WRFRrRONRFRO

12

FIFO Replacement Policy

o ldea: items are evicted in the order they are

Inserted

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1, 2
Hit First-in— 0,1, 2

NP, QOO WRFRrRONRFRO

assume
cache size 3

13

FIFO Replacement Policy

o ldea: items are evicted in the order they are

Inserted

o Example workload: 01201303121

Resulting

Access Hit/Miss? Evict Cache State
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1, 2
Hit First-in— 0,1, 2
Miss

NP, QOO WRFRrRONRFRO

assume
cache size 3

14

FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2
Miss 0 First-in— 1,2,3

NP, QOO WRFRrRONRFRO

15

FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
0 Miss First-in— 0
1 Miss First-in— 35 |
2 Miss First-in— 0,1, 2
0 Hit First-in— 0,1,2
1 Hit First-in— 0,1,2
3 Miss 0 First-in— 1,2,3
0 Miss 1 First-in— 2,3,0
3 Hit First-in— 2,3,0
1 Miss 2 First-in— 3,0,1
2 Miss 3 First-in— 0,1,2
1 Hit First-in— 0,1,2

~
~

16

FIFO Replacement Policy

o Idea: items are evicted in the order they are
inserted

o Issue: the “oldest” page may contain a heavily
used data
— Will need to bring back that page in near future

FIFO Replacement Policy

o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2,3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4

ccess |t | state (atter) I Access | Hit | Stats atten

o B~ WO N = 00NV = B W N =
o B~ WO N = 00NV = B W N =

FIFO Replacement Policy

o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2,3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4

Access | Hit | State (atter) [Nl Access | it | State (after)
1 no 1 1

2 no 1,2 2

3 no 1,2,3 3

4 no 2,3,4 4

1 no 3,4,1 1

2 no 41,2 2

5 no 1,2,5 5

1 yes 1,2,5 1

2 yes 1,2,5 2

3 no 2,5,3 3

4 no 5,3,4 4

5 yes 5,3,4 5

FIFO Replacement Policy

o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2,3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4
Access | Hit | State (atter) [Nl Access | it | State (after)

1 no 1 1 no 1
2 no 1,2 2 no 1,2
3 no 1,2,3 3 no 1,2,3
4 no 2,3,4 4 no 1,2,3,4
1 no 3,4,1 1 yes 1,2,3,4
2 no 41,2 2 yes 1,2,3,4
5 no 1,2,5 5 no 2,3,4,5
1 yes 1,2,5 1 no 3,4,5,1
2 yes 1,2,5 2 no 451,2
3 no 2,5,3 3 no 5,1,2,3
4 no 53,4 4 no 1,2,3,4
5 yes 5,3,4 5 no 2,3,4,5

Belady’'s Anomaly

o Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
— Size-3 (3-frames) case results in 9 page faults
— Size-4 (4-frames) case results in 10 page faults

o Program runs potentially slower w/ more memory!

o Belady’s anomaly

— More frames = more page faults for some access pattern

2 12| 1 3 9page faults

H WD

W DN

10 page faults

21

Random

Random Policy

o ldea: picks a random page to replace
o Simple to implement like FIFO

o No intelligence of preserving locality

Random Policy

o ldea: picks a random page to replace
o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss 0 assume
1 Miss 0,1 cache size 3
2 Miss 0.2
0 Hit 0,1,2
1 Hit 01,2
! Miss 0 1.2.3
0 Miss 1 2:3:0
3 Hit 2.3:0
(] Miss 3 2,0,1
2 Hit 201
1 Hit 2001

24

How Random Policy Performs?

o Depends entirely on how lucky you are
o Example workload:012013030121

Random performance over 10000 trials
50 -

Frequency
N w A
o o o
1 1

-t
o
1

o

1 2 3 4 5 6 7
Number of Hits

o

How Random Policy Performs?

o Depends entirely on how lucky you are
o Example workload:012013030121

Random performance over 10000 trials

o - s - -

50 - ==
40 : :
) Extremely I |
g % bad result! !
(33'20 ad result! : : Same as
s [| - optimal
10 - : i
0 1 r 1 1 \!- I | E 1 : 1
0 1 1 2 3) 4 51 6 | 7

Number of Hits ===’

26

Belady's Optimal

OPT: The Optimal Replacement Policy

o Many years ago Belady demonstrated that there
is a simple policy (OPT or MIN) which always
leads to fewest number of misses

o ldea: evict the page that will be accessed
furthest in the future

o Assumption: we know about the future
o Impossible to implement OPT in practice!

o But it is extremely useful as a practical best-case
baseline for comparison purpose

Proof of Optimality for Belady’s
Optimal Replacement Policy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

A Short Proof of Optimality for
the MIN Cache Replacement Algorithm

Benjamin Van Roy
Stanford University

December 2, 2010

Abstract

The MIN algorithm is an offline strategy for deciding which item to replace
when writing a new item to a cache. Its optimality was first established by Mattson,
Gecsei, Slutz, and Traiger [2] through a lengthy analysis. We provide a short and
elementary proof based on a dynamic programming argument.

Keywords: analysis of algorithms, on-line algorithms, caching, paging

1 The MIN Algorithm

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

o

N WO WRRrONRKE

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . ? ° .
Access Hlthlss. Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 0oL 2

N WO WRRrONRKE

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
Access HIUMlsS? Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 0,1,2
Hit 0.1.2
Hit 0.1, 2

N WO WRRrONRKE

33

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. ° ? . [

Access HIUMlss. Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 01,2
Hit Bl

Hit 0,1,2 What to evict??

N WO WRRrONRKE

34

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

Miss 0
Miss 0,1
Miss 01,2
Page 2 happens to Hlit 0.1.2
be the one that will Hit 0,1,2 What to evict??

be accessed
furthest in future!

H@H@O@HONHO

35

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
Access HIUMlsS? Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 0,1,2
Hit 0.0
Hit 0,1,2
Miss 2 0,1,3

N WO WRRrONRKE

36

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
Access HIUMlss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 0,1,2
0 Hit 0,1,2
1 Hit 0,1,2
3 Miss 2 973 B
0 Hit 0,1,3
3 Hit 033
1 Hit 1
2

1

37

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

0 Miss 0

1 Miss 0,1

2 Miss il 2

0 Hit 0,1,2

1 Hit 012

3 Miss 2 01,3

0 Hit 0,1,3

3 Hit 0113

- L 013 \What to evict??
1

38

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . 7 . .
Access Hit/Miss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 0,1,2
. 0 Hit 012
Page 1 WI||. be 1 Hit 01,2
accessed right 3 Miss) K
after page 2. 0 Hit 0.5
Hence 1 is safe! 3 Hit 003

1 Hit 0.5 :

\ 5 : What to evict??

39

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 01,2
0 Hit 0. 1.2
1 Hit 012
3 Miss 2 015
0 Hit 015
5 Hit .13
1 Hit 0.5
2 Miss 3 012
1

40

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

Miss

Miss

Miss
Hit
Hit

Miss 2
Hit
Hit
Hit

Miss 5
Hit

~ ~
~ ~ ~

~
~

~ ~

~

NFNRFWOWRONRO
€ SN elEy Enies e

— e e e e e e e e O
NNWWWWNNNR~RO

~
~ ~ ~ ~ ~ ~

41

OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 01201303121

Resulting assume
. . 7 . .
Access Hit/Miss? Evict Cache State cache size 3

Miss
Miss
Miss
Hit
Hit
Miss 2
Hit
Hit
Hit
Miss 5
Hit
The optimal number of cache hits is 6 for this workload!

NDNWWWWNDNDNRFERO

~

~

~

N—_WOWRONRO
€ SN elEy Enies e
— e e e e e e e e O

~ ~ ~ ~ ~ ~ ~ ~ ~

st

~

42

Least-Recently-Used
(LRU)

Least-Recently-Used Policy (LRU)

o Use the recent pass as an approximation of the
near future (using history)

o ldea: evict the page that has not been used for
the longest period of time

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State

-

= N = QO WRERON =

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—- 0,1,2

= N = QO WRERON =

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2
Hit LRU— 1,2,0

= N = QO WRERON =

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2
Hit LRU— 1,2,0
Hit LRU— 2,0,1

= N = QO WRERON =

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU— 0
Miss LRU— 0,1

Miss LRU—~ 0,1,2

Hit LRU— 1,2,0

Hit LRU— 2,0,1

Miss 2 LRU—~ 0,1,3

= N = QO WRERON =

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2
Hit LRU— 1,2,0
Hit LRU— 2,0,1
Miss 2 LRU—~ 0,1,3
Hit LRU— 1,3,0

= N = QO WRERON =

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU— 1,3,0
3 Hit LRU—~ 10,3
1

2

i |

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU— 1,3,0
3 Hit LRU—~ 10,3
1 Hit LRU— 0,31
2

i |

Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU— 1,3,0
3 Hit LRU—~ 10,3
1 Hit LRU— 0,31
2 Miss 0 LRU— 3,1,2
i | Hit LRU— 3,2,1

~
~

LRU Stack Implementation

o Stack implementation: keep a stack of page
numbers in a doubly linked list form
— Page referenced, move it to the top
— Requires quite a few pointers to be changed
— No search required for replacement operation!

Using a Stack to Approximate LRU

reference string

4 v o 7 1 0 1 2 1 2 7 1 2

: I

Most recently
used

a b
1
0
7
Least recently 4
used
stack
before

a

55

Using a Stack to Approximate LRU

reference string
4 7 o0 7 1 0 1 2 1 2 7 1 2

Most recently

used // a b
1 7 moved to 2
0 ME!U position y
7 I 0
Least recently 4 4
used
stack stack
before after

a b

56

L RU Hardware Support

o Sophisticated hardware support may involve high
overhead/cost!

o Some limited HW support is common:

Reference (or use) bit
— With each page associate a bit, initially setto 0
— When the page is referenced, bit set to 1

— By examining the reference bits, we can determine which
pages have been used

— We do not know the order of use, however!

o Cheap approximation
— Useful for clock algorithm

57

Clock: Look For a Page

use=1 use=1 use=0 use=1

Physical mem:

I

clock hand

Clock: Look For a Page

use=1 use=1 use=0 use=1

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

use=0 use=1 use=0 use=1

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

use=0 use=0 use=0 use=1

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

Evict page 2 because it has not been recently used

use=0 use=0 use=0 use=1

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

use=0 use=0 use=1 use=1

Physical mem:

I

clock hand

Clock: Access a Page

page 0 is accessed

use=1 use=0 use=1 use=1

Physical mem:

5 r

clock hand

Clock: Look For a Page

use=1 use=0 use=1 use=1

Physical mem:

I

clock hand

Clock: Look For a Page

use=1 use=0 use=1 use=1

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

use=1 use=0 use=1 use=0

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

use=0 use=0 use=1 use=0

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

Evict page 1 because it has not been recently used

use=0 use=0 use=1 use=0

Physical mem:

I

clock hand

Mem is full, and to evict a
page to make room

Clock: Look For a Page

use=0 use=1 use=1 use=0

Physical mem:

I

clock hand

Summary:

Page Replacement Policies

o FIFO

— Why it might work? Maybe the one brought in the longest ago is one
we are not using now

— Why it might not work? No real info to tell if it’s being used or not
— Suffers “Belady’s Anomaly”

Summary:

Page Replacement Policies

o FIFO

— Why it might work? Maybe the one brought in the longest ago is one
we are not using now

— Why it might not work? No real info to tell if it’s being used or not
— Suffers “Belady’s Anomaly”

o Random
— Sometimes non intelligence is better

Summary:

Page Replacement Policies

o FIFO

— Why it might work? Maybe the one brought in the longest ago is one
we are not using now

— Why it might not work? No real info to tell if it’s being used or not
— Suffers “Belady’s Anomaly”

o Random
— Sometimes non intelligence is better
o OPT
— Assume we know about the future
— Not practical in real cases: offline policy

— However, can be used as a best case baseline for comparison
purpose

O

O

Summary:

Page Replacement Policies

FIFO

— Why it might work? Maybe the one brought in the longest ago is one
we are not using now

— Why it might not work? No real info to tell if it’s being used or not
— Suffers “Belady’s Anomaly”

Random
— Sometimes non intelligence is better

OPT

— Assume we know about the future
— Not practical in real cases: offline policy
— However, can be used as a best case baseline for comparison
purpose
LRU
— Intuition: we can’t look into the future, but let’s look at past
experience to make a good guess

— Out “bet” is that pages used recently are ones which will be used
again (principle of locality)

Page Replacement Workload
Examples

Workload Examples

o A simple workload

— Workload consists of a working set of 100 pages
— Workload issues 10,000 access requests

o Four replacement policies
— OPT: The optimal
— LRU: Least-recently used
— FIFO: First-in first-out
— RAND: Random

The No-Locality Workload

The No-Locality Workload
100% -

80% -

60%

Hit Rate

40°/o 7

OPT
LRU
X FIFO

— RAND

20%

Oo/o n T T T T 1
0 20 40 60 80 100
Cache Size (Blocks)

Each reference is to a random page within the set of accessed pages

The 80-20 Workload

The 80-20 Workload

100% -
80% -
@ 60%-
©
o
L 40%-
OPT
20% A LRU
X FIFO
— RAND
Oo/o 1 T T T 1
0 20 40 60 80 100

Cache Size (Blocks)
80-20: 80% of the refs are made to 20% of the pages (“hot” pages)

The Looping-Sequential Workload

- The Looping-Sequential Workload

80% -

60% -

Hit Rate

40%

OPT

20% - LRU
% FIFO
— RAND
Oo/o ¥ RIS . . |
0 20 40 60 80 100

Cache Size (Blocks)
Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses

79

The Looping-Sequential Workload

- The Looping-Sequential Workload

80% -

60% -

Hit Rate

40%

OPT

20% - LRU
% FIFO
— RAND
Oo/o ¥ RIS . . |
0 20 40 60 80 100

Cache Size (Blocks)
Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses

80

Thrashing

Thrashing

o High-paging activity: The system is spending more
time paging than executing

o How can this happen?

— OS observes low CPU utilization and increases the degree
of multiprogramming

— Global page-replacement algorithm is used, it takes away
frames belonging to other processes

— But these processes need those pages, they also cause
page faults

— Many processes join the waiting queue for the paging
device, CPU utilization further decreases

— OS introduces new processes, further increasing the
paging activity

CPU Utilization vs. the Degree of

Multiprogramming

CPU utilization

>

| thrashing

~

\

degree of multiprogramming

83

How to Avoid Thrashing?

o To avoid thrashing, earlier OS did admission
control to only run a subset of processes

o Some current OS takes more draconian
approach

— E.g., some Linux runs an out-of-memory Killer to
choose a memory-intensive process and kill it

Review: Demand Paging

o Bring a page into memory only when it is needed
— Less I/0 needed
— Less memory needed
— Faster response
— Support more processes/users

o Page is needed = use the reference to page
— If not in memory = must bring from the disk

o Demand paging versus swapping

— Fetching the page in only on demand vs. kicking out one
victim then paging in one under mem pressure

Demand Paging and Thrashing

o Why does demand paging work?
Locality model
— Process migrates from one locality to another
— Localities may overlap

o Why does thrashing occur?
2 size of locality > total memory size

Or 2 working set size > total memory size

o Definition of working set size (WSS): number of
unique items that are accessed

Impact of Program Structures
on Memory Performance

Impact of Program Structure on
Memory Performance

o Consider an array named data with 128+*128 elements
o Each row is stored in one page (of size 128 words)

Impact of Program Structure on
Memory Performance

o Consider an array named data with 128+*128 elements
o Each row is stored in one page (of size 128 words)
o Program 1
for (j = 0; j <128; j++)
for (1 = 0; 1 < 128; i++)
data[1][]J] = 0;

128 x 128 = 16,384 page faults

O

Impact of Program Structure on
Memory Performance

Consider an array named data with 128*128 elements
Each row is stored in one page (of size 128 words)
Program 1
for (j = 0; j <128; j++)
for (1 = 0; i < 128; i++)
data[1][]J] = 0;

128 x 128 = 16,384 page faults

Program 2
for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)
data[i][]J] = O;

Only 128 page faults

