CS 471 Operating Systems

Yue Cheng

George Mason University Spring 2019

CPU Scheduling

Outline

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- First-In-First-Out
- Shortest-Job-First, Shortest-Remaining-Time-First
- Priority Scheduling
- Round Robin
- Multi-level Queue
- Multi-level Feedback Queue

Basic Concepts

- During its lifetime, a process goes through a sequence of CPU and I/O bursts
- The CPU scheduler (a.k.a. short-term scheduler) will select one of the processes in the ready queue for execution
- The CPU scheduler algorithm may have tremendous effects on the system performance
- Interactive systems: Responsiveness
- Real-time systems: Not missing the deadlines

Alternating Sequence of CPU and I/O Bursts

When to Schedule?

- Under the simple process state transition model, CPU scheduler can be potentially invoked at five different points:

1. When a process switches from the new state to the ready state
2. When a process switches from the running state to the waiting (or blocked) state
3. When a process switches from the running state to the ready state
4. When a process switches from the waiting state to the ready state
5. When a process terminates

Process State Transitions

Process State Transitions

Non-preemptive vs. Preemptive Scheduling

- Under non-preemptive scheduling, each running process keeps the CPU until it completes or it switches to the waiting (blocked) state
- Under preemptive scheduling, a running process may be forced to release the CPU even though it is neither completed nor blocked
- In time-sharing systems, when the running process reaches the end of its time quantum (slice)
- In general, whenever there is a change in the ready queue

Non-preemptive vs. Preemptive Scheduling

- Non-preemptive kernels do not allow preemption of a process running in kernel mode
- Serious drawback for real-time applications
- Preemptive kernels allow preemption even in kernel mode
- Insert safe preemption points in long-duration system calls
- Or, use synchronization mechanisms (e.g., "mutex locks") to protect the kernel data structures against race conditions

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
- switching context
- switching to user mode
- jumping to the proper location in the user program to restart that program
- Scheduler \rightarrow Policy: When and how to schedule
- Dispatcher \rightarrow Mechanism: Actuator following the commands of the scheduler

Scheduling Metrics

- To compare the performance of scheduling algorithms
- CPU utilization - percentage of time CPU is busy executing jobs
- Throughput - \# of processes that complete their execution per time unit
- Turnaround time - amount of time to execute a particular process
- Waiting time - amount of time a process has been waiting in the ready queue
- Response time - amount of time it takes from when a request was submitted until the first response is produced, not the complete output
- Meeting the deadlines (real-time systems)

Optimization Goals

- To maximize:
- Maximize the CPU utilization
- Maximize the throughput
- To minimize:
- Minimize the (average) turnaround time
- Minimize the (average) waiting time
- Minimize the (average) response time

Waiting Time

- Waiting time definition

$$
\begin{aligned}
T_{\text {waiting }} & =T_{\text {start }}-T_{\text {arrival }} \\
\circ \text { Average waiting time } & =\operatorname{Sum}\left(T_{\text {waiting }}\right) / \text { \#processes }
\end{aligned}
$$

- For now, we assume
-Average waiting time is the performance measure
-Only one CPU burst (e.g., in milliseconds or ms) per
process
-Only CPU, No I/O
-All processes arrive at the same time
-Once started, each process runs to completion

First-In-First-Out (FIFO)

First-In-First-Out (FIFO)

Process Burst Time $P_{1} \quad 24$

- Suppose that the processes arrive in order: P_{1}, P_{2}, P_{3} The Gantt Chart for the schedule:

First-In-First-Out (FIFO)

\section*{Process Burst Time
 | P_{1} | 24 |
| :---: | :---: |
| P_{2} | 3 |}

- Suppose that the processes arrive in order: P_{1}, P_{2}, P_{3} The Gantt Chart for the schedule:

First-In-First-Out (FIFO)

Process	
P_{1}	Burst Time
P_{2}	34
P_{3}	

- Suppose that the processes arrive in order: P_{1}, P_{2}, P_{3} The Gantt Chart for the schedule:

First-In-First-Out (FIFO)

Process	
	Burst Time
P_{1}	24
P_{2}	3
P_{3}	3

- Suppose that the processes arrive in order: P_{1}, P_{2}, P_{3} The Gantt Chart for the schedule:

- Waiting time for $P_{1}=0 ; P_{2}=24 ; P_{3}=27$
- Average waiting time: 17

FIFO (cont.)

- Suppose that the processes arrive in order P_{2}, P_{3}, P_{1}
- The Gantt chart for the schedule:

FIFO (cont.)

- Suppose that the processes arrive in order P_{2}, P_{3}, P_{1}
- The Gantt chart for the schedule:

FIFO (cont.)

- Suppose that the processes arrive in order P_{2}, P_{3}, P_{1}
- The Gantt chart for the schedule:

FIFO (cont.)

- Suppose that the processes arrive in order P_{2}, P_{3}, P_{1}
- The Gantt chart for the schedule:

- Waiting time for $P_{1}=6 ; P_{2}=0 ; P_{3}=3$
- Average waiting time: $(6+0+3) / 3=3$

FIFO (cont.)

- Suppose that the processes arrive in order P_{2}, P_{3}, P_{1}
- The Gantt chart for the schedule:

- Waiting time for $P_{1}=6 ; P_{2}=0 ; P_{3}=3$
- Average waiting time: $(6+0+3) / 3=3$
- Problems:
- Convoy effect (short processes behind long processes)
- Non-preemptive: Not suitable for time-sharing systems

Shortest-Job-First (SJF)

Shortest-Job-First (SJF)

- Associate with each process the length of its next CPU burst
- The CPU is assigned to the process with the smallest (next) CPU burst (run_time)
- Two schemes:
- Non-preemptive
- Preemptive: Also known as the Shortest-Remaining-Time-First (SRTF)

Example for Non-Preemptive SJF

$\frac{\text { Process }}{}$		Arrival Time	
			Burst Time
P_{1}		0.0	7
P_{2}		2.0	4
P_{3}		4.0	1
P_{4}		5.0	4

- SJF (non-preemptive)

Example for Non-Preemptive SJF

Process		Arrival Time	
			Burst Time
P_{1}		0.0	7
P_{2}		2.0	4
P_{3}		4.0	1
P_{4}		5.0	4

- SJF (non-preemptive)

Example for Non-Preemptive SJF

Process		Arrival Time	
		0.0	
P_{1}			7
P_{2}		2.0	4
P_{3}		4.0	
P_{4}		5.0	
			4

- SJF (non-preemptive)

	P_{1}	P_{3}	P_{2}
0	7	8	12

Example for Non-Preemptive SJF

Process		Arrival Time	
			Burst Time
P_{1}		0.0	7
P_{2}		2.0	4
P_{3}		4.0	1
P_{4}		5.0	4

- SJF (non-preemptive)

Example for Non-Preemptive SJF

Process	Arrival Time	Burst Time
P_{1}	0.0	7
P_{2}	2.0	4
P_{3}	4.0	1
P_{4}	5.0	4

- SJF (non-preemptive)

- Average waiting time $=(0+6+3+7) / 4=4$

Example for Preemptive SJF (SRTF)

Process Arrival Time Burst Time Left Time
 P_{1} 0.0 7

Example for Preemptive SJF (SRTF)

Process Arrival Time Burst Time Left Time P_{1} 0.0

- SJF (preemptive)

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	5
P_{1}		2.0	4	4

- SJF (preemptive)

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	5
P_{1}		2.0	4	4
P_{2}		4.0	1	1

- SJF (preemptive)

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	5
P_{1}		2.0	4	2
P_{2}		4.0	1	1

- SJF (preemptive)

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	5
P_{1}		2.0	4	2
P_{2}		4.0	1	1

- SJF (preemptive)

Example for Preemptive SJF (SRTF)

Process		Arrival Time		
		Burst Time	Left Time	
P_{1}		0.0	7	5
P_{2}		2.0	4	2
P_{3}		4.0	1	0
P_{4}	5.0	4	4	

- SJF (preemptive)

P_{1}	P_{2}	P_{3}
0	2	

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	5
P_{1}		2.0	4	2
P_{2}		4.0	1	0
P_{3}		4	4	
P_{4}	5.0	4		

- SJF (preemptive)

P_{1}	P_{2}	P_{3}	P_{2}	
0	2	4		5

Example for Preemptive SJF (SRTF)

Process		Arrival Time		
		Burst Time	Left Time	
P_{1}		0.0	7	5
P_{2}		2.0	4	0
P_{3}		4.0	1	0
P_{4}	5.0	4	4	

- SJF (preemptive)

P_{1}	P_{2}	P_{3}	P_{2}
0	2	4	5

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	5
P_{1}		2.0	4	0
P_{2}		4.0	1	0
P_{3}		1	0	
P_{4}	5.0	4	0	

- SJF (preemptive)

P_{1}	P_{2}	P_{3}	P_{2}	P_{4}
0	2	4	5	7

Example for Preemptive SJF (SRTF)

Process		Arrival Time	Burst Time	Left Time
		0.0	7	0
P_{1}		2.0	4	0
P_{2}		4.0	1	0
P_{3}		1	0	
P_{4}	5.0	4	0	

- SJF (preemptive)

P_{1}	P_{2}	P_{3}	P_{2}	P_{4}	P_{1}	
0	2	4	5	7		11

Example for Preemptive SJF (SRTF)

| Process | | Arrival Time | | Burst Time |
| :---: | :---: | :---: | :---: | :---: | Left Time

- SJF (preemptive)

P_{1}	P_{2}	P_{3}	P_{2}	P_{4}	P_{1}	
0	2	4	5	7		11

- Average waiting time $=(9+1+0+2) / 4=3$

