
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

Announcement
o Reminder to complete the Google Form for

OS/161 team composition

2

Intro of OS/161

3

What is a Process?

4

What is a Process?
o Programs are code (static entity)
o Processes are running programs

o Java analogy
– class -> “program”
– object -> “process”

5

What is in a Process?

6

Process

What things change as a program runs?

What is in a Process?

7

Process

What things change as a program runs?

Code
Heap
…
Stack

memory

What is in a Process?

8

Process

What things change as a program runs?

Code
Heap
…
Stack

memory
EAX
PC
SP
BP

registers

What is in a Process?

9

Process

What things change as a program runs?

Code
Heap
…
Stack

memory
EAX
PC
SP
BP

registers

FDs
I/O

Peeking Inside
o Processes share code, but each has its own

“context”
o CPU

– Instruction pointer (Program Counter)
– Stack pointer

o Memory
– Set of memory addresses (“address space”)
– cat /proc/<PID>/maps

o Disk
– Set of file descriptors
– cat /proc/<PID>/fdinfo/*

10

Process Creation
o Principle events that cause process creation
– System initialization
– Execution of a process creation system call by a

running process
– User request to create a process

11

Process Creation

12

Process Creation

13

Process Creation

14

PC

Process Creation (cont.)

15

o Parent process creates children processes,
which, in turn create other processes, forming a
tree (hierarchy) of processes

o Questions:
– Will the parent and child execute concurrently?
– How will the address space of the child be related to

that of the parent?
– Will the parent and child share some resources?

An Example Process Tree

16

How to View Process Tree in Linux?

o % ps auxf
– ‘f’ is the option to show the process tree

o % pstree

17

Process Creation in Linux

18

o Each process has a process identifier (pid)
o The parent executes fork() system call to spawn

a child
o The child process has a separate copy of the

parent’s address space
o Both the parent and the child continue execution at

the instruction following the fork() system call.
The return value for the fork() system call is
o zero for the new (child) process
o non-zero pid for the parent process

o Typically, a process can execute a system call like
execl() to load a binary file into memory

void main () {
int pid;

pid = fork();
if (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execl(“/bin/ls”, “ls”, NULL); /* execute ls */
} else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
exit(0);

}
return;

}

19

Example Program with “fork”

while (1) {
type_prompt();
read_command(cmd);
pid = fork();
if (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execute_command(cmd);
} else { /* parent process */

wait(NULL);
}

}

20

A Very Simple Shell using “fork”

21

What happens to the value of
number?

Example: fork 1

Results
./forkexample1

Running the fork example
The initial value of number is 7
PID is 2137
PID is 0

In the child, the number is 49 PID is 0
In the parent, the number is 7

22

23

Example: fork 2

What happens to the value of
number?

Results
./forkexample2

Running the fork example
The initial value of number is 7
PID is 2164
PID is 0

In the child, the number is 49 PID is 0
In the child, the number is 49 PID is 0

In the parent, the number is 7

24

25

execl vs. fork

Results
./execlexample
Running execl code
PID is 2179
PID is 0

In the execl child, PID is 0

Running the fork example
The initial value of number is 7
PID is 2180
PID is 0

In the child, the number is 49 PID is 0
In the child, the number is 49 PID is 0

In the parent, the number is 7
In the parent, done waiting

26

forkexample2

Process Creation

27

Before, PC points to
kernel code

PC

Process Creation

28

PC

Now, after process
creation, CPU begins
directly executing
process code

Process Creation

29

PC

Challenge: how to
prevent process from
doing “OS kernel stuff”?

Limited Direct Execution (LDE)

30

Limited Direct Execution (LDE)
o Low-level mechanism that implements the user-

kernel space separation

o Usually let processes run with no OS
involvement

o Limit what processes can do
o Offer privileged operations through well-defined

channels with help of OS

31

Limited Direct Execution (LDE)

32

Limited Direct Execution (LDE)

33

User-level process

OS

LDE
mechanism

What to limit?
o General memory access
o Disk I/O
o Certain x86 instructions

34

How to limit?
o Need hardware support
o Add additional execution mode to CPU

o User mode: restricted, limited capabilities
o Kernel mode: privileged, not restricted

o Processes start in user mode
o OS starts in kernel mode

35

LDE: Remaining Challenges
1. What if process wants to do something

privileged?
2. How can OS switch processes (or do anything)

if it’s not running?

36

LDE: Remaining Challenges
1. What if process wants to do something

privileged?
2. How can OS switch processes (or do anything)

if it’s not running?

37

Taking Turns

38

Process

OS

Hardware

Taking Turns

39

Process

OS

Hardware

Running

T1
Time:

Taking Turns

40

Process

OS

Hardware

Running

T1
Time:

T2

Taking Turns

41

Process

OS

Hardware

Running

T1
Time:

T2 T3

Taking Turns

42

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Taking Turns

43

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Question: when/how do we switch to OS?

Exceptions

44

Interrupt

45

Process

OS

Hardware

Interrupt

46

Process

OS

Hardware key

Interrupt

47

Process

OS

Hardware key

handler Hardware interrupt

Interrupt

48

Process

OS

Hardware

System Call

49

Process

OS

Hardware

System Call

50

Process

OS

Hardware

open

System Call

51

Process

OS

Hardware

open

handler System call “trap”

System Call

52

Process

OS

Hardware

Exception Handling

53

Exception Handling: Implementation

o Goal: Processes and hardware should be able
to call functions in the OS

o Corresponding OS functions should be:
– At well-known locations
– Safe from processes

54

55

disk

network

timer
keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is)

56

disk

network

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows this through lidt instruction)

tick
timer

57

disk

network

timer
keyboard

system call

Trap table

How to handle variable number of system calls?

58

disk

network

timer
keyboard

system call

Trap table

open
read
write

syscall table

59

disk

network

timer
keyboard

system call

Trap table

open
read
write

syscall table

syscall

60

disk

network

timer
keyboard

system call

Trap table

read
write

syscall table

syscall

open

Safe Transfers
o Only certain kernel functions should be callable
o Privileges should escalate at the moment of the

call
– Read/write disk
– Kill processes
– Access all memory
– …

61

LDE: Remaining Challenges
1. What if process wants to do something

privileged?
2. How can OS switch processes (or do

anything) if it’s not running?

62

Sharing (virtualizing) the CPU

63

How does OS share…
o CPU?

o Memory?

o Disk?

64

How does OS share…
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)

65

How does OS share…
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)

66

Today

How does OS share…
o CPU? (a: time sharing)

o Memory? (a: space sharing)

o Disk? (a: space sharing)

67

Today

Goal: processes should not know they are sharing
(each process will get its own virtual CPU)

What to do with processes that are
not running?

o A: Store context in OS struct

o Look in kernel/proc.h
– context (CPU registers)
– ofile (open file descriptors)
– state (sleeping, running, etc.)

68

What to do with processes that are
not running?

o A: Store context in OS struct

o Look in kernel/proc.h
– context (CPU registers)
– ofile (open file descriptors)
– state (sleeping, running, etc.)

69

Process State Transitions

70

Running

Blocked

Scheduled

Descheduled

Event waitEvent occurs

Ready

Process State Transitions

71

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled

Process State Transitions

72

Running

Blocked

I/O: initiateI/O: done

Ready

View process state with “ps xa”

Scheduled

Descheduled

How to transition? (mechanism)
When to transition? (policy)

73

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled

Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process

runs

o Can OS do anything while it’s not running?
o A: it can’t

74

Context Switch
o Problem: When to switch process contexts?
o Direct execution => OS can’t run while process

runs

o Can OS do anything while it’s not running?
o A: it can’t

o Solution: Switch on interrupts
– But what interrupt?

75

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

76

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

77

P1

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

78

P1
yield() call

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

79

yield() call

OS

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

80

OS

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

81

yield() return

OS

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

82

yield() return

P2

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

83

P2

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

84

yield() call

P2

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

85

yield() call

OS

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

86

OS

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

87

yield() return

OS

Cooperative Approach
o Switch contexts for syscall interrupt

– Special yield() system call

88

yield() return

P1

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

89

P1

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

90

P1

Critiques?

Cooperative Approach
o Switch contexts for syscall interrupt
– Special yield() system call

o Cooperative approach is a passive approach

91

P1

Critiques?
What if P1 never calls yield()?

Non-Cooperative Approach
o Switch contexts on timer (hardware) interrupt

o Set up before running any processes

o Hardware does not let processes prevent this
– Hardware/OS enforces process preemption

92

93

Non-Cooperative Approach

94

Non-Cooperative Approach

95

Non-Cooperative Approach

96

Non-Cooperative Approach

97

Non-Cooperative Approach

Preemptive Approach

98

P1

Preemptive Approach

99

P1

tick

Preemptive Approach

100

tickOS

Preemptive Approach

101

OS

Preemptive Approach

102

OS

Preemptive Approach

103

P2

Preemptive Approach

104

P2

Preemptive Approach

105

P2

tick

Preemptive Approach

106

tickOS

Preemptive Approach

107

OS

Preemptive Approach

108

OS

Preemptive Approach

109

P1

Preemptive Approach

110

P1

Summary
o Smooth context switching makes each process

think it has its own CPU (virtualization!)
o Limited direct execution makes processes fast
o Hardware provides a lot of OS support
– Limited direct execution
– Timer interrupt
– Automatic register saving

111

