CS 471 Operating Systems

Yue Cheng

George Mason University Spring 2019

Page Replacement Workload Examples

Workload Examples

- A simple workload
 - Workload consists of a working set of 100 pages
 - Workload issues 10,000 access requests
- Four replacement policies
 - OPT: The optimal
 - LRU: Least-recently used
 - FIFO: First-in first-out
 - RAND: Random

The No-Locality Workload

Each reference is to a random page within the set of accessed pages

4

The 80-20 Workload

80-20: 80% of the refs are made to 20% of the pages ("hot" pages)

The Looping-Sequential Workload

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses 6

The Looping-Sequential Workload

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses 7

Thrashing

Thrashing

- High-paging activity: The system is spending more time paging than executing
- How can this happen?
 - OS observes low CPU utilization and increases the degree of multiprogramming
 - Global page-replacement algorithm is used, it takes away frames belonging to other processes
 - But these processes need those pages, they also cause page faults
 - Many processes join the waiting queue for the paging device, CPU utilization further decreases
 - OS introduces new processes, further increasing the paging activity

CPU Utilization vs. the Degree of Multiprogramming

How to Avoid Thrashing?

- To avoid thrashing, earlier OS did admission control to only run a subset of processes
- Some current OS takes more draconian approach
 - E.g., some Linux runs an out-of-memory killer to choose a memory-intensive process and kill it

Review: Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed
 - Less memory needed
 - Faster response
 - Support more processes/users
- \circ Page is needed \Rightarrow use the reference to page
 - If not in memory \Rightarrow must bring from the disk
- Demand paging versus swapping
 - Fetching the page in only on demand vs. kicking out one victim then paging in one under mem pressure

Demand Paging and Thrashing

- Why does demand paging work? Locality model
 - Process migrates from one locality to another
 - Localities may overlap

• Why does thrashing occur?

- Σ size of locality > total memory size Or Σ working set size > total memory size
- Definition of working set size (WSS): number of unique items that are accessed

Impact of Program Structures on Memory Performance

Impact of Program Structure on Memory Performance

- Consider an array named data with 128*128 elements
- Each row is stored in one page (of size 128 words)

Impact of Program Structure on Memory Performance

- Consider an array named data with 128*128 elements
- Each row is stored in one page (of size 128 words)
- Program 1

128 x 128 = 16,384 page faults

Impact of Program Structure on Memory Performance

- Consider an array named data with 128*128 elements
- Each row is stored in one page (of size 128 words)
- Program 1

128 x 128 = 16,384 page faults

• Program 2

Only 128 page faults