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Threads



Why Thread Abstraction?



Process Abstraction: Challenge 1

o Inter-process communication (IPC)



Inter-Process Communication

o Mechanism for processes to communicate and
to synchronize their actions.

o Two models

— Communication through a shared memory region
— Communication through message passing



Communication Models
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v" Previously, in a distributed system, message-passing was
the only possible communication model. However, remote direct
memory access (RDMA) technique bridges this gap by
providing remote memory access through network.



Communication through
Message Passing

o Message system — processes communicate with
each other without resorting to shared variables

o A message-passing facility must provide at least two
operations:
— send(message, recipilient)
— receilve(message, recipient)

o With indirect communication, the messages are
sent to and received from mailboxes (or, ports)

— send (A, message) /* A is a mailbox */
— recelive (A, message)



Communication through
Message Passing

o Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

— Blocking Send: The sending process is blocked until
the message is received by the receiving process or
by the mailbox

— Non-blocking Send: The sending process resumes
the operation as soon as the message is received by
the kernel

— Blocking Receive: The receiver blocks until the
message Is available

— Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default
value (null) to indicate a non-existing message




Communication through
Shared Memory

o The memory region to be shared must be explicitly
defined

o System calls (Linux):
— shmget creates a shared memory block

— shmat maps/attaches an existing shared memory block
iInto a process’s address space

— shmdt removes (“unmaps”) a shared memory block from
the process’s address spacé

— shmctl is a general-purpose function allowing various
operations on the shared block (receive information about
the block, set the permissions, lock in memory, ...)

o Problems with simultaneous access to the shared
variables

o Compilers for concurrent programming languages
can provide direct support when declaring variables
(e.g., “shared int buffer”)



Process Abstraction: Challenge 1

o Inter-process communication (IPC)
— Cumbersome programming!
— Copying overheads (inefficient communication)
— Expensive context switching (why expensive?)
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Process Abstraction: Challenge 2

o Inter-process communication (IPC)

o CPU utilization
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Moore’s law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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The data visualization i available at QurWorldinData.org. There you find more visualizations and research on this topic
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CPU Trends — What Moore’s Law Implies...

o The future

— Same CPU speed
— More cores (to scale-up)

o Faster programs => concurrent execution

o Goal: Write applications that fully utilize many
CPU cores...



Introducing Thread Abstraction

o Threads are just like processes, but threads
share the address space
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Thread

o A process, as defined so far, has only one thread
of execution

o ldea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

— Each thread may be executing different code at the
same time
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Process vs. Thread

o Multiple threads within a process will share
— The address space
— Open files (file descriptors)
— Other resources

o Thread

— Efficient and fast resource sharing

— Efficient utilization of many CPU cores with only one
process

— Less context switching overheads



Single- vs. Multi-threaded Process
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Multithreading

Per Process ltems
Address Space

Global Variables

Open Files

Accounting Information

Per Thread Items
Program Counter
Registers

Stack

State
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Single- vs.

Single-Threaded
Process Model
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Multithreading

o Each thread can be in any one of the several states, just

like processes: Ready, Running, Blocked

o Each thread has its own stack

Thread 1’ s stack
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Benefits

o Resource Sharing

— Sharing the address space and other resources may
result in high degree of cooperation
o Economy

— Creating/managing processes much more time
consuming than managing threads: e.g., context
switch

o Better Utilization of Multicore Architectures

— Threads are doing job concurrently

— Multithreading an interactive application may allow a
program to continue running even if part of it is
blocked or performing a lengthy operation
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Example Multithreaded Applications

o A multithreaded web server

Web server process

|
:

Dispatcher thread

- >2? l Worker thread Usar

> space
I_gi_zl Web page cache

Kernel
Kernel space

Network
connection
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Example Multithreaded Applications

o A multithreaded web server

Web server process

|
:

Dispatcher thread

~ >2? l Worker thread Usar

space
I_zi_zl Web page cache

Kernel
Kernel space

Handling Requests

Network
connection

*

Requests 27



Code Sketch

while (TRUE) {

get next request(&buf);
handoff work(&buf);

(a) Dispatcher thread

while (TRUE) {
wait for work(&buf);
check cache(&buf; &page);
if (not_in cache)
read from disk(&buf, &page);
return page(&page);

(b) Worker thread



Example: Memcached

o Memcached—A high-performance memory-based
caching system
— 14k lines of C source code
— https://memcached.org/

Memcached

o Atypical multithreaded server implementation
— Pthread + libevent

— A dispatcher thread dispatches newly coming connections
to the worker threads in a round-robin manner

— Event-driven: Each worker thread is responsible for
serving requests from the established connections
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https://memcached.org/

Using Threads

o Processes usually start with a single thread

o Usually, library procedures are invoked to
manage threads

— thread create: typically specifies the name of the
procedure for the new thread to run

— thread exit

— thread join: blocks the calling thread until
another (specific) thread has exited

— thread yield: voluntarily gives up the CPU to let
another thread run
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Pthread

o A PQOSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

o API specifies behavior of the thread library,
Implementation is up to development of the
library

o Common in UNIX (e.g., Linux) OSes



Pthread APIs

pthread create

pthread exit

pthread join

pthread mutex init
pthread mutex destroy
pthread mutex lock
pthread mutex unlock
pthread cond init
pthread cond destroy
pthread cond wait

pthread cond signal

Create a new thread in the
caller's address space

Terminate the calling thread
Wait for a thread to terminate
Create a new mutex

Destroy a mutex

Lock a mutex

Unlock a mutex

Create a condition variable
Destroy a condition variable
Wait on a condition variable

Release one thread waiting on a
condition variable



Pthread APIs

pthread create

pthread exit

pthread join

pthread mutex init
pthread mutex destroy
pthread mutex lock
pthread mutex unlock
pthread cond init
pthread cond destroy
pthread cond wait

pthread cond signal

Create a new thread in the
caller's address space

Terminate the calling thread
Wait for a thread to terminate
Create a new mutex

Destroy a mutex

Lock a mutex

Unlock a mutex

Create a condition variable
Destroy a condition variable
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Example of Using Pthread

#include <stdio.h>
#include <assert.h>

#include <pthread.h>

void xmythread(void =*xarg) {
printf {"¥s\n", {char %) axrg);
return NULL;
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AT
main (int argc, char xargv[]) {
pthread_t pl, p2;
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printf ("main: begin\n");

rc =|pthread_create|&pl, NULL, mythread, "A"); assert(rc == 0);
rc =|pthread_create|&p2, NULL, mythread, "B"); assert(rc == 0);
// join waits for the threads to finish

rc = pthread_join(pl, NULL); assert(rc == 0);

rc = pthread_join(p2, NULL); assert(rxc == 0);

printf ("main: end\n");
return 0;



Multithreading vs. Multi-processes

o Real-world debate
— Memcached vs. Redis

o Redis—A single-threaded memory-based data
store
— https://redis.io/

Memcached



https://redis.io/

Wish List for Redis...

http://goo.gl/NOUTKD

Wish List For Redis

m Explicit memory management.
= Deployable (Lua) Scripts. Talked about near the start.

= Multi-threading. Would make cluster management easier. Twitter has a lot of “tall
boxes,” where a host has 100+ GB of memory and a lot of CPUs. To use the full
capabilities of a server a lot of Redis instances need to be started on a physical
machine. With multi-threading fewer instances would need to be started which is

much easier to manage.
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