
CS 471 Operating Systems

Yue Cheng
George Mason University

Fall 2019



2

I/O Devices



Why I/O?
o I/O == Input/Output

o What good is a computer without any I/O 
devices?
– Keyboard, display, disks…

3



Why I/O?
o I/O == Input/Output

o What good is a computer without any I/O 
devices?
– Keyboard, display, disks…

o We want
– Hardware: which will provide direct physical 

interfaces
– OS: which can interact with different combinations

4



Prototypical System Architecture

5



Prototypical System Architecture

6



Prototypical System Architecture

7



Canonical I/O Device

8



Canonical I/O Device

9

OS reads from and writes to these



Canonical I/O Device

10

OS reads from and writes to these



A Hard Disk Drive PCB Example

11



A Basic I/O Protocol

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

; // spin

12



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
13

CPU

Disk

A

C



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
14

CPU

Disk

A

C

Process A wants to do I/O



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
15

CPU

Disk

A

C

1



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
16

CPU

Disk

A

C

1 2

A

3



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
17

CPU

Disk

A

C

1 2

A

3 4



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
18

CPU

Disk

A

C

1 polling 2

A

3 4 polling

Wasted CPU 
cycles



Interrupts

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
19

CPU

Disk

A

C

1 polling 2

A

3 4 polling



Interrupts

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
20

CPU

Disk

A

C

1 2

A

3, 4

B A B A



Interrupts vs. Polling
o Any potential issues for interrupts?

21



Interrupts vs. Polling
o Any potential issues for interrupts?

o Interrupts can lead to livelock
– E.g., flood of network packets

22



Interrupts vs. Polling
o Any potential issues for interrupts?

o Interrupts can lead to livelock
– E.g., flood of network packets

o Techniques
– Hybrid approach: polling + interrupts
– Interrupt coalescing: batching a bunch interrupts in 

one go

23



Where else Can We Optimize?

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
24

CPU

Disk

A

C

1 2

A

3, 4

B A B A



Data Transfer

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
25

CPU

Disk

A

C

1 2

A

3, 4

B A B A



Programmed I/O vs. Direct Memory Access

o PIO (Programmed I/O)
– CPU directly tells device what data is
– CPU involved in data transfer

o DMA (Direct Memory Access)
– CPU leaves data in memory
– DMA hardware does data copy

26



PIO Data Flow

27

Disk

1. Executing P1 on CPU



PIO Data Flow

28

Disk

2. Copy data from
memory via CPU

Note: c == copy memory words



PIO Data Flow

29

Disk

3. CPU initiates the I/O 
(w/ an OS interrupt) by 
copying the data from 
memory to disk, before 
running P2

OS interrupt preempts P1



PIO Data Flow

30

Disk

4. Done with I/O, 
Disk interrupts P2 
and re-schedules 
P1 on CPU

Disk interrupt preempts P2



DMA Data Flow

31

Disk

1. Executing P1 on CPU



DMA Data Flow

32

Disk

2a. OS initiates DMA by 
telling the DMA engine 
where data lives in 
memory, how much to 
copy, and which device 
to send it to;
2b. DMA then copies the 
data from memory

OS interrupt 
preempts P1



DMA Data Flow

33

Disk

3. DMA controller copies 
the data from memory to 
the disk



DMA Data Flow

34

Disk

4. When DMA is 
complete, DMA controller 
raises an interrupt to let 
OS know P1 can resume DMA interrupt 

preempts P2



DMA

while (STATUS == BUSY) //1
wait for interrupt;

Initiate DMA transfer //2a
Wait for interrupt //2b
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
35

CPU

Disk

A

C

1 2a,2b

A

B B B A

3,4

DMA A



36

Hard Disk Drives (HDDs)



Basic Interface
o A magnetic disk has a sector-addressable address 

space
– You can think of a disk as an array of sectors
– Each sector (logical block) is the smallest unit of transfer

o Sectors are typically 512 or 4096 bytes

o Main operations
– Read from sectors (blocks)
– Write to sectors (blocks)

37



Disk Structure
o The 1-dimensional array of logical blocks is 

mapped into the sectors of the disk sequentially
– Sector 0 is the first sector of the first track on the 

outermost cylinder
– Mapping proceeds in order through that track, then 

the rest of the tracks in that cylinder, and then through 
the rest of the cylinders from outermost to innermost

– Logical to physical address should be easy
• Except for bad sectors

38



Internals of Hard Disk Drive (HDD)

39



Internals of Hard Disk Drive (HDD)

40

Platter
Covered with a magnetic film



Internals of Hard Disk Drive (HDD)

41

A single track example



Internals of Hard Disk Drive (HDD)

42

Spindle in the center of the 
surface



Internals of Hard Disk Drive (HDD)

43

The track is divided into 
numbered sectors



Internals of Hard Disk Drive (HDD)

44

A single track + an arm + 
a head



HDD Mechanism (3D view)

45

track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation



Let’s Read Sector 0

46



Let’s Read Sector 0

47

1. Seek for right track
2. Rotate (sector 9 à 0)
3. Transfer data (sector 0)



Don’t Try This at Home!

https://www.youtube.com/watch?v=9eMWG3fwiEU
&feature=youtu.be&t=30s

48

https://www.youtube.com/watch?v=9eMWG3fwiEU&feature=youtu.be&t=30s


Disk Performance
o I/O latency of disks

LI/O = Lseek + Lrotate + Ltransfer

o Disk access latency at millisecond level

49



Seek, Rotate, Transfer
o Seek may take several milliseconds (ms)

o Settling along can take 0.5 - 2ms

o Entire seek often takes 4 - 10ms

50



Seek, Rotate, Transfer
o Rotation per minute (RPM)

– 7200 RPM is common nowadays
– 15000 RPM is high end
– Old computers may have 5400 RPM disks

o 1 / 7200 RPM = 1 minute / 7200 rotations =
1 second / 120 rotations = 8.3 ms / rotation

51



Seek, Rotate, Transfer
o Rotation per minute (RPM)

– 7200 RPM is common nowadays
– 15000 RPM is high end
– Old computers may have 5400 RPM disks

o 1 / 7200 RPM = 1 minute / 7200 rotations =
1 second / 120 rotations = 8.3 ms / rotation

o So it may take 4.2 ms on average to rotate to 
target (0.5 * 8.3 ms)

52



Seek, Rotate, Transfer
o Relatively fast

– Depends on RPM and sector density

o 100+ MB/s is typical for SATA I (1.5Gb/s max)
– Up to 600MB/s for SATA III (6.0Gb/s)

o 1s / 100MB = 10ms / MB = 4.9us/sector 
– Assuming 512-byte sector

53



Workloads
o Seeks and rotations are slow while transfer is 

relatively fast

o What kind of workload is best suited for disks?

54



Workloads
o Seeks and rotations are slow while transfer is 

relatively fast

o What kind of workload is best suited for disks?
– Sequential I/O: access sectors in order (transfer 

dominated)

o Random workloads access sectors in a random 
order (seek+rotation dominated)
– Typically slow on disks
– Never do random I/O unless you must! E.g., 

Quicksort is a terrible algorithm for disk!
55



Disk Performance Calculation
o Seagate Enterprise SATA III HDD

o How long does an average 4KB read take?

56

Metric Perf

RPM 7200

Avg seek 4.16ms

Max transfer 500MB/s



Disk Performance Calculation
o Seagate Enterprise SATA III HDD

o How long does an average 4KB read take?
!"#$%&'" = ) *+,

-../0 × 4 34 ×
),...,... 6*

) *+, = 8 8%

57

Metric Perf

RPM 7200

Avg seek 4.16ms

Max transfer 500MB/s



Disk Performance Calculation
o Seagate Enterprise SATA III HDD

o How long does an average 4KB read take?
!"#$%&'" = ) *+,

-../0 × 4 34 ×
),...,... 6*

) *+, = 8 8%
Latency = 4.16 ms + 4.2 ms + 8 us = 8.368 ms

58Avg Seek Avg Rotate

Metric Perf

RPM 7200

Avg seek 4.16ms

Max transfer 500MB/s



The First Commercial Disk Drive
o 1956 IBM RAMDAC computer

– 5M (7-bit) characters
– 50 x 24” platters
– Access time <= 1 sec

59


