
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

Paging Problems
o Page tables are too slow

o Page tables are too big

2

Address Translation Steps
o Hardware: for each memory reference

1. Extract VPN (virt page num) from VA (virt addr)
2. Calculate addr of PTE (page table entry)
3. Fetch PTE
4. Extract PFN (phys page frame num)
5. Build PA (phys addr)
6. Fetch PA to register

o Q: Which steps are expensive??

3

Address Translation Steps
o Hardware: for each memory reference

1. Extract VPN (virt page num) from VA (virt addr)
2. Calculate addr of PTE (page table entry)
3. Fetch PTE
4. Extract PFN (phys page frame num)
5. Build PA (phys addr)
6. Fetch PA to register

o Q: Which steps are expensive??

4

cheap

cheap

cheap

cheap

expensive

expensive

Address Translation Steps
o Hardware: for each memory reference

1. Extract VPN (virt page num) from VA (virt addr)
2. Calculate addr of PTE (page table entry)
3. Fetch PTE
4. Extract PFN (phys page frame num)
5. Build PA (phys addr)
6. Fetch PA to register

o Q: Which expensive steps can we avoid??

5

cheap

cheap

cheap

cheap

expensive

expensive

Array Iterator
o A simple code snippet in array.c

o Compile it using gcc

o Dump the assembly code
– objdump (Linux) or otool (Mac) 6

int sum = 0;
for (i=0; i<N; i++) {

sum += a[i];
}

Trace the Memory Accesses

7

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Trace the Memory Accesses

8

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

Trace the Memory Accesses

9

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

1st mem access: Fetch PTE

Trace the Memory Accesses

10

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Map VPN to PFN: 3 -> 7

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

Trace the Memory Accesses

11

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

2nd mem access: access a[i]

Trace the Memory Accesses

12

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

Note: 1. Each virt mem access à two phys mem accesses
2. Repeated memory accesses!

13

Translation Lookaside Buffer
(TLB)

Performance Problems of Paging

o A basic memory access protocol
1. Fetch the translation from in-memory page table
2. Explicit load/store access on a memory address

o In this scheme every data/instruction access
requires two memory accesses
– One for the page table
– and one for the data/instruction

o Too much performance overhead!

14

Speeding up Translation
o The two memory access problem can be solved

by the use of a special fast-lookup hardware
cache called translation lookaside buffer (TLB)

o A TLB is part of the memory-management unit
(MMU)

o A TLB is a hardware cache
o Algorithm sketch

– For each virtual memory reference, hardware first
checks the TLB to see if the desired translation is held
therein

15

TLB Basic Algorithm
1. Extract VPN from VA
2. Check if TLB holds the translation
3. If it is a TLB hit – extract PFN from the

TLB entry, concatenate it onto the offset to
form the PA

4. If it is a TLB miss – access page table to
get the translation, update the TLB entry
with the translation

16

Fast path

Slow path

Array Iterator (w/ TLB)

17

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Trace the Memory Accesses
(w/ TBL)

18

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Trace the Memory Accesses
(w/ TBL)

19

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
P1’s page table

5
3

4
1

0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

20

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
P1’s page table

5
3

4
1

0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

Miss

Trace the Memory Accesses
(w/ TBL)

21

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

22

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

23

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

24

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

(TLB hit)

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Hit

Trace the Memory Accesses
(w/ TBL)

25

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

26

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

27

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

28

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache

Miss

Trace the Memory Accesses
(w/ TBL)

29

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F
load 0x3000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

30

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

load 0x1004

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F
load 0x3000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache

Trace the Memory Accesses
(w/ TBL)

31

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

load 0x1004

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F
load 0x3000

(TLB hit)

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache

Hit

How Many TLB Lookups

32

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

How Many TLB Lookups

33

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

How Many TLB Lookups

34

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

Num of TLB miss: 4096/4096 = 1 or 2

How Many TLB Lookups

35

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

Num of TLB miss: 4096/4096 = 1
TLB miss rate: 1/1024 = 0.09%

How Many TLB Lookups

36

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

Num of TLB miss: 4096/4096 = 1
TLB miss rate: 1/1024 = 0.09%

TLB hit rate : 99.91% (almost 100%)

TLB Content
o Some entries are [wired down or reserved] for

permanently valid translations

o TLB is a fully associative cache
– Any given translation can be anywhere in the TLB
– Hardware searches entire TLB in parallel to find a

match

o A typical TLB entry
VPN | PFN | other bits

37

Paging Hardware w/ TLB

38

offset

TLB Issue: Context Switch
o TLB contains translations only valid for the

currently running process

o Switching from one process to another requires
OS or hardware to do more work

39

One Example
o How does OS distinguish which entry is for

which process?

40

P1
P2

One Simple Solution: Flush
o OS flushes the whole TLB on context switch

o Flush operation sets all valid bit to 0

41

One Simple Solution: Flush
o OS flushes the whole TLB on context switch

o Flush operation sets all valid bit to 0

o Problem: the overhead is too high if OS
switches processes too frequently

42

Optimization: ASID
o Some hardware systems provide an address

space identifier (ASID) field in the TLB

o Think of ASID as a process identifier (PID)
– An 8-bit field

43

Page Sharing
o Leveraging ASID for supporting page sharing

o In this example, two entries from two processes
with two different VPNs point to the same
physical page

44

Page Sharing (cont.)
o Shared code

– One copy of read-only (reentrant) code shared among
processes (e.g., text editors, compilers, window
systems)

– Particularly important for time-sharing environments

o Private code and data
– Each process keeps a separate copy of the code and

data

45

TLB Replacement Policy
o Cache: When we want to add a new entry to a
full TLB, an old entry must be evicted and
replaced

o Least-recently-used (LRU) policy
– Intuition: A page entry that has not recently been used

implies it won’t likely to be used in the near future

o Random policy
– Evicts an entry at random

46

TLB Workloads
o Sequential array accesses can almost always hit

in the TLB, and hence are very fast

o What pattern would be slow?

47

TLB Workloads
o Sequential array accesses can almost always hit

in the TLB, and hence are very fast

o What pattern would be slow?
– Highly random, with no repeat accesses

48

Workload Characteristics

49

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<512; i++) {

sum += a[rand() % N];
}
srand(1234); // same seed
for (i=0; i<512; i++) {

sum += a[rand() % N];
}

Workload A Workload B

Access Patterns

50

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Access Patterns

51

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Spatial Locality Temporal Locality

Workload Locality
o Spatial locality:

– Future access will be to nearby addresses

o Temporal locality:
– Future access will be repeated to the same data

52

Workload Locality
o Spatial locality:

– Future access will be to nearby addresses

o Temporal locality:
– Future access will be repeated to the same data

o Q: What TLB characteristics are best for each
type?

53

TLB Replacement Policy
o Cache: When we want to add a new entry to a

full TLB, an old entry must be evicted and
replaced

o Least-recently-used (LRU) policy
– Intuition: A page entry that has not recently been used

implies it won’t likely to be used in the near future

o Random policy
– Evicts an entry at random

54

LRU Trouble

55

Virt addr
0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

4

LRU Trouble

56

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4

LRU Trouble

57

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4

TLB miss

LRU Trouble

58

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4

LRU Trouble

59

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4

TLB miss

LRU Trouble

60

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4

LRU Trouble

61

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4

TLB miss

LRU Trouble

62

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

LRU Trouble

63

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

LRU Trouble

64

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

LRU Trouble

65

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Now, 0 is the least-recently used item in TLB

LRU Trouble

66

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Replace 0 with 4

LRU Trouble

67

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Replace 0 with 4

LRU Trouble

68

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 0 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Accessing 0 again, which was unfortunately just evicted…
Replace 1 (which is the least-recently used item at this
point, with 0…

LRU Trouble

69

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 0 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Accessing 0 again, which was unfortunately just evicted…
Replace 1 (which is the least-recently used item at this
point, with 0…

Takeaway
o LRU

o Random

o When is each better?
– Sometimes random is better than a “smart” policy!

70

71

Review: Page Table

Virtual => Physical Addr Mapping

72

0 0 1 0 1

VPN offset

10

1 0 1 0 10

Addr mapper

PFN offset

o We need a general mapping mechanism

o What data structure is good?
– Big array

Virtual => Physical Addr Mapping

o We need a general mapping mechanism

o What data structure is good?
– Big array
– (aka linear page table)

73

0 0 1 0 1

VPN offset

10

1 0 1 0 10

Page table

PFN offset

A Simple Page Table Example

74

Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables

2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

0 1 2 3 0 1 2 3

A Simple Page Table Example

75

Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables
2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

1st PTE
of P1

physical translation info important page status info

Paging Problems
o Page tables are too slow (just covered)

– TLB to the rescue!

o Page tables are too big (now)

76

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

77

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

78

page size

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

79

offset bits

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

80

VPN bits

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

81

Num of virt pages

How Large are Page Tables?
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

82

Num of virt pages
PTE size

Page Tables are Too Big
o A linear page table array for 32-bit address

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

o One page table for one process!
– A system with 100 process: 400MB only for storing

page tables in memory

o Solution??
83

Naïve Solution
o Reduce the granularity

– by increasing the page size

84

Naïve Solution
o Reduce the granularity

– by increasing the page size

o Why are 4MB pages bad?
– Internal fragmentation!

85

Fragmentation

86

P1

P2

P3

P4

allocated data

Phys Mem
An allocated 4MB
huge page of P4

free

free

free

free

External frag.

Internal frag.

free

Assume each process consists of multiple 4MB pages

Fragmentation

87

P1

P2

P3

P4

allocated data

Phys Mem
An allocated 4MB
huge page of P4

free

free

free

free

External frag.

Internal frag.

free

Assume each process consists of multiple 4MB pages

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

88

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

89

Linear Inverted Page Table
o Idea: Instead of keeping one page table per

process, the system keeps a single page table
that has an entry for each physical frame of the
system

o Each entry tells which process owns the page,
and VPN to PFN translation

90

Linear Inverted Page Table Example

91

Linear Inverted Page Table
o Idea: Instead of keeping one page table per

process, the system keeps a single page table that
has an entry for each physical frame of the system

o Each entry tells which process owns the page, and
VPN to PFN translation

o Goal: use linear search to find the index i
– The reason why it’s called “inverted”

o Pros: Extreme memory savings
o Cons: A linear search is expensive

– Solution??
92

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

93

Hashed Inverted Page Table
o For large address spaces, a hashed page table

can be used, with the hash value being the VPN

o Idea:
– A PTE contains a chain of elements hashing to the

same location (to handle collisions) within PT
– Each element has three fields: (a) VPN, (b) PFN, (c) a

pointer to the next element in the linked list
– VPNs are compared in this chain searching for a

match. If a match is found, the corresponding PFN is
extracted

94

Hashed Inverted Page Table Example

95

Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

96

Multi-level Page Table
o Idea:

– Break the page table into pages (the entire page table
is paged!)

– Only have pieces with >0 valid entries
• Don’t allocate the page of page table if the entire page of

page-table entries is invalid

o Used by x86

o A simple technique is a two-level page table

97

Two-level Page Table Example

98

also called a
page directory

Two-level Paging
o A logical address (on 32-bit machine with 4KB page size) is divided

into
– a page number consisting of 20 bits
– a page offset consisting of 12 bits

o A page table entry is 4 bytes
o Since the page table is paged, the page number is further divided

into
– p1: a 10-bit page directory index
– p2: a 10-bit page table index

o The logical address is as follows:

where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

99

Address Translation Scheme
o Address translation scheme for a two-level 32-bit

paging architecture

100

> 2 Levels
o Problem: page directory may not fit in a page

o Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

101

> 2 Levels
o Problem: page directory may not fit in a page

o Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of
paging

102

> 2 Levels
o Problem: page directory may not fit in a page

o Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of

103

OFFSETPT idxPD idx 1PD idx 0

VPN

12101010

First-level
page directory

Second-level
page directory

Multi-level Page Table Example

104
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

