CS 471 Operating Systems

Yue Cheng

George Mason University Fall 2019

I/O Devices

Why I/O?

- O I/O == Input/Output
- What good is a computer without any I/O devices?
 - Keyboard, display, disks...

Why I/O?

- O I/O == Input/Output
- What good is a computer without any I/O devices?
 - Keyboard, display, disks...
- We want
 - Hardware: which will provide direct physical interfaces
 - OS: which can interact with different combinations

Prototypical System Architecture

Prototypical System Architecture

Prototypical System Architecture

Canonical I/O Device

Canonical I/O Device

Canonical I/O Device

OS reads from and writes to these

A Hard Disk Drive PCB Example

Process A wants to do I/O

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

while (STATUS == BUSY) //1
 wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;

while (STATUS == BUSY) //1
 wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;

Interrupts vs. Polling

• Any potential issues for interrupts?

Interrupts vs. Polling

- Any potential issues for interrupts?
- Interrupts can lead to livelock
 - E.g., flood of network packets

Interrupts vs. Polling

- Any potential issues for interrupts?
- Interrupts can lead to livelock
 - E.g., flood of network packets
- Techniques
 - Hybrid approach: polling + interrupts
 - Interrupt coalescing: batching a bunch interrupts in one go

Where else Can We Optimize?

while (STATUS == BUSY) //1
wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
wait for interrupt;

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
wait for interrupt;

Programmed I/O vs. Direct Memory Access

- PIO (Programmed I/O)
 - CPU directly tells device what data is
 - CPU involved in data transfer
- DMA (Direct Memory Access)
 - CPU leaves data in memory
 - DMA hardware does data copy

Note: c == copy memory words

while (STATUS == BUSY) //1
 wait for interrupt;
Initiate DMA transfer //2a
Wait for interrupt //2b
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;

Hard Disk Drives (HDDs)

Basic Interface

- A magnetic disk has a sector-addressable address space
 - You can think of a disk as an array of sectors
 - Each sector (logical block) is the smallest unit of transfer
- Sectors are typically 512 or 4096 bytes
- Main operations
 - Read from sectors (blocks)
 - Write to sectors (blocks)

Disk Structure

- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially
 - Sector 0 is the first sector of the first track on the outermost cylinder
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost
 - Logical to physical address should be easy
 - Except for bad sectors

Platter Covered with a magnetic film

A single track example

Spindle in the center of the surface

The track is divided into numbered sectors

A single track + an arm + a head

HDD Mechanism (3D view)

Let's Read Sector 0

Let's Read Sector 0

Don't Try This at Home!

https://www.youtube.com/watch?v=9eMWG3fwiEU &feature=youtu.be&t=30s

Disk Performance

○ I/O latency of disks

 $L_{I/O} = L_{seek} + L_{rotate} + L_{transfer}$

Disk access latency at millisecond level

- Seek may take several milliseconds (ms)
- Settling along can take 0.5 2ms
- Entire seek often takes 4 10ms

- Rotation per minute (RPM)
 - 7200 RPM is common nowadays
 - 15000 RPM is high end
 - Old computers may have 5400 RPM disks
- 0 1 / 7200 RPM = 1 minute / 7200 rotations =

1 second / 120 rotations = 8.3 ms / rotation

- Rotation per minute (RPM)
 - 7200 RPM is common nowadays
 - 15000 RPM is high end
 - Old computers may have 5400 RPM disks
- 0 1 / 7200 RPM = 1 minute / 7200 rotations =
 - 1 second / 120 rotations = 8.3 ms / rotation
- So it may take 4.2 ms on average to rotate to target (0.5 * 8.3 ms)

- Relatively fast
 - Depends on RPM and sector density
- 100+ MB/s is typical for SATA I (1.5Gb/s max)
 Up to 600MB/s for SATA III (6.0Gb/s)

Workloads

- Seeks and rotations are slow while transfer is relatively fast
- What kind of workload is best suited for disks?

Workloads

- Seeks and rotations are slow while transfer is relatively fast
- What kind of workload is best suited for disks?
 Sequential I/O: access sectors in order (transfer dominated)
- Random workloads access sectors in a random order (seek+rotation dominated)
 - Typically slow on disks
 - Never do random I/O unless you must! E.g.,
 Quicksort is a terrible algorithm for disk!

Disk Performance Calculation

Seagate Enterprise SATA III HDD

Metric	Perf
RPM	7200
Avg seek	4.16ms
Max transfer	500MB/s

How long does an average 4KB read take?

Disk Performance Calculation

Seagate Enterprise SATA III HDD

Metric	Perf
RPM	7200
Avg seek	4.16ms
Max transfer	500MB/s

How long does an average 4KB read take?

 $transfer = \frac{1 \, sec}{500 \, MB} \times 4 \, KB \times \frac{1,000,000 \, us}{1 \, sec} = 8 \, us$

Disk Performance Calculation

Seagate Enterprise SATA III HDD

Metric	Perf
RPM	7200
Avg seek	4.16ms
Max transfer	500MB/s

How long does an average 4KB read take?

$$transfer = \frac{1 \, sec}{500 \, MB} \times 4 \, KB \times \frac{1,000,000 \, us}{1 \, sec} = 8 \, us$$

Latency = 4.16 ms + 4.2 ms + 8 us = 8.368 ms
$$\uparrow \qquad \uparrow \qquad \uparrow$$

Avg Seek Avg Rotate

The First Commercial Disk Drive

1956 IBM RAMDAC computer

- 5M (7-bit) characters
- 50 x 24" platters
- Access time <= 1 sec</p>

