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Paging Problems
o Page tables are too slow 

o Page tables are too big
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Address Translation Steps
o Hardware: for each memory reference

1. Extract VPN (virt page num) from VA (virt addr)
2. Calculate addr of PTE (page table entry)
3. Fetch PTE
4. Extract PFN (phys page frame num)
5. Build PA (phys addr)
6. Fetch PA to register

o Q: Which steps are expensive??
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Address Translation Steps
o Hardware: for each memory reference

1. Extract VPN (virt page num) from VA (virt addr)
2. Calculate addr of PTE (page table entry)
3. Fetch PTE
4. Extract PFN (phys page frame num)
5. Build PA (phys addr)
6. Fetch PA to register

o Q: Which steps are expensive??
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Address Translation Steps
o Hardware: for each memory reference

1. Extract VPN (virt page num) from VA (virt addr)
2. Calculate addr of PTE (page table entry)
3. Fetch PTE
4. Extract PFN (phys page frame num)
5. Build PA (phys addr)
6. Fetch PA to register

o Q: Which expensive steps can we avoid??
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cheap

cheap

cheap

cheap

expensive

expensive



Array Iterator
o A simple code snippet in array.c

o Compile it using gcc

o Dump the assembly code
– objdump (Linux) or otool (Mac) 6

int sum = 0;
for (i=0; i<N; i++) {

sum += a[i];
}



Trace the Memory Accesses
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…



Trace the Memory Accesses
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C



Trace the Memory Accesses
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

1st mem access: Fetch PTE



Trace the Memory Accesses
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Map VPN to PFN: 3 -> 7

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C



Trace the Memory Accesses
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

2nd mem access: access a[i]



Trace the Memory Accesses
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

Note: 1. Each virt mem access à two phys mem accesses
2. Repeated memory accesses!
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Translation Lookaside Buffer 
(TLB)



Performance Problems of Paging

o A basic memory access protocol
1. Fetch the translation from in-memory page table
2. Explicit load/store access on a memory address

o In this scheme every data/instruction access 
requires two memory accesses
– One for the page table 
– and one for the data/instruction

o Too much performance overhead!
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Speeding up Translation
o The two memory access problem can be solved 

by the use of a special fast-lookup hardware 
cache called translation lookaside buffer (TLB)

o A TLB is part of the memory-management unit 
(MMU)

o A TLB is a hardware cache
o Algorithm sketch

– For each virtual memory reference, hardware first 
checks the TLB to see if the desired translation is held 
therein
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TLB Basic Algorithm
1. Extract VPN from VA
2. Check if TLB holds the translation
3. If it is a TLB hit – extract PFN from the 

TLB entry, concatenate it onto the offset to 
form the PA

4. If it is a TLB miss – access page table to 
get the translation, update the TLB entry 
with the translation
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Fast path

Slow path



Array Iterator (w/ TLB)
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int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
P1’s page table

5
3

4
1

0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
P1’s page table

5
3

4
1

0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

Miss



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

(TLB hit)

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache

Hit



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

0

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)

28

Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache

Miss



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F
load 0x3000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

load 0x1004

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F
load 0x3000

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache



Trace the Memory Accesses 
(w/ TBL)
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Virt
load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

load 0x1000

load 0x1004

Phys
load 0x100C
load 0x7000

(TLB hit)
load 0x7004

(TLB hit)
load 0x7008

(TLB hit)
load 0x700C
load 0x100F
load 0x3000

(TLB hit)

P1’s page table
5
3

4
7

0
1
2
3

Valid Virt Phys

1 3 7

1 1 3

0

0

CPU’s TLB cache

Hit



How Many TLB Lookups

32

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages



How Many TLB Lookups
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int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096



How Many TLB Lookups
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int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

Num of TLB miss: 4096/4096 = 1 or 2



How Many TLB Lookups
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int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

Num of TLB miss: 4096/4096 = 1
TLB miss rate: 1/1024 = 0.09%



How Many TLB Lookups
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int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

Assume 4KB pages

Array a has 1024 items, each item is 4 bytes:
Size(a) = 4096

Num of TLB miss: 4096/4096 = 1
TLB miss rate: 1/1024 = 0.09%

TLB hit rate : 99.91% (almost 100%)



TLB Content
o Some entries are [wired down or reserved] for 

permanently valid translations

o TLB is a fully associative cache
– Any given translation can be anywhere in the TLB
– Hardware searches entire TLB in parallel to find a 

match

o A typical TLB entry
VPN | PFN | other bits

37



Paging Hardware w/ TLB

38

offset



TLB Issue: Context Switch
o TLB contains translations only valid for the 

currently running process

o Switching from one process to another requires 
OS or hardware to do more work

39



One Example
o How does OS distinguish which entry is for 

which process?

40

P1
P2



One Simple Solution: Flush
o OS flushes the whole TLB on context switch

o Flush operation sets all valid bit to 0

41



One Simple Solution: Flush
o OS flushes the whole TLB on context switch

o Flush operation sets all valid bit to 0

o Problem: the overhead is too high if OS 
switches processes too frequently

42



Optimization: ASID
o Some hardware systems provide an address 

space identifier (ASID) field in the TLB

o Think of ASID as a process identifier (PID)
– An 8-bit field

43



Page Sharing
o Leveraging ASID for supporting page sharing 

o In this example, two entries from two processes 
with two different VPNs point to the same 
physical page 
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Page Sharing (cont.)
o Shared code

– One copy of read-only (reentrant) code shared among 
processes (e.g., text editors, compilers, window 
systems)

– Particularly important for time-sharing environments

o Private code and data 
– Each process keeps a separate copy of the code and 

data

45



TLB Replacement Policy
o Cache: When we want to add a new entry to a 
full TLB, an old entry must be evicted and 
replaced

o Least-recently-used (LRU) policy
– Intuition: A page entry that has not recently been used 

implies it won’t likely to be used in the near future

o Random policy
– Evicts an entry at random

46



TLB Workloads
o Sequential array accesses can almost always hit 

in the TLB, and hence are very fast

o What pattern would be slow?

47



TLB Workloads
o Sequential array accesses can almost always hit 

in the TLB, and hence are very fast

o What pattern would be slow?
– Highly random, with no repeat accesses

48



Workload Characteristics
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int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<512; i++) {

sum += a[rand() % N];
}
srand(1234); // same seed
for (i=0; i<512; i++) {

sum += a[rand() % N];
}

Workload A Workload B



Access Patterns
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …



Access Patterns
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Spatial Locality Temporal Locality



Workload Locality
o Spatial locality: 

– Future access will be to nearby addresses

o Temporal locality:
– Future access will be repeated to the same data

52



Workload Locality
o Spatial locality: 

– Future access will be to nearby addresses

o Temporal locality:
– Future access will be repeated to the same data

o Q: What TLB characteristics are best for each 
type?
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TLB Replacement Policy
o Cache: When we want to add a new entry to a 

full TLB, an old entry must be evicted and 
replaced

o Least-recently-used (LRU) policy
– Intuition: A page entry that has not recently been used 

implies it won’t likely to be used in the near future

o Random policy
– Evicts an entry at random

54



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4

TLB miss



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4

TLB miss



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4

TLB miss



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Now, 0 is the least-recently used item in TLB



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Replace 0 with 4



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Replace 0 with 4



LRU Trouble

68

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 0 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Accessing 0 again, which was unfortunately just evicted…
Replace 1 (which is the least-recently used item at this 
point, with 0… 



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 0 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Accessing 0 again, which was unfortunately just evicted…
Replace 1 (which is the least-recently used item at this 
point, with 0… 



Takeaway
o LRU

o Random

o When is each better?
– Sometimes random is better than a “smart” policy!
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Review: Page Table



Virtual => Physical Addr Mapping

72

0 0 1 0 1

VPN offset

10

1 0 1 0 10

Addr mapper

PFN offset

o We need a general mapping mechanism

o What data structure is good?
– Big array 



Virtual => Physical Addr Mapping

o We need a general mapping mechanism

o What data structure is good?
– Big array 
– (aka linear page table)

73

0 0 1 0 1

VPN offset

10

1 0 1 0 10

Page table

PFN offset



A Simple Page Table Example
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Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables 

2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

0 1 2 3 0 1 2 3



A Simple Page Table Example
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Virtual mem

Phys mem

P1 P2

0 1 2 3 4 5 6 7

Page tables 
2
7

0
4

P1
0
1
2
3

5
1

3
6

P2
0
1
2
3

1st PTE
of P1

physical translation info important page status info



Paging Problems
o Page tables are too slow (just covered)

– TLB to the rescue!

o Page tables are too big (now)
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How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB
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How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

78

page size



How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

79

offset bits



How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

80

VPN bits



How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

81

Num of virt pages



How Large are Page Tables?
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

82

Num of virt pages
PTE size



Page Tables are Too Big
o A linear page table array for 32-bit address 

space (232 bytes) and 4KB page (212 bytes)
– How many pages: 220 pages
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

o One page table for one process!
– A system with 100 process: 400MB only for storing 

page tables in memory

o Solution??
83



Naïve Solution
o Reduce the granularity

– by increasing the page size

84



Naïve Solution
o Reduce the granularity

– by increasing the page size

o Why are 4MB pages bad?
– Internal fragmentation!

85



Fragmentation

86

P1

P2

P3

P4

allocated data

Phys Mem
An allocated 4MB 
huge page of P4

free

free

free

free

External frag.

Internal frag.

free

Assume each process consists of multiple 4MB pages



Fragmentation
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P1

P2

P3

P4

allocated data

Phys Mem
An allocated 4MB 
huge page of P4

free

free

free

free

External frag.

Internal frag.

free

Assume each process consists of multiple 4MB pages



Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

88



Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table
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Linear Inverted Page Table
o Idea: Instead of keeping one page table per 

process, the system keeps a single page table 
that has an entry for each physical frame of the 
system 

o Each entry tells which process owns the page, 
and VPN to PFN translation

90



Linear Inverted Page Table Example

91



Linear Inverted Page Table
o Idea: Instead of keeping one page table per 

process, the system keeps a single page table that 
has an entry for each physical frame of the system 

o Each entry tells which process owns the page, and 
VPN to PFN translation

o Goal: use linear search to find the index i
– The reason why it’s called “inverted”

o Pros: Extreme memory savings
o Cons: A linear search is expensive

– Solution??
92



Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table

93



Hashed Inverted Page Table
o For large address spaces, a hashed page table 

can be used, with the hash value being the VPN

o Idea:
– A PTE contains a chain of elements hashing to the 

same location (to handle collisions) within PT
– Each element has three fields: (a) VPN, (b) PFN, (c) a 

pointer to the next element in the linked list 
– VPNs are compared in this chain searching for a 

match. If a match is found, the corresponding PFN is 
extracted

94



Hashed Inverted Page Table Example

95



Approaches
o Approach 1: Linear Inverted Page Table

o Approach 2: Hashed Inverted Page Table

o Approach 3: Multi-level Page Table
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Multi-level Page Table
o Idea: 

– Break the page table into pages (the entire page table 
is paged!)

– Only have pieces with >0 valid entries
• Don’t allocate the page of page table if the entire page of 

page-table entries is invalid

o Used by x86

o A simple technique is a two-level page table

97



Two-level Page Table Example 

98

also called a 
page directory



Two-level Paging
o A logical address (on 32-bit machine with 4KB page size) is divided 

into
– a page number consisting of 20 bits
– a page offset consisting of 12 bits

o A page table entry is 4 bytes
o Since the page table is paged, the page number is further divided 

into
– p1: a 10-bit page directory index
– p2: a 10-bit page table index

o The logical address is as follows:

where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table
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Address Translation Scheme
o Address translation scheme for a two-level 32-bit 

paging architecture

100



> 2 Levels
o Problem: page directory may not fit in a page

o Solution: 
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces
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> 2 Levels
o Problem: page directory may not fit in a page

o Solution: 
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of 
paging   
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> 2 Levels
o Problem: page directory may not fit in a page

o Solution: 
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces

o Possible to extend to 3- or 4-level

o E.g., 64-bit Ultra-SPARC would need 7 levels of 

103

OFFSETPT idxPD idx 1PD idx 0

VPN

12101010

First-level 
page directory

Second-level 
page directory



Multi-level Page Table Example

104
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

