CS 471 Operating Systems

Yue Cheng

George Mason University
Spring 2019

Review: FIFO, SJF

Workload Assumptions

. Each job runs for the same amount of time
. All jobs arrive at the same time
. All jobs only use the CPU (no 1/O)

. The run-time of each job is known

FIFO

o First-In-First-Out: Run jobs in arrival (time) order

FIFO

First-In-First-Out: Run jobs in arrival (time) order
Def: waiting_time = start_time — arrival_time

Process Burst Time

P 5
P, 5
P, 5

o Suppose that the processes arrive in order: P;, P, P;
The Gantt Chart for the schedule:

P, P, Py

0 5 10 15
o Waiting time for P, =0; P, =5; P;=10
o Average waiting time: 5

FIFO

First-In-First-Out: Run jobs in arrival (time) order

What is the average turnaround time? (Q2)?

Def: turnaround_time = completion_time — arrival_time
Process Burst Time

P 5
P, 5
P, 5

o Suppose that the processes arrive in order: P;, P, P;
The Gantt Chart for the schedule:

P, P, Py

0 5 10 15
o Waiting time for P, =0; P, =5; P;=10
o Average waiting time: 5

FIFO

First-In-First-Out: Run jobs in arrival (time) order

What is the average turnaround time? (Q2)?

Def: turnaround_time = completion_time — arrival_time
Process Burst Time

P 5
P, 5
P, 5

o Suppose that the processes arrive in order: P;, P, P;
The Gantt Chart for the schedule:

P, P, Py

FIFO

First-In-First-Out: Run jobs in arrival (time) order

What is the average turnaround time? (Q2)?

Def: turnaround_time = completion_time — arrival_time
Process Burst Time

P, 5
P> 5
P 5

o Suppose that the processes arrive in order: P;, P, P;
The Gantt Chart for the schedule:

P, P, Py

Average turnaround time: (5+10+15)/3 = 10

Workload Assumptions

. Each job runs for the same amount of time
. All jobs arrive at the same time
. All jobs only use the CPU (no 1/O)

. The run-time of each job is known

Workload Assumptions
2. All jobs arrive at the same time

3. All jobs only use the CPU (no 1/O)

4. The run-time of each job is known

Example: Big First Job

P1 ~0 80
P2 ~0 S
P3 ~0 5

What is the average turnaround time? (Q3)

11

Example: Big First Job

P1 ~0 80
P2 ~0 5
P3 ~0 5
P, P, | P

0 80 85 90

12

Example: Big First Job

P1 ~0 80
P2 ~0 5
P3 ~0 5
P P2 | Ps
0 80 85 90

Average turnaround time: (80+85+90) / 3 = 85

13

Convoy Effect

14

Better Schedule?

Passing the Tractor

o New scheduler: SJF (Shortest Job First)

o Policy: When deciding which job to run, choose
the one with the smallest run_time

Example: SJF

P1 ~0 80
P2 ~0 S
P3 ~0 5

What is the average turnaround time with SJF? (Q4)

17

Example: SJF

P1 ~0 80
P2 ~0 5
P3 ~0 5
P, | P P,

90

18

Example: SJF

P1 ~0 80
P2 ~0 5
P3 ~0 5
P2 Ps P
0 5 10 90

Average turnaround time: (5+10+90) / 3 = 35

19

Workload Assumptions

. Each job runs for the same amount of time
. All jobs arrive at the same time
. All jobs only use the CPU (no 1/O)

. The run-time of each job is known

Workload Assumptions
SN . | .
3. All jobs only use the CPU (no 1/O)

4. The run-time of each job is known

Shortest Job First (Arrival Time)

P1 ~0 80
P2 ~15 20
P3 ~15 10

What is the average turnaround time with SJF? (Q5)

22

Shortest Job First (Arrival Time)

P1 ~0 80
P2 ~15 20
P3 ~15 10
P, Ps| P>
0 ‘ 80 90 110

[P2, P3 arrive at 15]

23

Shortest Job First (Arrival Time)

P1 ~0 80
P2 ~15 20
P3 ~15 10
P, Pyl Ps

0 80 90 110
P1:80 >

P2: 75
P3: 95

Average turnaround time: (80+75+95) / 3 = ~83.3

24

A Preemptive Scheduler

o Previous schedulers: FIFO and SJF are non-
preemptive

o New scheduler: SRTF (Shortest Remaining Time
First)

o Policy: Switch jobs so we always run the one
that will complete the quickest

SJF i
P1 ~0 80

P2 ~15 20
P3 ~15 10
P Ps[Po
0 [80 90 110

[P2, P3 arrive at 15]

26

SRTF ElEEEINE
P1 ~0 80

P2 ~15 20
[P2, P3 arrive] P3 ~15 10
v
P, | P4 P> P,
O 15 25 45 110

What is the average turnaround time with SRTF? (Q6)

27

SRTF ElEEEINE
P1 ~0 80

P2 ~15
[P2, P3 arrive] P3 ~15
v
P, | P3| P> P,
0) 15 25 45 110

P1:110
P3:10 —
P2: 30 “

Average turnaround time: (110+30+10) / 3 = 50

20
10

28

SRTF ElEEEINE
P1 ~0 80

P2 ~15 20
[P2, P3 arrive] P3 ~15 10
v
P, | P3| P, P,
0O 15 256 45 110

What is the average waiting time with SRTF? (Q7)

29

SRTF ElEEEINE
P1 ~0 80

P2 ~15 20
[P2, P3 arrive] P3 ~15 10
v
P, [Py P, P,
0 15 25 45 110

P1:30
P3:0
P2:10 —

Average waiting time: (30+10+0) / 3 = ~13.3

30

Outline

o Scheduling Algorithms

— Round Robin (RR)
— Priority Scheduling
— Multi-Level Feedback Queue (MLFQ)
— Lottery Scheduling

Optimality of SJF and SRTF

o Non-preemptive SJF is optimal if all the
processes are ready simultaneously

o Gives minimum average waiting time for a given set
of processes

Optimality of SJF and SRTF

o Non-preemptive SJF is optimal if all the
processes are ready simultaneously

o Gives minimum average waiting time for a given set
of processes

o What is the intuition behind the optimality of
SRTF?

Optimality of SJF and SRTF

o Non-preemptive SJF is optimal if all the
processes are ready simultaneously

o Gives minimum average waiting time for a given set
of processes

o What is the intuition behind the optimality of

SRTF?
— A: SRTF is optimal, considering a more realistic

scenario where all the processes may be arriving
at different times

Optimality of SJF and SRTF

Q: What'’s the problem?

We don’t exactly know how long a job would run!

35

Estimating the Length of Next CPU Burst

o ldea: Based on the observations in the recent past,
we can try to predict

o Technigues such as exponential averaging are
based on combining the observations in the past
and our predictions using different weights

o Exponential averaging
— t.: actual length of the n"» CPU burst
— Z,.1. predicted value for the next CPU burst
- Z,.1 =kt + (1-K).z,
— Commonly, k is set to 12

Response Time

o Response time definition

Tresponse = Tfirst_ run — Tarrival

o SJF’s average response time (all 3 jobs arrive at
same time)

—(0+5+10)/3=5

Waiting, Turnaround, Response

[P2, P3 arrive at 15]

|

P, Ps| P» P,

0 25 35 45 120
P1’s waiting time: < g

P2’s turnaround time:

P3’s response time: —

Waiting, Turnaround, Response

[P2, P3 arrive at 15]

|

P, Ps| P» P,

0 25 35 45 120
P1’s waiting time: 0+20=20 >

P2’s turnaround time: 45-15=30 <

P3’s response time: 25-15=10 «——

Q: What is P1’s response time?

Round Robin (RR)

Workload Assumptions

. Each job runs for the same amount of time
. All jobs arrive at the same time
. All jobs only use the CPU (no 1/O)

. The run-time of each job is known

Workload Assumptions

At . I .

3—A

jobs-on

(NN
%US@—t—h-@—G—EU no

10)-

4. The run-time of each job is known

Extension to Multiple CPU & I/O Bursts

o When the process arrives, it will try to execute its
first CPU burst

— It will join the ready queue

— The priority will be determined according to the underlying scheduling
algorithm and considering only that specific (i.e. first) burst

o When it completes its first CPU burst, it will try to
perform its first I/O operation (burst)

— It will join the device queue

— When that device is available, it will use the device for a time period
indicated by the length of the first I/O burst.

o Then, it will re-join the ready queue and try to
execute its second CPU burst

— lts new priority may now change (as defined by its second CPU burst)!

Round Robin (RR)

o Each process gets a small unit of CPU time
(time quantum). After this time has elapsed, the
Process IS preempted and added to the end of
he ready queue

o Newly-arriving lorocesses (and processes that
complete their I/O bursts) are added to the end
of the ready queue

o If there are n processes in the ready queue and
the time quantum is g, then no process waits
more than (n-1)g time units

o Performance

— glarge = FIFO

— g small = Processor Sharing (The system appears to
the users as though each of the n processes has its
own processor running at the (7/n) of the speed of
the real processor)

Not I/O Aware

ABBBBSB

A

Dkllll

100 120 140
T|me

Poor use of resources

/O Aware (Overlap)

1 || 1
0 20 40 60 80 100 120 140
Time

Overlap allows better use of resources!

R R Process Burst Time

A 5
B 5
o SJF’s average response time ¢]
- (0+5+10)/3=5
B C
0 5 1b 1% éO 55 3b
Time

o RR’s average response time (time quantum = 1)
- 0+1+2)/3=1

ABCABCABCABCABC

IIII I Il 1 I
0 o 10 15 20 25

Time

30

Tradeoff Consideration

o Typically, RR achieves higher average
turnaround time than SJF, but better response
time
— Turnaround time only cares about when processes

finish

o RR is one of the worst policies
— =lF- turnaround time is the metric

Choosing a Time Quantum

" The effect of quantum size on context-switching
time must be carefully considered

" The time quantum must be large with respect to the
context-switch time

" Turnaround time also depends on the size of the
time quantum

process time = 10 quantum context
switches

12 0

10

o 1 2 3 4 &6 6 7 8 9 10 49

Time Quantum vs. Turnaround Time

average turnaround time

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

process | time
24 6
Ps 3
2 1
= i

4 5
time quantum

50

Time Quantum vs. Turnaround Time

Q: What'’s the takeaway?

Workload Assumptions

. Each job runs for the same amount of time
. All jobs arrive at the same time
. All jobs only use the CPU (no 1/O)

. The run-time of each job is known

Workload Assumptions

At . I .

53

Priority-Based Scheduling

Priority-Based Scheduling

o A priority number (integer) is associated with each
process

o The CPU is allocated to the process with the highest
priority
o (smallest integer = highest priority)
o Preemptive
o Non-preemptive

55

Example for Priority-Based Scheduling

Process Burst Time Priority

P, 10 3
P, 1 1
P, 2 4
P, 1 5
Ps 5 2
o Priority scheduling Gantt Chart
P, | Ps P, P, [P,
0 1 6 16 18 19

o Average waiting time = 8.2

Priority-Based Scheduling (cont.)

o Priority Assignment

— Internal factors: timing constraints, memory
requirements, the ratio of average 1/O burst to average
CPU burst ...

— External factors: Importance of the process, financial
considerations, hierarchy among users ...

o Problem: Indefinite blocking (or Starvation) — low
priority processes may never execute

o One solution: Aging

o As time progresses increase the priority of the processes
that wait in the system for a long time

Multi-Level Feedback Queue
(MLFQ)

Multi-Level Feedback Queue
(MLFQ)

o Goals of MLFQ

— Optimize turnaround time

* In reality, SJF does not work since OS does not know how
long a process will run

— Minimize response time
« Unfortunately, RR is really bad on optimizing turnaround time

MLFQ: Basics

o MLFQ maintains a number of queues (multi-
level queue)
— Each assigned a different priority level

— Priority decides which process should run at a given
time

MLFQ Example
[High Priority] Q8 —>® —>.
Q7

How to know process type

Q6 o

to set priority?
Q5 1. nice
Q4_,@ 2. history
Q3

Q2
[Low Priority] Q1 —>@

How to Check Nice Values in
Linux?

0% ps ax -o pid,ni,cmd

MLFQ Example
[High Priority] Q8 _’® _>
Q7

How to know process type

Q6 .

to set priority?
Q5 1. nice
Q4_.@ 2. history
Q3

In this example, A and B

Q2
o are given high priority to
oy Bronty]; (G _’@ run, while C and D may

starve

63

MLFQ: Basic Rules

o MLFQ maintains a number of queues (multi-
level queue)

— Each assigned a different priority level

— Priority decides which process should run at a given
time

e Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
e Rule 2: If Priority(A) = Priority(B), A & B run in RR.

64

Attempt #1: Change Priority

o Workload

— Interactive processes (many short-run CPU bursts)
— Long-running processes (CPU-bound)

o Each time quantum = 10ms

e Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

e Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).

e Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

65

Example 1: One Single Long-
Running Process

o A process enters at highest priority (time
guantum = 10ms)

Q1

QO

0 50 100 150 200

Example 1: One Single Long-
Running Process

o A process enters at highest priority (time
guantum = 10ms)

Q2

Q1

QO

0 50 100 150 200

Example 1: One Single Long-
Running Process

o A process enters at highest priority (time
guantum = 10ms)

Q2

Q1

QO

0 50 100 150 200

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)

Q2

Q1

Q0

0 50 100 150 200

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)

o Process B: short-running interactive process
(start at 100)

Q2 Process B

QO

0 50 100 150 200

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)

o Process B: short-running interactive process
(start at 100)

Q2 Process B

QO

0 50 100 150 200

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)

o Process B: short-running interactive process
(start at 100)

Q2 Process B

Q0

0 50 100 150 200

Example 3: What about I/O?

o Process A: long-running process

o Process B: I/O-intensive interactive process
(each CPU burst = 1ms)

Q2 I/O-intensive Process B

QO
[T

100 150 200

Example 4: What's the Problem?

o Process A: long-running process
o Process B + C: Interactive process

Interactive Process B

0 50 100 150 200

Example 4: What's the Problem?

o Process A: long-running process
o Process B + C: Interactive process

Interactive Process B

Q2
Q1
QO
- CPU-intensive Process A
starves!

0 50 100 150 200 s

Attempt #2: Priority Boost

o Simple idea: Periodically boost the priority of all
processes

e Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Interactive Process B

Q2
i 1 1 0

a0t & & & 8
1" "

Qo0 CPU-intensive Process A
J - proceeds!

76

Tuning MLFQ

o MLFQ scheduler is defined by many parameters:
— Number of queues
— Time quantum of each queue
— How often should priority be boosted?
— Alot more...

o The scheduler can be configured to match the
requirements of a specific system

— Challenging and requires experience

Lottery Scheduling

Lottery Scheduling

o Goal: Proportional share
— One of the fair-share schedulers

o Approach

— Gives processes lottery tickets
— Whoever wins runs
— Higher priority --> more tickets

O 00 NN O U b LW N =

e e e pd pd pd el ed
O NI &N U b W N = O

Lottery Code

// counter: used to track if we’ve found the winner yet
int counter = 0;

// winner: use some call to a random number generator to
Ve get a value, between 0 and the total # of tickets
int winner = getrandom (0, totaltickets);

// current: use this to walk through the list of jobs
node_t *current = head;

// loop until the sum of ticket values is > the winner
while (current) {
counter = counter + current->tickets;
if (counter > winner)
break; // found the winner
current = current->next;

}

// 'current’ is the winner: schedule it...

80

Lottery Scheduling Example

Job A Job B Job C Job D Job E

(1) (1) (100) (200) (100)

402 total tickets

81

Lottery Scheduling Example

winner = random(402)

Job A Job B Job C Job D Job E

(1) (1) (100) (200) (100)

402 total tickets

82

Lottery Scheduling Example

winner = 102

Job A Job B Job C Job D Job E

(1) (1) (100) (200) (100)

402 total tickets

83

Lottery Scheduling Example

winner = 102
Is1> 1027

|
Job A Job B Job C Job D Job E

(1) (1) (100) (200) (100)

< 402 total tickets

84

Lottery Scheduling Example

winner = 102
Is2 > 1027

}
Job A Job B Job C Job D Job E

(1) (1) (100) (200) (100)

402 total tickets

85

Lottery Scheduling Example

winner = 102
Is 102 > 1027

}
Job A Job B Job C Job D Job E

(1) (1) (100) (200) (100)

402 total tickets

86

Lottery Scheduling Example

winner = 102
Is 302 > 1027

|
Job A Job B Job C Job D Job E

(1) (1) (100) v2{0]0) (100)

402 total tickets

87

Lottery Scheduling Example

winner = 102
302 > 102

|
Job A Job B Job C Job D Job E

(1) (1) (100) v2{0]0) (100)

402 total tickets

OS picks Job D to run!

88

Other Lottery ldeas

o Ticket transfers
o Ticket currencies

o Ticket inflation

o Read more in OSTEP

