
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

1

Review: FIFO, SJF

2

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

3

FIFO
o First-In-First-Out: Run jobs in arrival (time) order

4

First-In-First-Out: Run jobs in arrival (time) order
Def: waiting_time = start_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO

5

P1 P2 P3

5 10 150

First-In-First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO

6

P1 P2 P3

5 10 150

First-In-First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

FIFO

7

P1 P2 P3

5 10 150

First-In-First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

Average turnaround time: (5+10+15)/3 = 10

FIFO

8

P1 P2 P3

5 10 150

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

9

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

10

Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

11

What is the average turnaround time? (Q3)

Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

12

P1 P2 P3

80 85 900

Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

13

P1 P2 P3

80 85 900

Average turnaround time: (80+85+90) / 3 = 85

Convoy Effect

14

Better Schedule?

15

P1P2 P3

Passing the Tractor
o New scheduler: SJF (Shortest Job First)

o Policy: When deciding which job to run, choose
the one with the smallest run_time

16

Example: SJF

17

JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

What is the average turnaround time with SJF? (Q4)

Example: SJF

18

JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Example: SJF

19

JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Average turnaround time: (5+10+90) / 3 = 35

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

20

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

21

Shortest Job First (Arrival Time)

22

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

What is the average turnaround time with SJF? (Q5)

Shortest Job First (Arrival Time)

23

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]

Shortest Job First (Arrival Time)

24

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

Average turnaround time: (80+75+95) / 3 = ~83.3

P1: 80
P2: 75
P3: 95

P1 P3 P2

80 90 1100

A Preemptive Scheduler
o Previous schedulers: FIFO and SJF are non-

preemptive

o New scheduler: SRTF (Shortest Remaining Time
First)

o Policy: Switch jobs so we always run the one
that will complete the quickest

25

SJF

26

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]

SRTF

27

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

What is the average turnaround time with SRTF? (Q6)

SRTF

28

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

P1: 110
P3: 10
P2: 30

Average turnaround time: (110+30+10) / 3 = 50

SRTF

29

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

What is the average waiting time with SRTF? (Q7)

SRTF

30

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

P1: 30
P3: 0
P2: 10

Average waiting time: (30+10+0) / 3 = ~13.3

Outline
o Scheduling Algorithms
– First-In-First-Out
– Shortest-Job-First, Shortest-Remaining-Time-First
– Round Robin (RR)
– Priority Scheduling
– Multi-Level Feedback Queue (MLFQ)
– Lottery Scheduling

31

Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the

processes are ready simultaneously
o Gives minimum average waiting time for a given set

of processes

32

Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the

processes are ready simultaneously
o Gives minimum average waiting time for a given set

of processes

o What is the intuition behind the optimality of
SRTF?

33

Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the

processes are ready simultaneously
o Gives minimum average waiting time for a given set

of processes

o What is the intuition behind the optimality of
SRTF?
– A: SRTF is optimal, considering a more realistic

scenario where all the processes may be arriving
at different times

34

Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the

processes are ready simultaneously
o Gives minimum average waiting time for a given set

of processes

o What is the intuition behind the optimality of
SRTF?
– A: SRTF is optimal, considering a more realistic

scenario where all the processes may be arriving
at different times

35

Q: What’s the problem?
We don’t exactly know how long a job would run!

Estimating the Length of Next CPU Burst

o Idea: Based on the observations in the recent past,
we can try to predict

o Techniques such as exponential averaging are
based on combining the observations in the past
and our predictions using different weights

o Exponential averaging
– tn: actual length of the nth CPU burst
– zn+1: predicted value for the next CPU burst
– zn+1 = k.tn + (1-k).zn
– Commonly, k is set to ½

36

Response Time
o Response time definition

Tresponse = Tfirst_run – Tarrival

o SJF’s average response time (all 3 jobs arrive at
same time)
–(0 + 5 + 10)/3 = 5

37

Waiting, Turnaround, Response

38

P1 P2P3

[P2, P3 arrive at 15]

P1

P1’s waiting time:

P2’s turnaround time:

P3’s response time:

0 25 35 45 120

Waiting, Turnaround, Response

39

P1 P2P3 P1

P1’s waiting time: 0+20=20

P2’s turnaround time: 45-15=30

P3’s response time: 25-15=10

Q: What is P1’s response time?

[P2, P3 arrive at 15]

0 25 35 45 120

Round Robin (RR)

40

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

41

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

42

Extension to Multiple CPU & I/O Bursts

o When the process arrives, it will try to execute its
first CPU burst
– It will join the ready queue
– The priority will be determined according to the underlying scheduling

algorithm and considering only that specific (i.e. first) burst

o When it completes its first CPU burst, it will try to
perform its first I/O operation (burst)
– It will join the device queue
– When that device is available, it will use the device for a time period

indicated by the length of the first I/O burst.

o Then, it will re-join the ready queue and try to
execute its second CPU burst
– Its new priority may now change (as defined by its second CPU burst)!

43

Round Robin (RR)
o Each process gets a small unit of CPU time

(time quantum). After this time has elapsed, the
process is preempted and added to the end of
the ready queue

o Newly-arriving processes (and processes that
complete their I/O bursts) are added to the end
of the ready queue

o If there are n processes in the ready queue and
the time quantum is q, then no process waits
more than (n-1)q time units

o Performance
– q large Þ FIFO
– q small Þ Processor Sharing (The system appears to

the users as though each of the n processes has its
own processor running at the (1/n)th of the speed of
the real processor) 44

Not I/O Aware

45

Poor use of resources

I/O Aware (Overlap)

46

Overlap allows better use of resources!

RR
o SJF’s average response time
– (0 + 5 + 10) / 3 = 5

o RR’s average response time (time quantum = 1)
– (0 + 1 + 2) / 3 = 1

47

Process Burst Time
A 5
B 5
C 5

Tradeoff Consideration
o Typically, RR achieves higher average

turnaround time than SJF, but better response
time
– Turnaround time only cares about when processes
finish

o RR is one of the worst policies
– -IF- turnaround time is the metric

48

§ The effect of quantum size on context-switching
time must be carefully considered

§ The time quantum must be large with respect to the
context-switch time

§ Turnaround time also depends on the size of the
time quantum

Choosing a Time Quantum

49

Time Quantum vs. Turnaround Time

50

Time Quantum vs. Turnaround Time

51

Q: What’s the takeaway?

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

52

Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

53

Priority-Based Scheduling

54

Priority-Based Scheduling
o A priority number (integer) is associated with each

process

o The CPU is allocated to the process with the highest
priority
o (smallest integer º highest priority)
o Preemptive
o Non-preemptive

55

Example for Priority-Based Scheduling

ProcessAaiBurst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

o Priority scheduling Gantt Chart

o Average waiting time = 8.2

56

P2 P3P5

1 180 16

P4

196

P1

Priority-Based Scheduling (cont.)
o Priority Assignment

– Internal factors: timing constraints, memory
requirements, the ratio of average I/O burst to average
CPU burst …

– External factors: Importance of the process, financial
considerations, hierarchy among users …

o Problem: Indefinite blocking (or Starvation) – low
priority processes may never execute

o One solution: Aging
o As time progresses increase the priority of the processes

that wait in the system for a long time

57

Multi-Level Feedback Queue
(MLFQ)

58

Multi-Level Feedback Queue
(MLFQ)

o Goals of MLFQ
– Optimize turnaround time

• In reality, SJF does not work since OS does not know how
long a process will run

– Minimize response time
• Unfortunately, RR is really bad on optimizing turnaround time

59

MLFQ: Basics
o MLFQ maintains a number of queues (multi-

level queue)
– Each assigned a different priority level
– Priority decides which process should run at a given

time

60

MLFQ Example

61

How to know process type
to set priority?
1. nice
2. history

How to Check Nice Values in
Linux?

o % ps ax -o pid,ni,cmd

62

MLFQ Example

63

How to know process type
to set priority?
1. nice
2. history

In this example, A and B
are given high priority to
run, while C and D may
starve

MLFQ: Basic Rules
o MLFQ maintains a number of queues (multi-

level queue)
– Each assigned a different priority level
– Priority decides which process should run at a given

time

64

Attempt #1: Change Priority
o Workload

– Interactive processes (many short-run CPU bursts)
– Long-running processes (CPU-bound)

o Each time quantum = 10ms

65

Example 1: One Single Long-
Running Process

o A process enters at highest priority (time
quantum = 10ms)

66

Example 1: One Single Long-
Running Process

o A process enters at highest priority (time
quantum = 10ms)

67

Example 1: One Single Long-
Running Process

o A process enters at highest priority (time
quantum = 10ms)

68

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)

69

Process A

Process B

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
o Process B: short-running interactive process

(start at 100)

70

Process A

Process B

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
o Process B: short-running interactive process

(start at 100)

71

Process A

Process B

Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
o Process B: short-running interactive process

(start at 100)

72

Process A

Process B

Example 3: What about I/O?
o Process A: long-running process
o Process B: I/O-intensive interactive process

(each CPU burst = 1ms)

73

CPU-intensive Process A

I/O-intensive Process B

Example 4: What’s the Problem?

o Process A: long-running process
o Process B + C: Interactive process

74

Interactive Process B

Interactive Process C

Example 4: What’s the Problem?

o Process A: long-running process
o Process B + C: Interactive process

75

CPU-intensive Process A
starves!

Interactive Process B

Interactive Process C

Attempt #2: Priority Boost
o Simple idea: Periodically boost the priority of all

processes

76

CPU-intensive Process A
proceeds!

Interactive Process B

Interactive Process C

Tuning MLFQ
o MLFQ scheduler is defined by many parameters:

– Number of queues
– Time quantum of each queue
– How often should priority be boosted?
– A lot more…

o The scheduler can be configured to match the
requirements of a specific system
– Challenging and requires experience

77

Lottery Scheduling

78

Lottery Scheduling
o Goal: Proportional share

– One of the fair-share schedulers

o Approach
– Gives processes lottery tickets
– Whoever wins runs
– Higher priority --> more tickets

79

Lottery Code

80

Lottery Scheduling Example

81

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

Lottery Scheduling Example

82

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = random(402)

Lottery Scheduling Example

83

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Lottery Scheduling Example

84

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 1 > 102?

Lottery Scheduling Example

85

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 2 > 102?

Lottery Scheduling Example

86

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 102 > 102?

Lottery Scheduling Example

87

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 302 > 102?

Lottery Scheduling Example

88

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

302 > 102

OS picks Job D to run!

Other Lottery Ideas
o Ticket transfers

o Ticket currencies

o Ticket inflation

o Read more in OSTEP

89

