
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

Outline
o Address space

o Virtual memory accesses

o Relocation

o Segmentation

2

Early Systems
o OS was a set of libraries
o OS sat in memory

starting at physical
address 0

o The rest was used by
running program

3

Multiprogramming & Time Sharing

o OS makes sure each
process is confined to
its own address space
in memory

o One naïve
implementation:
– <base register & limit

register> pair

4

Base reg

Limit reg

The Abstraction
o A process has a set of addresses that map to a

collection of bytes

o This set is called an address space

o Review: what stuff is in an address space?

5

Match that Segment!

6

int x;
int main(int argc, char *argv[]) {

int y;
int *z = malloc(sizeof(int));

}

x code
main data

y heap
z stack

Match that Segment!

7

int x;
int main(int argc, char *argv[]) {

int y;
int *z = malloc(sizeof(int));

}

x code
main data

y heap
z stack

Match that Segment!

8

int x;
int main(int argc, char *argv[]) {

int y;
int *z = malloc(sizeof(int));

}

x code
main

y heap
z stack

In OSTEP

The Address Space
o Address space

– An easy-to-use abstraction of
physical memory

o The address space is the
running program’s view of
memory in the system
– Virtual address or logical

address
– Physical address refers to those

seen by the memory unit
hardware

o The user program generates
logical addresses; it never
sees the real physical
addresses 9

High-level Goals
o Transparency

– User program behaves as if it has its own private
physical memory

o Efficiency
– Space and time efficient memory virtualization
– Performance relies on hardware support (e.g., TLBs)

o Protection
– Isolation property
– User process shouldn’t access or affect anything

outside its own address space

10

All Memory Addresses You See
are Virtual

o Any address that a programmer can see is a
virtual address

Result:

11

Virtual Memory Accesses

12

_main:
0000000100000fa0 pushq %rbp
0000000100000fa1 movq %rsp, %rbp
0000000100000fa4 xorl %eax, %eax
0000000100000fa6 movl %edi, -0x4(%rbp)
0000000100000fa9 movq %rsi, -0x10(%rbp)
0000000100000fad movl 0x8(%rbp), %edi
0000000100000fb0 addl $0x2, %edi
0000000100000fb3 movl %edi, 0x8(%rbp)
0000000100000fb6 popq %rbp
0000000100000fb7 retq

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 2;

}

% otool -tv demo
(or objdump in Linux)

Virtual Memory Accesses

13

_main:
0000000100000fa0 pushq %rbp
0000000100000fa1 movq %rsp, %rbp
0000000100000fa4 xorl %eax, %eax
0000000100000fa6 movl %edi, -0x4(%rbp)
0000000100000fa9 movq %rsi, -0x10(%rbp)
0000000100000fad movl 0x8(%rbp), %edi
0000000100000fb0 addl $0x2, %edi
0000000100000fb3 movl %edi, 0x8(%rbp)
0000000100000fb6 popq %rbp
0000000100000fb7 retq

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 2;

}

% otool -tv demo
(or objdump in Linux)

Virtual Memory Accesses

14

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fad
%rbp = 0x200

Memory accesses:

Virtual Memory Accesses

15

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fad
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad

Virtual Memory Accesses

16

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fad
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Virtual Memory Accesses

17

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb0
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Virtual Memory Accesses

18

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb0
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Fetch instr. at addr 0x100000fb0

Virtual Memory Accesses

19

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb0
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Fetch instr. at addr 0x100000fb0
Exec, no load

Virtual Memory Accesses

20

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb3
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Fetch instr. at addr 0x100000fb0
Exec, no load

Virtual Memory Accesses

21

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb3
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Fetch instr. at addr 0x100000fb0
Exec, no load

Fetch instr. at addr 0x100000fb3

Virtual Memory Accesses

22

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb3
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Fetch instr. at addr 0x100000fb0
Exec, no load

Fetch instr. at addr 0x100000fb3
Exec, store to addr 0x208

Virtual Memory Accesses

23

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

%rip = 0x100000fb3
%rbp = 0x200

Memory accesses:
Fetch instr. at addr 0x100000fad
Exec, load from addr 0x208

Fetch instr. at addr 0x100000fb0
Exec, no load

Fetch instr. at addr 0x100000fb3
Exec, store to addr 0x208

How to relocate the memory access in a way
that is transparent to the process?

How to Run Multiple Programs?
o Approaches:

– Static relocation
– Dynamic relocation
– Segmentation

24

Static Relocation
o Idea: rewrite each program before loading it into

memory as a process

o Each rewrite uses different addresses and
pointers

o Change jumps, loads, etc.

o Q: Can any addresses be unchanged?

25

Rewrite for Each New Process

26

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

0x100010fad movl 0x8(%rbp), %edi
0x100010fb0 addl $0x2, %edi
0x100010fb3 movl %edi, 0x8(%rbp)

0x100020fad movl 0x8(%rbp), %edi
0x100020fb0 addl $0x2, %edi
0x100020fb3 movl %edi, 0x8(%rbp)

rewrite

rewrite

Rewrite for Each New Process

27

0x100000fad movl 0x8(%rbp), %edi
0x100000fb0 addl $0x2, %edi
0x100000fb3 movl %edi, 0x8(%rbp)

0x100010fad movl 0x8(%rbp), %edi
0x100010fb0 addl $0x2, %edi
0x100010fb3 movl %edi, 0x8(%rbp)

0x100020fad movl 0x8(%rbp), %edi
0x100020fb0 addl $0x2, %edi
0x100020fb3 movl %edi, 0x8(%rbp)

rewrite

rewrite

Rewrite for Each New Process

28

0x100010fad movl 0x8(%rbp), %edi
0x100010fb0 addl $0x2, %edi
0x100010fb3 movl %edi, 0x8(%rbp)

0x100020fad movl 0x8(%rbp), %edi
0x100020fb0 addl $0x2, %edi
0x100020fb3 movl %edi, 0x8(%rbp)

Program code
Heap

Stack

Free

Program code
Heap

Stack

Free

Process 1

Process 2

Free

6KB

10KB

13KB

17KB

Rewrite for Each New Process

29

0x100010fad movl 0x8(%rbp), %edi
0x100010fb0 addl $0x2, %edi
0x100010fb3 movl %edi, 0x8(%rbp)

0x100020fad movl 0x8(%rbp), %edi
0x100020fb0 addl $0x2, %edi
0x100020fb3 movl %edi, 0x8(%rbp)

Program code
Heap

Stack

Free

Program code
Heap

Stack

Free

Process 1

Process 2

Free

6KB

10KB

13KB

17KB
Why didn’t we have to rewrite
the stack addr?

Rewrite for Each New Process

30

0x100010fad movl 0x8(%rbp), %edi
0x100010fb0 addl $0x2, %edi
0x100010fb3 movl %edi, 0x8(%rbp)

0x100020fad movl 0x8(%rbp), %edi
0x100020fb0 addl $0x2, %edi
0x100020fb3 movl %edi, 0x8(%rbp)

Program code
Heap

Stack

Free

Program code
Heap

Stack

Free

Process 1

Process 2

Free

6KB

10KB

13KB

17KB
Why didn’t we have to rewrite
the stack addr?
A: $rbp is dynamically
calculated according to the
base addr

How to Run Multiple Programs?
o Approaches:

– Static relocation
– Dynamic relocation

• Base
• Base-and-Bounds

– Segmentation

31

Base
o Idea: translate virtual address to physical by

adding an offset each time

o Store base addr in a base register

o Each process has a different value in the base
register when running

32

Base Relocation

33

P1

P2

2KB

4KB

10KB

12KB

Same code

Base Relocation

34

P1

P2

2KB

4KB

10KB

12KB

P1 is running …

Base register

Base Relocation

35

P1

P2

2KB

4KB

10KB

12KB

P2 is running …

Base register

Base Relocation

36

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1

Base Relocation

37

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

Base Relocation

38

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1

Base Relocation

39

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

Base Relocation

40

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1

Base Relocation

41

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

Base Relocation

42

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

P1: load 2000, R1

Base Relocation

43

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

P1: load 2000, R1 load 4048, R1

44

Worksheet

Base Relocation Hardware

45

Base Relocation

46

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

P1: load 2000, R1 load 4048, R1

Can P1 hurt P2?
Can P2 hurt P1?

Base Relocation

47

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

P1: load 2000, R1 load 4048, R1

P1: store 9241, R1 store 11289, R1

Can P1 hurt P2?
Can P2 hurt P1?

Overflow!

How to Run Multiple Programs?
o Approaches:

– Static relocation
– Dynamic relocation

• Base
• Base-and-Bounds

– Segmentation

48

Base-and-Bounds
o Idea: add bound register to avoid “overflow”
o Two CPU registers

– Base register
– Bounds register (or limit register)

physical addr = virtual addr + base

o The base-and-bounds hardware referred to as
Memory Management Unit (MMU)

o Protection: The hardware provides special
instructions to modify the base and bounds register
– Allowing OS to change them when different processes run
– Privileged (only in kernel mode)

49

Base-and-Bounds

50

P1

P2

2KB

4KB

10KB

12KB

P1 is running …

Base register
Base + Bounds

Base-and-Bounds

51

P1

P2

2KB

4KB

10KB

12KB

P2 is running …

Base register
Base + Bounds

Base-and-Bounds

52

P1

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

P1: load 2000, R1 load 4048, R1

P1: store 9241, R1

Can P1 hurt P2?

Base-and-Bounds

53

P2

2KB

4KB

10KB

12KB

Virtual Physical

P1: load 100, R1 load 2148, R1

P2: load 100, R1 load 10340, R1

P2: load 2000, R1 load 12240, R1

P1: load 2000, R1 load 4048, R1

P1: store 9241, R1 Interrupt!

Can P1 hurt P2?

Code Sharing

o Idea: make base/bounds for
the code of several processes
point to the same physical
mem

o Note: need careful protection!

54

code (both)

P1 heap

2KB

4KB

10KB

12KB
P2 heap

14KB

Base-and-Bounds Pros/Cons
o Pros?

– Fast + simple
– Little bookkeeping overhead (2 registers)

o Cons?
– Not flexible
– Wastes memory for large memory addresses

55

Base-and-Bounds Pros/Cons
o Pros?

– Fast + simple
– Little bookkeeping overhead (2 registers)

o Cons?
– Not flexible
– Wastes memory for large memory addresses

56

Problems with Base-and-Bounds?

o Simple base-and-bounds approach
wastes a chunk of “free” space
between stack and heap

o Impossible to run a program when
its entire address space is greater
than the memory capacity

57

Wasted
space

How to Run Multiple Programs?
o Approaches:

– Static relocation
– Dynamic relocation

• Base
• Base-and-Bounds

– Segmentation

58

Segmentation
o Idea: generalize base-and-bounds

o Each base+bounds pair is a segment

o Use different segments for heap and memory
– Requires more registers

o Resize segments as needed

59

Segmentation (cont.)
o A segment is a contiguous portion of the address

space

o A program is a collection of segments

o A segment can be a logical unit:
– E.g., main program, procedure, function, object,

local variables, global variables, common block,
stack, heap, symbol table, or arrays, etc.

60

Logical View of Segmentation

61

1

3

2

4

1

4

2

3

Virtual address space of a process physical memory

Our Old Example

62

Segfault!

63

Segmentation
fault

Access to the address
7KB …

Segmentation Architecture
o Logical address consists of a pair:

<segment-number, offset>
o Segment table – maps two-dimensional physical

addresses. Each table entry has:
– base – contains the starting physical address where the

segments reside in memory
– limit – specifies the length of the segment (or bound)

o Segment-table base register (STBR) points to the
segment table’s location in memory

o Segment-table length register (STLR) indicates
number of segments used by a process
– segment number s is legal if s < STLR

64

Segmentation Hardware

65

Example of Segmentation

66

73

