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Review: FIFO, SJF
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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FIFO
o First-In-First-Out: Run jobs in arrival (time) order
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First-In-First-Out: Run jobs in arrival (time) order
Def: waiting_time = start_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO
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First-In-First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO
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First-In-First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

FIFO
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First-In-First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

Average turnaround time: (5+10+15)/3 = 10

FIFO
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5
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What is the average turnaround time? (Q3)



Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5
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Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5
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P1 P2 P3

80 85 900

Average turnaround time: (80+85+90) / 3 = 85



Convoy Effect
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Better Schedule?
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P1P2 P3



Passing the Tractor
o New scheduler: SJF (Shortest Job First)

o Policy: When deciding which job to run, choose 
the one with the smallest run_time
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Example: SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

What is the average turnaround time with SJF? (Q4)



Example: SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900



Example: SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Average turnaround time: (5+10+90) / 3 = 35



Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Shortest Job First (Arrival Time)
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JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

What is the average turnaround time with SJF? (Q5)



Shortest Job First (Arrival Time)
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JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]



Shortest Job First (Arrival Time)
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JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

Average turnaround time: (80+75+95) / 3 = ~83.3

P1: 80
P2: 75
P3: 95

P1 P3 P2

80 90 1100



A Preemptive Scheduler
o Previous schedulers: FIFO and SJF are non-

preemptive

o New scheduler: SRTF (Shortest Remaining Time 
First)

o Policy: Switch jobs so we always run the one 
that will complete the quickest
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SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]



SRTF
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P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

What is the average turnaround time with SRTF? (Q6)



SRTF
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P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

P1: 110
P3: 10
P2: 30

Average turnaround time: (110+30+10) / 3 = 50



SRTF
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P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

What is the average waiting time with SRTF? (Q7)



SRTF
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P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

P1: 30
P3: 0
P2: 10

Average waiting time: (30+10+0) / 3 = ~13.3



Outline
o Scheduling Algorithms
– First-In-First-Out
– Shortest-Job-First, Shortest-Remaining-Time-First
– Round Robin (RR) 
– Priority Scheduling
– Multi-Level Feedback Queue (MLFQ)
– Lottery Scheduling
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Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the 

processes are ready simultaneously
o Gives minimum average waiting time for a given set 

of processes
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Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the 

processes are ready simultaneously
o Gives minimum average waiting time for a given set 

of processes

o What is the intuition behind the optimality of 
SRTF?
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Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the 

processes are ready simultaneously
o Gives minimum average waiting time for a given set 

of processes

o What is the intuition behind the optimality of 
SRTF?
– A: SRTF is optimal, considering a more realistic 

scenario where all the processes may be arriving
at different times
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Optimality of SJF and SRTF
o Non-preemptive SJF is optimal if all the 

processes are ready simultaneously
o Gives minimum average waiting time for a given set 

of processes

o What is the intuition behind the optimality of 
SRTF?
– A: SRTF is optimal, considering a more realistic 

scenario where all the processes may be arriving
at different times
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Q: What’s the problem?
We don’t exactly know how long a job would run!



Estimating the Length of Next CPU Burst

o Idea: Based on the observations in the recent past, 
we can try to predict

o Techniques such as exponential averaging are 
based on combining the observations in the past 
and our predictions using different weights

o Exponential averaging
– tn: actual length of the nth CPU burst
– zn+1: predicted value for the next CPU burst
– zn+1 = k.tn + (1-k).zn
– Commonly, k is set to ½
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Response Time
o Response time definition

Tresponse = Tfirst_run – Tarrival

o SJF’s average response time (all 3 jobs arrive at 
same time)
–(0 + 5 + 10)/3 = 5
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Waiting, Turnaround, Response
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P1 P2P3

[P2, P3 arrive at 15]

P1

P1’s waiting time: 

P2’s turnaround time:

P3’s response time:

0 25 35 45 120



Waiting, Turnaround, Response
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P1 P2P3 P1

P1’s waiting time: 0+20=20

P2’s turnaround time: 45-15=30

P3’s response time: 25-15=10

Q: What is P1’s response time?

[P2, P3 arrive at 15]

0 25 35 45 120



Round Robin (RR)
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Extension to Multiple CPU & I/O Bursts

o When the process arrives, it will try to execute its 
first CPU burst
– It will join the ready queue
– The priority will be determined according to the underlying scheduling 

algorithm and considering only that specific (i.e. first) burst

o When it completes its first CPU burst, it will try to 
perform its first I/O operation (burst)
– It will join the device queue
– When that device is available, it will use the device for a time period 

indicated by the length of the first I/O burst.

o Then, it will re-join the ready queue and try to 
execute its second CPU burst
– Its new priority may now change (as defined by its second CPU burst)!
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Round Robin (RR)
o Each process gets a small unit of CPU time

(time quantum).  After this time has elapsed, the 
process is preempted and added to the end of 
the ready queue

o Newly-arriving processes (and processes that 
complete their I/O bursts) are added to the end 
of the ready queue

o If there are n processes in the ready queue and 
the time quantum is q, then no process waits 
more than (n-1)q  time units

o Performance
– q large Þ FIFO
– q small Þ Processor Sharing (The system appears to 

the users as though each of the n processes has its 
own processor running at the (1/n)th of the speed of 
the real processor) 44



Not I/O Aware

45

Poor use of resources



I/O Aware (Overlap)
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Overlap allows better use of resources!



RR
o SJF’s average response time
– (0 + 5 + 10) / 3 = 5

o RR’s average response time (time quantum = 1)
– (0 + 1 + 2) / 3 = 1
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Process Burst Time
A 5
B 5
C 5



Tradeoff Consideration
o Typically, RR achieves higher average 

turnaround time than SJF, but better response 
time
– Turnaround time only cares about when processes 
finish

o RR is one of the worst policies 
– -IF- turnaround time is the metric
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§ The effect of quantum size on context-switching 
time must be carefully considered

§ The time quantum must be large with respect to the 
context-switch time

§ Turnaround time also depends on the size of the 
time quantum

Choosing a Time Quantum
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Time Quantum vs. Turnaround Time
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Time Quantum vs. Turnaround Time
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Q: What’s the takeaway?



Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions
1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Priority-Based Scheduling
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Priority-Based Scheduling
o A priority number (integer) is associated with each 

process

o The CPU is allocated to the process with the highest 
priority 
o (smallest integer º highest priority)
o Preemptive
o Non-preemptive
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Example for Priority-Based Scheduling

ProcessAaiBurst TimeT   Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

o Priority scheduling Gantt Chart

o Average waiting time = 8.2 
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P2 P3P5

1 180 16

P4

196

P1



Priority-Based Scheduling (cont.)
o Priority Assignment

– Internal factors: timing constraints, memory 
requirements, the ratio of average I/O burst to average 
CPU burst …

– External factors: Importance of the process, financial 
considerations, hierarchy among users …

o Problem: Indefinite blocking (or Starvation) – low 
priority processes may never execute

o One solution: Aging
o As time progresses increase the priority of the processes 

that wait in the system for a long time
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Multi-Level Feedback Queue 
(MLFQ)
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Multi-Level Feedback Queue 
(MLFQ)

o Goals of MLFQ
– Optimize turnaround time

• In reality, SJF does not work since OS does not know how 
long a process will run

– Minimize response time 
• Unfortunately, RR is really bad on optimizing turnaround time
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MLFQ: Basics
o MLFQ maintains a number of queues (multi-

level queue)
– Each assigned a different priority level
– Priority decides which process should run at a given 

time
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MLFQ Example
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How to know process type 
to set priority?
1. nice
2. history



How to Check Nice Values in 
Linux?

o % ps ax -o pid,ni,cmd
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MLFQ Example
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How to know process type 
to set priority?
1. nice
2. history

In this example, A and B 
are given high priority to 
run, while C and D may 
starve



MLFQ: Basic Rules
o MLFQ maintains a number of queues (multi-

level queue)
– Each assigned a different priority level
– Priority decides which process should run at a given 

time
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Attempt #1: Change Priority
o Workload

– Interactive processes (many short-run CPU bursts)
– Long-running processes (CPU-bound)

o Each time quantum = 10ms
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Example 1: One Single Long-
Running Process

o A process enters at highest priority (time 
quantum = 10ms)
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Example 1: One Single Long-
Running Process

o A process enters at highest priority (time 
quantum = 10ms)

67



Example 1: One Single Long-
Running Process

o A process enters at highest priority (time 
quantum = 10ms)
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Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
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Process A

Process B



Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
o Process B: short-running interactive process 

(start at 100)
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Process A

Process B



Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
o Process B: short-running interactive process 

(start at 100)
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Process A

Process B



Example 2: Along Came a Short-
Running Process

o Process A: long-running process (start at 0)
o Process B: short-running interactive process 

(start at 100)
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Process A

Process B



Example 3: What about I/O?
o Process A: long-running process 
o Process B: I/O-intensive interactive process 

(each CPU burst = 1ms)
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CPU-intensive Process A

I/O-intensive Process B



Example 4: What’s the Problem?

o Process A: long-running process 
o Process B + C: Interactive process

74

Interactive Process B

Interactive Process C



Example 4: What’s the Problem?

o Process A: long-running process 
o Process B + C: Interactive process
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CPU-intensive Process A
starves!

Interactive Process B

Interactive Process C



Attempt #2: Priority Boost
o Simple idea: Periodically boost the priority of all 

processes
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CPU-intensive Process A
proceeds!

Interactive Process B

Interactive Process C



Tuning MLFQ
o MLFQ scheduler is defined by many parameters:

– Number of queues
– Time quantum of each queue
– How often should priority be boosted?
– A lot more…

o The scheduler can be configured to match the 
requirements of a specific system
– Challenging and requires experience
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Lottery Scheduling
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Lottery Scheduling
o Goal: Proportional share

– One of the fair-share schedulers

o Approach
– Gives processes lottery tickets
– Whoever wins runs
– Higher priority --> more tickets
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Lottery Code
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = random(402)



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 1 > 102?



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 2 > 102?



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 102 > 102?



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 302 > 102?



Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

302 > 102

OS picks Job D to run!



Other Lottery Ideas
o Ticket transfers

o Ticket currencies

o Ticket inflation

o Read more in OSTEP
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