
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

1

Threads

2

Why Thread Abstraction?

3

Process Abstraction: Challenge 1

o Inter-process communication (IPC)

4

Inter-Process Communication
o Mechanism for processes to communicate and

to synchronize their actions.

o Two models
– Communication through a shared memory region
– Communication through message passing

5

Communication Models

Message Passing Shared Memory
ü Previously, in a distributed system, message-passing was
the only possible communication model. However, remote direct
memory access (RDMA) technique bridges this gap by
providing remote memory access through network. 6

7

o Message system – processes communicate with
each other without resorting to shared variables

o A message-passing facility must provide at least two
operations:
– send(message, recipient)
– receive(message, recipient)

o With indirect communication, the messages are
sent to and received from mailboxes (or, ports)
– send(A, message) /* A is a mailbox */
– receive(A, message)

Communication through
Message Passing

Communication through
Message Passing

8

o Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)
– Blocking Send: The sending process is blocked until

the message is received by the receiving process or
by the mailbox

– Non-blocking Send: The sending process resumes
the operation as soon as the message is received by
the kernel

– Blocking Receive: The receiver blocks until the
message is available

– Non-blocking Receive: �Receive� operation does not
block; it either returns a valid message or a default
value (null) to indicate a non-existing message

9

o The memory region to be shared must be explicitly
defined

o System calls (Linux):
– shmget creates a shared memory block
– shmat maps/attaches an existing shared memory block

into a process’s address space
– shmdt removes (�unmaps�) a shared memory block from

the process’s address space
– shmctl is a general-purpose function allowing various

operations on the shared block (receive information about
the block, set the permissions, lock in memory, …)

o Problems with simultaneous access to the shared
variables

o Compilers for concurrent programming languages
can provide direct support when declaring variables
(e.g., “shared int buffer”)

Communication through
Shared Memory

Process Abstraction: Challenge 1

o Inter-process communication (IPC)
– Cumbersome programming!
– Copying overheads (inefficient communication)
– Expensive context switching (why expensive?)

10

Process Abstraction: Challenge 2

o Inter-process communication (IPC)
– Cumbersome programming!
– Copying overheads (inefficient communication)
– Expensive context switching (why expensive?)

o CPU utilization

11

12

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

13

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

B B

14

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

B B

What if there is only one process?

15

Moore’s law: # transistors doubles every ~2 years

16

Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years

CPU Trends – What Moore’s Law Implies…

o The future
– Same CPU speed
– More cores (to scale-up)

o Faster programs => concurrent execution

o Goal: Write applications that fully utilize many
CPU cores…

17

Introducing Thread Abstraction
o Threads are just like processes, but threads

share the address space

18

Thread
o A process, as defined so far, has only one thread

of execution

o Idea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other
– Each thread may be executing different code at the

same time

19

Process vs. Thread
o Multiple threads within a process will share
– The address space
– Open files (file descriptors)
– Other resources

o Thread
– Efficient and fast resource sharing
– Efficient utilization of many CPU cores with only one

process
– Less context switching overheads

20

Single- vs. Multi-threaded Process

21

Multithreading

Per Process Items
Address Space
Global Variables
Open Files
Accounting Information

Per Thread Items
Program Counter
Registers
Stack
State

22

23

Single- vs. Multi-threaded Process

Thread 1 Thread 2 Thread 3

Thread 1�s stack Thread 3�s stack

Process

Kernel

o Each thread can be in any one of the several states, just
like processes: Ready, Running, Blocked

o Each thread has its own stack

Multithreading

24

25

o Resource Sharing
– Sharing the address space and other resources may

result in high degree of cooperation
o Economy
– Creating/managing processes much more time

consuming than managing threads: e.g., context
switch

o Better Utilization of Multicore Architectures
– Threads are doing job concurrently
– Multithreading an interactive application may allow a

program to continue running even if part of it is
blocked or performing a lengthy operation

Benefits

Example Multithreaded Applications

o A multithreaded web server

26

Example Multithreaded Applications

o A multithreaded web server

27Requests

Handling Requests

Code Sketch

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf);
handoff_work(&buf); check_cache(&buf; &page);

} if (not_in_cache)
read_from_disk(&buf, &page);

return_page(&page);
}

(a) Dispatcher thread (b) Worker thread

28

Example: Memcached
o Memcached—A high-performance memory-based

caching system
– 14k lines of C source code
– https://memcached.org/

o A typical multithreaded server implementation
– Pthread + libevent
– A dispatcher thread dispatches newly coming connections

to the worker threads in a round-robin manner
– Event-driven: Each worker thread is responsible for

serving requests from the established connections

29

https://memcached.org/

Using Threads
o Processes usually start with a single thread
o Usually, library procedures are invoked to

manage threads
– thread_create: typically specifies the name of the

procedure for the new thread to run
– thread_exit
– thread_join: blocks the calling thread until

another (specific) thread has exited
– thread_yield: voluntarily gives up the CPU to let

another thread run

30

Pthread
o A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

o API specifies behavior of the thread library,
implementation is up to development of the
library

o Common in UNIX (e.g., Linux) OSes

31

Pthread APIs
Thread Call Description
pthread_create Create a new thread in the

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a
condition variable

Pthread APIs
Thread Call Description
pthread_create Create a new thread in the

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a
condition variable

Thread
creation

Thread
lock

Thread
CV

Example of Using Pthread

34

Multithreading vs. Multi-processes

o Real-world debate
– Memcached vs. Redis

o Redis—A single-threaded memory-based data
store
– https://redis.io/

35

https://redis.io/

Wish List for Redis…

36

http://goo.gl/N9UTKD

goo.gl/N9UTKD

