
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

1

Announcement
o Homework 1 posted on BB
o Due next Wednesday, Feb 20, 9:00am, on BB

2

Review: Synchronization
Worksheet

3

Review: Semaphores

4

Semaphores
o Motivation: Avoid busy waiting by blocking a

process execution until some condition is
satisfied

o Two operations are defined on a semaphore
variable s:

sem_wait(s) (also called P(s) or down(s))
sem_post(s) (also called V(s) or up(s))

5

Semaphore as a
General Synchronization Tool

6

o Semaphores provide a general synchronization
mechanism beyond the “critical section” problem

o Example problem: Execute B in Pj only after A
executed in Pi

o Use semaphore flag initialized to 0
o Code:

Pi : Pj :
! !
A sem_wait(flag)

sem_post(flag) B

Join with Semaphore
sem_t s;

void *child(void *arg) {
printf(“child\n”);
sem_post(&s);

}

int main(int argc, char *argv[]) {
sem_init(&s, 0);
pthread_t c;
printf(“parent: begin\n”);
pthread_create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);
return 0;

}
7

8

o Producer-Consumer Problem
– Semaphore version
– Condition Variable

• A CV-based version

o Readers-Writers Problem

o Dining-Philosophers Problem

Classical Problems of Synchronization

Producer-Consumer Problem
o The bounded-buffer producer-consumer problem assumes

that there is a buffer of size N
o The producer process puts items to the buffer area
o The consumer process consumes items from the buffer
o The producer and the consumer execute concurrently

producer consumer

.

9

Example: UNIX Pipes
o A pipe may have many writers and readers

o Internally, there is a finite-sized buffer

o Writers add data to the buffer

o Readers remove data from the buffer

10

Example: UNIX Pipes

11

Buffer

end

start

Example: UNIX Pipes

12

Buffer

end

start

Write

Example: UNIX Pipes

13

Buffer

end

start

Example: UNIX Pipes

14

Buffer

end

start

Write

Example: UNIX Pipes

15

Buffer

end

start

Example: UNIX Pipes

16

Buffer

end

start

Read

Example: UNIX Pipes

17

Buffer

end

start

Example: UNIX Pipes

18

Buffer

end

start

Write

Example: UNIX Pipes

19

Buffer

end

start

Example: UNIX Pipes

20

Buffer

end

start

Read

Example: UNIX Pipes

21

Buffer

end

start

Read

Example: UNIX Pipes

22

Buffer

end

start

Read

Note: reader must wait

Example: UNIX Pipes

23

Buffer

end

start

Write

Example: UNIX Pipes

24

Buffer

end

start

Write

Example: UNIX Pipes

25

Buffer

end

start

Write

Note: writer must wait

Example: UNIX Pipes
o Implementation

– Reads/writes to buffer require locking
– When buffers are full, writers (producers) must wait
– When buffers are empty, readers (consumers) must

wait

26

Example: UNIX Pipes

Demo
% ps aux | less

% cat file | grep <str>

27

Pipe

Pipe

Producer-Consumer Model:
Parameters

o Shared data:
sem_t full, empty;

o Initially:

full = 0 /* The number of full buffers */
empty = MAX /* The number of empty buffers */

28

First Attempt: MAX = 1

29

Put and Get routines

First Attempt: MAX = 10?

30

Put and Get routines

First Attempt: MAX = 10?

31

Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10

First Attempt: MAX = 10?

32

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

33

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

34

Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

35

Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

First Attempt: MAX = 10?

36

Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

empty = 8

One More Parameter: A mutex lock

o Shared data:
sem_t full, empty;

o Initially:

full = 0; /* The number of full buffers */
empty = MAX; /* The number of empty buffers */
mutex = 1; /* Semaphore controlling the access

to the buffer pool */

37

Add “Mutual Exclusion”

38

Add “Mutual Exclusion”

39

What if consumer
gets to run first??

Adding “Mutual Exclusion”

40

Producer 0: Runnable Consumer 0: Running

Adding “Mutual Exclusion”

41

Producer 0: Runnable Consumer 0: Runnable

Consumer 0 is waiting
for full to be greater
than 0

Adding “Mutual Exclusion”

42

Producer 0: Running Consumer 0: Runnable

Consumer 0 is waiting
for full to be greater
than 0

Adding “Mutual Exclusion”

43

Producer 0: Running Consumer 0: Runnable

Deadlock!!

Consumer 0 is waiting
for full to be greater
than 0

Producer 0 gets stuck at
acquiring mutex which has
been locked by Consumer 0!

Deadlocks
o A set of threads are said to be in a deadlock

state when every thread in the set is waiting for
an event that can be caused only by another
thread in the set

44

A typical deadlock
dependency graph

Conditions for Deadlock
o Mutual exclusion

– Threads claim exclusive control of resources that require
(e.g., a thread grabs a lock)

o Hold-and-wait
– Threads hold resources allocated to them while waiting for

additional resources
o No preemption

– Resources cannot be forcibly removed from threads that
are holding them

o Circular wait
– There exists a circular chain of threads such that each

holds one or more resources that are being requests by
next thread in chain

45

Correct Mutual Exclusion

46

Mutex wraps
just around
critical section!

Mutex wraps
just around
critical section!

Producer-Consumer Solution

o Make sure that
1. The producer and the consumer do not access the buffer

area and related variables at the same time
2. No item is made available to the consumer if all the buffer

slots are empty
3. No slot in the buffer is made available to the producer if all the

buffer slots are full

47

Condition Variables

48

Condition Variables
A parent waiting for its child

49

Spin-based Approach
Using a shared variable, parent spins until child set it to 1

50

Spin-based Approach
Using a shared variable, parent spins until child set it to 1

51

What’s the problem of this approach?

Condition Variables (CV)
o Definition:

– An explicit queue that threads can put themselves
when some condition is not as desired (by waiting
on the condition)

– Other thread can wake one of those waiting threads
to allow them to continue (by signaling on the
condition)

o Pthread CV

52

53

CV-based Approach

??

??

Broken Implementation 1

54

Broken Implementation 1

55

If parent comes after child,
parent sleeps forever

Broken Implementation 2

56

Broken Implementation 2

57

No mutual exclusion, hence
child may signal before parent
calls cond_wait(). In this case,
parent sleeps forever!

Trap 1 When Using CV

58

Condition Variable
thread

wait

thread
wait

Trap 1 When Using CV

59

Condition Variable
thread

wait

thread
waitthread

signal

Trap 1 When Using CV

60

Condition Variable thread
wait

Trap 1 When Using CV

61

Condition Variable thread
wait

Only one thread gets a signal

Trap 2 When Using CV

62

Condition Variable

Trap 2 When Using CV

63

Condition Variablethread
signal

Trap 2 When Using CV

64

Condition Variable

Trap 2 When Using CV

65

Condition Variable
thread

wait

Trap 2 When Using CV

66

Condition Variable
thread

wait

waits forever…

Trap 2 When Using CV

67

Condition Variable
thread

wait

waits forever…

Signal lost if nobody waiting at that time

Guarantee

68

Condition Variable
thread

wait

thread
wait

Upon signal, there has to be at least one thread waiting;
If there are threads waiting, at least one thread will wake

thread
signal

69

CV-based Parent-wait-for-child
Approach

70

CV-based Parent-wait-for-child
Approach

Good Rule of Thumb
Always do 1. wait and 2. signal while holding the lock

To prevent lost signal

Worksheet

71

