CS 471 Operating Systems

Yue Cheng

George Mason University
Spring 2019

Threads

Why Thread Abstraction?

Process Abstraction: Challenge 1

o Inter-process communication (IPC)

Inter-Process Communication

o Mechanism for processes to communicate and
to synchronize their actions.

o Two models

— Communication through a shared memory region
— Communication through message passing

Communication Models

process A M process A |
PR

shared ‘_"'
2

process B M process B P

kernel M kernel
(2) (b)
Message Passing Shared Memory

v" Previously, in a distributed system, message-passing was
the only possible communication model. However, remote direct
memory access (RDMA) technique bridges this gap by
providing remote memory access through network.

Communication through
Message Passing

o Message system — processes communicate with
each other without resorting to shared variables

o A message-passing facility must provide at least two
operations:
— send(message, recipilient)
— receilve(message, recipient)

o With indirect communication, the messages are
sent to and received from mailboxes (or, ports)

— send (A, message) /* A is a mailbox */
— recelive (A, message)

Communication through
Message Passing

o Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

— Blocking Send: The sending process is blocked until
the message is received by the receiving process or
by the mailbox

— Non-blocking Send: The sending process resumes
the operation as soon as the message is received by
the kernel

— Blocking Receive: The receiver blocks until the
message Is available

— Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default
value (null) to indicate a non-existing message

Communication through
Shared Memory

o The memory region to be shared must be explicitly
defined

o System calls (Linux):
— shmget creates a shared memory block

— shmat maps/attaches an existing shared memory block
iInto a process’s address space

— shmdt removes (“unmaps”) a shared memory block from
the process’s address spacé

— shmctl is a general-purpose function allowing various
operations on the shared block (receive information about
the block, set the permissions, lock in memory, ...)

o Problems with simultaneous access to the shared
variables

o Compilers for concurrent programming languages
can provide direct support when declaring variables
(e.g., “shared int buffer”)

Process Abstraction: Challenge 1

o Inter-process communication (IPC)
— Cumbersome programming!
— Copying overheads (inefficient communication)
— Expensive context switching (why expensive?)

10

Process Abstraction: Challenge 2

o Inter-process communication (IPC)

o CPU utilization

11

- [O

(a) Not interleaved

12

- [O
- O
Disk:

(a) Not interleaved

(b) Interleaved

13

- [G
- O
Disk:

What if there is only one process? 14

(a) Not interleaved

(b) Interleaved

Moore’s law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.

20,000,000,000) .
10,000,000,000 18-core Xaon Hama £5, @57
’ ! ! -m One main S \ @ 22-core Xeon Broadwell-E5
5,000,000,000 €1.con Xecn P b1 5-cone Xnon vy Bridge-EX
B-com Xeon m;ﬁ:m‘: .‘ : mnlé:ll-i]b'v core ARMES "mobde Sol")
Six-core Xeon 7800, . . “ﬁmc?'r.u:‘ QHM:’HE Corn iT Broadesl-L)
Drusl-com Ransrs < L2 v oty Y
e 4 ’ @ | @, T 0ud-cons G GTE Core i Siyihe R
El um B . C I !
1,000,000,000 Tn Dm e e M Oicio A7 o f.:”&.ﬂ'&’ﬁl?s.;c.
Sﬂﬁr‘uuﬁ. ’Cm; 7 (Cuad))
500,000,000 Rerkern 8 Moo $00> 240 K10 guc core 2M L3
Pentium D Srenhdeld @ 2 Duo Comnoe
itanium 2 Mckinkry@ i @ Ceovn 7 Duo Weolfdale 30
Pastn 4 Ficon 18 XS0 £ e
100.000.(!)0 AVD KEQ .va.um-i Prescom
Partum lehw\xxb .B 2
E So'ooo'mo PR \:'-larr‘um’ %.ﬂlvd'v N Tualatn “xﬁ
§ renmt W%Mml‘wnm i Copparming @ARM Conten-A9
g 10,000,000 AMD KB cornym 1 Ky
@ 5,000,000 e *‘.a’.::um"
5 Perume, il s
= SA10
1,000,000 el 8015 B0
500,000 lSnsie sniion
Inted BXX | QaRm 3
Werceoa c-eczo]:ﬁ. e
2. e
100,000 ntel 30266 %,c‘
50,000 I - —
intel BOEEQP € intel BOBS s 2 mtw
Fe o
10,000 m.f.‘om Ziog 280 W E%&z - mm’%’d’?ﬁ
5,000 e i L
' bl % o) 8‘;& Technology
eu &, VEREES S50
1,000
D AV AR AT AD 4% 4% 3 W W LB
L P IS TSI LTI TS

Data sowce: Wikipedia (Mips./fen wikipedia.omg/wikiTransistor_count)

The data visualization i available at QurWorldinData.org. There you find more visualizations and research on this topic

Year of introduction 15

Licensed under CC-BY-5SA by the author Max Roser,

Moore's law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SUSIEE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

in Data

20,000,000,000
Storage Conroler 7
1 O‘OW‘DOO’WO 18-cone Xoon luaw.e! t S':M:‘_": . -
On ma SoC g P @22 cor Xoon Bromdunt £
5,000,000,000 : : : ' SR 3’om~ e onen
U con)tn-r Nwrjb-m X~ C.k ASX [Ir-core ARMES "mobde Sol")
Moore's law is ending! (. szge™es :. R
gtium D Presier " < ad-core « GPU Core I7 'Qs «
1,000,000,000 < powesg ’ O _L; |
500,000,000 .. a2 giad e 20 2
Pantium D !:;—n!h‘ el [}_,_ Con ._.;
Ranum 3 McKinky gy .D wa 2 Dud Waolfdale 3\
Partum 4 Prescot- 2N O'xr« D Allenciaie
N Pantiven 4 Cedar Ml
100,000,000 Ao k2@ O 4 Proscon
Partum 4 Northwood, -
E 50.000,(.[)0 Parntum 4 W ln'rv-m-. ﬂ.' ’{ITVT — ”‘L---
5 Pantium 8 Mobde Dixon . R "
8 . oo;}l;:‘ “G?Fw‘lu M il Copermern @ARM Contex-A9
-
o 10,000,000 AMD KB erisym I Kaymai
".E Partam Prg P x H'va
w 5,000,000 ° u."uln
% Par u'vb A)‘g
= 20
1,000,000 e o
T! Explorar's .
500,000 Lsratin i ® anhoo
Ined E-.-JB(\. ok Qo
Maosoroia 63020 @ 'AS;_ ~
100,000 v e 028 —_— .4
'Iﬂf(‘)-(,)’ GToM
50,000 ©imel BO186
el BOSEEP € intel BOBS nam 2 ,\H?,. &
M 1
Motarala ¢ W& ’
10'(])0 ru:a.'xxn Zikog 280 ’.* “&. 4 r::{;' 168
RCA 1802 Qe BORS b
5,000 .. A-‘Gﬁ. """ 8080
ll r‘p\.l ,.:I;s Technology
I-tel utu
1,000
D AT Ak Ao 4D sl D 0 W B
AR R g ‘bvq?’q@@q‘b@&o?go&&ﬁ ,\9@,19"@“‘,19"@"
Year of introduction 16

Data source: Wikipedia (Mips./fen wikipedia.ong/wiki Transistor_count)
The data visualzation is available at OurWorldinData.org, There you find more visualizations and research on this topic Licensed under CC-BY-5A by the author Max Roser

CPU Trends — What Moore’s Law Implies...

o The future

— Same CPU speed
— More cores (to scale-up)

o Faster programs => concurrent execution

o Goal: Write applications that fully utilize many
CPU cores...

Introducing Thread Abstraction

o Threads are just like processes, but threads
share the address space

18

Thread

o A process, as defined so far, has only one thread
of execution

o ldea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

— Each thread may be executing different code at the
same time

19

Process vs. Thread

o Multiple threads within a process will share
— The address space
— Open files (file descriptors)
— Other resources

o Thread

— Efficient and fast resource sharing

— Efficient utilization of many CPU cores with only one
process

— Less context switching overheads

Single- vs. Multi-threaded Process

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

gh

— thread

multithreaded process

21

Multithreading

Per Process ltems
Address Space

Global Variables

Open Files

Accounting Information

Per Thread Items
Program Counter
Registers

Stack

State

22

Single- vs.

Single-Threaded
Process Model
Process User
Control Stack

Block

User Kernel
Address Stack

Space

Multi-threaded Process

Multithreaded
Process Model
Thread Thread Thread
== Ir == r ===
[Thread |; | Thread || ![Thread |,
1| Control : 1| Control : || Control :
Il Block |, !| Block [, !| Block |,
: | : | : |
| by b '
| o o :
Process | ;| User |1 || User |} || User [
Control : Stack : : Stack : : Stack :
Block | ! P - :
l o L '
! | || l
User : Kernel : : Kernel : : Kernel :
Address : Stack || : Stack || : Stack ||
Space ' o . :
| | |
e e [e |

Single Threaded and Multithreaded Process Models

Multithreading

o Each thread can be in any one of the several states, just

like processes: Ready, Running, Blocked

o Each thread has its own stack

Thread 1’ s stack

Thread 1

AN

Thread 2

Thread 3

S

2 3

|_Process

Thread 3’ s stack

P
.
e
L
v

Kernel

Benefits

o Resource Sharing

— Sharing the address space and other resources may
result in high degree of cooperation
o Economy

— Creating/managing processes much more time
consuming than managing threads: e.g., context
switch

o Better Utilization of Multicore Architectures

— Threads are doing job concurrently

— Multithreading an interactive application may allow a
program to continue running even if part of it is
blocked or performing a lengthy operation

25

Example Multithreaded Applications

o A multithreaded web server

Web server process

|
:

Dispatcher thread

- >2? l Worker thread Usar

> space
I_gi_zl Web page cache

Kernel
Kernel space

Network
connection

26

Example Multithreaded Applications

o A multithreaded web server

Web server process

|
:

Dispatcher thread

~ >2? l Worker thread Usar

space
I_zi_zl Web page cache

Kernel
Kernel space

Handling Requests

Network
connection

*

Requests 27

Code Sketch

while (TRUE) {

get next request(&buf);
handoff work(&buf);

(a) Dispatcher thread

while (TRUE) {
wait for work(&buf);
check cache(&buf; &page);
if (not_in cache)
read from disk(&buf, &page);
return page(&page);

(b) Worker thread

Example: Memcached

o Memcached—A high-performance memory-based
caching system
— 14k lines of C source code
— https://memcached.org/

Memcached

o Atypical multithreaded server implementation
— Pthread + libevent

— A dispatcher thread dispatches newly coming connections
to the worker threads in a round-robin manner

— Event-driven: Each worker thread is responsible for
serving requests from the established connections

29

https://memcached.org/

Using Threads

o Processes usually start with a single thread

o Usually, library procedures are invoked to
manage threads

— thread create: typically specifies the name of the
procedure for the new thread to run

— thread exit

— thread join: blocks the calling thread until
another (specific) thread has exited

— thread yield: voluntarily gives up the CPU to let
another thread run

30

Pthread

o A PQOSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

o API specifies behavior of the thread library,
Implementation is up to development of the
library

o Common in UNIX (e.g., Linux) OSes

Pthread APIs

pthread create

pthread exit

pthread join

pthread mutex init
pthread mutex destroy
pthread mutex lock
pthread mutex unlock
pthread cond init
pthread cond destroy
pthread cond wait

pthread cond signal

Create a new thread in the
caller's address space

Terminate the calling thread
Wait for a thread to terminate
Create a new mutex

Destroy a mutex

Lock a mutex

Unlock a mutex

Create a condition variable
Destroy a condition variable
Wait on a condition variable

Release one thread waiting on a
condition variable

Pthread APIs

pthread create

pthread exit

pthread join

pthread mutex init
pthread mutex destroy
pthread mutex lock
pthread mutex unlock
pthread cond init
pthread cond destroy
pthread cond wait

pthread cond signal

Create a new thread in the
caller's address space

Terminate the calling thread
Wait for a thread to terminate
Create a new mutex

Destroy a mutex

Lock a mutex

Unlock a mutex

Create a condition variable
Destroy a condition variable
Wait on a condition variable

Release one thread waiting on a
condition variable

Thread
creation

o

_ Thread
lock

i Thread
CV

Example of Using Pthread

#include <stdio.h>
#include <assert.h>

#include <pthread.h>

void xmythread(void =*xarg) {
printf {"¥s\n", {char %) axrg);
return NULL;

O 0 N9 O UG b W N =

BNNP—‘P—‘P—‘P—‘P—‘P—‘P—‘&—‘P—‘&—‘
= O WO 00NN U N =R O

AT
main (int argc, char xargv[]) {
pthread_t pl, p2;

1k o S < o

printf ("main: begin\n");

rc =|pthread_create|&pl, NULL, mythread, "A"); assert(rc == 0);
rc =|pthread_create|&p2, NULL, mythread, "B"); assert(rc == 0);
// join waits for the threads to finish

rc = pthread_join(pl, NULL); assert(rc == 0);

rc = pthread_join(p2, NULL); assert(rxc == 0);

printf ("main: end\n");
return 0;

Multithreading vs. Multi-processes

o Real-world debate
— Memcached vs. Redis

o Redis—A single-threaded memory-based data
store
— https://redis.io/

Memcached

https://redis.io/

Wish List for Redis...

http://goo.gl/NOUTKD

Wish List For Redis

m Explicit memory management.
= Deployable (Lua) Scripts. Talked about near the start.

= Multi-threading. Would make cluster management easier. Twitter has a lot of “tall
boxes,” where a host has 100+ GB of memory and a lot of CPUs. To use the full
capabilities of a server a lot of Redis instances need to be started on a physical
machine. With multi-threading fewer instances would need to be started which is

much easier to manage.

36

goo.gl/N9UTKD

