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Announcement
o Reminder to complete the Google Form for 

OS/161 team composition
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Intro of OS/161
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What is a Process?
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What is a Process?
o Programs are code (static entity)
o Processes are running programs

o Java analogy
– class -> “program”
– object -> “process”
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What is in a Process?
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Process

What things change as a program runs?



What is in a Process?
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What is in a Process?
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Process

What things change as a program runs?

Code
Heap
…
Stack

memory
EAX
PC
SP
BP

registers

FDs
I/O



Peeking Inside
o Processes share code, but each has its own 

“context”
o CPU

– Instruction pointer (Program Counter)
– Stack pointer

o Memory
– Set of memory addresses (“address space”)
– cat /proc/<PID>/maps

o Disk
– Set of file descriptors
– cat /proc/<PID>/fdinfo/*
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Process Creation
o Principle events that cause process creation
– System initialization
– Execution of a process creation system call by a 

running process
– User request to create a process
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Process Creation
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Process Creation
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Process Creation
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PC



Process Creation (cont.)
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o Parent process creates children processes, 
which, in turn create other processes, forming a 
tree (hierarchy) of processes

o Questions:
– Will the parent and child execute concurrently?
– How will the address space of the child be related to 

that of the parent? 
– Will the parent and child share some resources?



An Example Process Tree
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How to View Process Tree in Linux?

o % ps auxf
– ‘f’ is the option to show the process tree

o % pstree
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Process Creation in Linux
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o Each process has a process identifier (pid)
o The parent executes fork() system call to spawn 

a child
o The child process has a separate copy of the 

parent’s address space
o Both the parent and the child continue execution at 

the instruction following the fork() system call.
The return value for the fork() system call is 
o zero for the new (child) process
o non-zero pid for the parent process

o Typically, a process can execute a system call like
execl() to load a binary file into memory 



void main () {
int pid; 

pid = fork();
if  (pid < 0) {/* error_msg */}
else if (pid == 0) {  /* child process */

execl(“/bin/ls”, “ls”, NULL); /* execute ls */
} else {                    /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
exit(0);

}
return;

}
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Example Program with “fork”



while (1) {
type_prompt();  
read_command(cmd); 
pid = fork();
if  (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execute_command(cmd);
} else {                   /* parent process */

wait(NULL);
}

}
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A Very Simple Shell using “fork”



21

What happens to the value of 
number?

Example: fork 1



Results
./forkexample1 

Running the fork example
The initial value of number is 7
PID is 2137 
PID is 0 

In the child, the number is 49  PID is 0
In the parent, the number is 7
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Example: fork 2

What happens to the value of 
number?



Results
./forkexample2 

Running the fork example
The initial value of number is 7
PID is 2164 
PID is 0 

In the child, the number is 49  PID is 0
In the child, the number is 49  PID is 0

In the parent, the number is 7
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execl vs. fork



Results
./execlexample
Running execl code 
PID is 2179 
PID is 0 

In the execl child,   PID is 0

Running the fork example
The initial value of number is 7
PID is 2180 
PID is 0 

In the child, the number is 49  PID is 0
In the child, the number is 49  PID is 0

In the parent, the number is 7
In the parent, done waiting
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forkexample2



Process Creation
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Before, PC points to 
kernel code

PC



Process Creation
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PC

Now, after process 
creation, CPU begins 
directly executing 
process code



Process Creation
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PC

Challenge: how to 
prevent process from 
doing “OS kernel stuff”?



Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)
o Low-level mechanism that implements the user-

kernel space separation

o Usually let processes run with no OS 
involvement

o Limit what processes can do
o Offer privileged operations through well-defined 

channels with help of OS
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Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)
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User-level process

OS

LDE 
mechanism



What to limit?
o General memory access
o Disk I/O
o Certain x86 instructions
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How to limit?
o Need hardware support
o Add additional execution mode to CPU

o User mode: restricted, limited capabilities
o Kernel mode: privileged, not restricted

o Processes start in user mode
o OS starts in kernel mode

35



LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do anything) 

if it’s not running?

36



LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do anything) 

if it’s not running?

37



Taking Turns
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Taking Turns
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Taking Turns
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Taking Turns
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Taking Turns
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Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Question: when/how do we switch to OS?



Exceptions
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Interrupt
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Interrupt
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Process
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Interrupt
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Process

OS

Hardware key

handler Hardware interrupt
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System Call
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System Call
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System Call
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Process

OS

Hardware

open

handler System call “trap”



System Call
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Exception Handling
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Exception Handling: Implementation

o Goal: Processes and hardware should be able 
to call functions in the OS

o Corresponding OS functions should be:
– At well-known locations
– Safe from processes
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disk

network

timer
keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 
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disk

network

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows this through lidt instruction) 

tick
timer
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disk
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keyboard

system call

Trap table

How to handle variable number of system calls?
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Safe Transfers
o Only certain kernel functions should be callable
o Privileges should escalate at the moment of the 

call
– Read/write disk
– Kill processes
– Access all memory
– … 
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LDE: Remaining Challenges
1. What if process wants to do something 

privileged?
2. How can OS switch processes (or do 

anything) if it’s not running?
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Sharing (virtualizing) the CPU
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How does OS share… 
o CPU?

o Memory?

o Disk?
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How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)
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How does OS share… 
o CPU? (a: time sharing)
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How does OS share… 
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)
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Today

Goal: processes should not know they are sharing
(each process will get its own virtual CPU)



What to do with processes that are 
not running?

o A: Store context in OS struct

o Look in kernel/proc.h
– context (CPU registers)
– ofile (open file descriptors)
– state (sleeping, running, etc.)
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Process State Transitions
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Running

Blocked

Scheduled

Descheduled

Event waitEvent occurs

Ready



Process State Transitions
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Running

Blocked

I/O: initiateI/O: done

Ready
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Process State Transitions
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Running

Blocked

I/O: initiateI/O: done

Ready

View process state with “ps xa”

Scheduled

Descheduled



How to transition? (mechanism)
When to transition? (policy)
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Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled



Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process 

runs

o Can OS do anything while it’s not running?
o A: it can’t
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Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process 

runs

o Can OS do anything while it’s not running?
o A: it can’t

o Solution: Switch on interrupts
– But what interrupt?
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call
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P1
yield() call



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call
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yield() call

OS



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call
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yield() return

OS



Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call
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yield() return

P2



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call
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Cooperative Approach
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Cooperative Approach
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Cooperative Approach
o Switch contexts for syscall interrupt
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Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call
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yield() return
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call
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P1

Critiques?



Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

o Cooperative approach is a passive approach
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P1

Critiques?
What if P1 never calls yield()?



Non-Cooperative Approach
o Switch contexts on timer (hardware) interrupt

o Set up before running any processes

o Hardware does not let processes prevent this
– Hardware/OS enforces process preemption
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Non-Cooperative Approach
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Non-Cooperative Approach
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Non-Cooperative Approach



96

Non-Cooperative Approach
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Non-Cooperative Approach



Preemptive Approach
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Preemptive Approach
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P1

tick



Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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OS



Preemptive Approach
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Preemptive Approach
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P2



Preemptive Approach
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P2

tick



Preemptive Approach
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tickOS



Preemptive Approach
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OS



Preemptive Approach
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OS



Preemptive Approach
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P1



Preemptive Approach
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P1



Summary
o Smooth context switching makes each process 

think it has its own CPU (virtualization!)
o Limited direct execution makes processes fast
o Hardware provides a lot of OS support
– Limited direct execution
– Timer interrupt
– Automatic register saving
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