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Swapping;:
Beyond Physical Memory
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What’s in code?

Many large libraries, some of which are rarely/never used
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How to avoid wasting physical pages to
back rarely used virtual pages?
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Program

Virtual memory
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Program

called “swapping in” or

“paging in”
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How to Know Where a Page Lives?



Present Bit

o With each PTE a present is associated
— 1 =» in-memory, 0 = out in disk

An 32-bit X86 page table entry (PTE)
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o During address translation, if present bit in PTE
IS O =» page fault
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What if NO Memory is Left?



Present Bit
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called “swapping out” Presen‘t B|t

or “paging out”

Disk PPN Jvalld_jprot
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Present Bit

Disk PRN_ vl jprot |
63 1 r-X 0
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again, another “swapping in”
or “paging in” %



Why not Leave Page on Disk?



Storage Hierarchy
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Why not Leave Page on Disk?

o Performance: Memory vs. Disk

o How long does it take to access a 4-byte int
from main memory vs. disk?
— DRAM: ~100ns
— Disk: ~10ms



Beyond the Physical Memory

o ldea: use the disk space as an extension of main
memory

o Two ways of interaction b/w memory and disk
— Demand paging
— Swapping



Demand Paging

o Bring a page into memory only when it is
needed (demanded)
— Less I/0O needed
— Less memory needed
— Faster response
— Support more processes/users

o Page is needed = use the reference to page
— If not in memory = must bring from the disk
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Swapping

o Swapping allows OS to support the illusion of a
large virtual memory for multiprogramming
— Multiple programs can run “at once”
— Better utilization
— Ease of use

o Demand paging vs. swapping
— On demand vs. page replacement under memory
pressure



Swapping

o Swapping allows OS to support the illusion of a
large virtual memory for multiprogramming
— Multiple programs can run “at once”
— Better utilization

— Ease of use
PFNO PFN1  PFN2  PFN3

Physical | Proc0 | Proc1 | Proc 1 | Proc 2
Memory | [VPNO] | [VPN2] | [VPN3] | [VPNO]

Block O Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Swap | Proc0O | Proc O Proc1 | Proc 1 (IR Proc 2 (oo}
Space | [VPN1] [ [vPN2] | [Free] | (veno] | [vPN 1] BINGOXUR (VPN 1] BVGORD




Swap Space

o Part of disk space reserved for moving pages
back and forth
— Swap pages out of memory
— Swap pages into memory from disk

o OS reads from and writes to the swap space at
page-sized unit
PFNO PFN1  PFN2  PFN3

Physical | Proc0 | Proc1 | Proc1 | Proc 2
Memory | [VPNO] | [VPN2] | [VPN 3] | [VPN 0]

In this example,
Process 3 is all swapped to
disk

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Swap | Proc0 | ProcO Proc1 | Proc 1 (RN Proc 2 Jad(ele}]
Space | [VPN1] | [vPN2] | [Free] | (veno] | [vPN 1] BINGOXUR (VPN 1] BVGORD




Address Translation Steps

o Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit:
Build from PFN and offset
Fetch from memory
TLB miss:
Fetch PTE
if ('valid): exception [segfault]
else if (Ipresent): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??
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Address Translation Steps

o Hardware: for each memory reference:

(cheap) Extract VPN from VA
(cheap) Check TLB for VPN
TLB hit:
(cheap) Build PA from PFN and offset
(expensive)  Fetch PA from memory
TLB miss:
(expensive) Fetch PTE
(expensive) if (lvalid): exception [segfault]
(expensive)  else if (!present); exception [page fault: page miss]
(cheap) else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??

36



Page Fault

o The act of accessing a page that is not in
physical memory is called a page fault

o OS is invoked to service the page fault
— Page fault handler

o Typically, PTE contains the page address on
disk

37



Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present =1
PTE.PFN = PFN
retry instruction

38



Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN ==-1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PEN)
PTE.present =1
PTE.PFN = PFN

retry instruction

Q: which steps are expensive?
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(cheap)
(cheap)
(depends)
(expensive)
(cheap)
(cheap)

(cheap)

Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present =1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?
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Page-Fault Handler (OS)

(cheap) PFN = FindFreePage()

(cheap) If (PFN ==-1)
(depends) PFN = EvictPage() What to evict?
(expensive) |DiskRead(PTE.DiskAddr, PFN) | What to read?
PTE.present =1
PTE.PFN = PFN
retry instruction

(cheap

p —

(cheap

p —

(cheap

p —

41



Major Steps of A Page Fault
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Impact of Page Faults

o Each page fault affects the system performance
negatively
— The process experiencing the page fault will not be

able to continue until the missing page is brought to
the main memory

— The process will be blocked (moved to the waiting
state)

— Dealing with the page fault involves disk I/O

* Increased demand to the disk drive
* Increased waiting time for process experiencing page fault



Memory as a Cache

o As we increase the degree of multiprogramming,
over-allocation of memory becomes a problem

o What if we are unable to find a free frame at the
time of the page fault?

o OS chooses to page out one or more pages to
make room for new page(s) OS is about to bring
IN
— The process to replace page(s) is called page

replacement policy
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Memory as a Cache

o OS keeps a small portion of memory free
proactively

— High watermark (HW) and low watermark (LW)

o When OS notices free memory is below LW (i.e.,
memory pressure)

— A background thread (i.e., swap/page daemon) starts
running to free memory

— It evicts pages until there are HW pages available

45



What to Evict?



Page Replacement

o Page replacement completes the separation
between the logical memory and the physical
memory

— Large virtual memory can be provided on a smaller
physical memory

o Impact on performance

— If there are no free frames, two page transfers needed at
each page fault!

o We can use a modify (dirty) bit to reduce overhead
of page transfers — only modified pages are written
back to disk



Page Replacement Policy

o Formalizing the problem

— Cache management: Physical memory is a cache for
virtual memory pages in the system

— Primary objective:
* High performance
» High efficiency
* Low cost
— Goal: Minimize cache misses

« To minimize # times OS has to fetch a page from disk
* -OR- maximize cache hits

48



Average Memory Access Time

o Average (or effective) memory access time (AMAT)
IS the metric to calculate the effective memory
performance

o Ty: Cost of accessing memory

o Tp: Cost of accessing disk

o Py;.: Probability of finding data in cache (hit)
— Hit rate

o Pyisq: Probability of not finding data in cache (miss)
— Miss rate



An Example

o Assuming

— Ty is 100 nanoseconds (ns), Tp is 10 milliseconds
(ms)

— Py 1s 0.9, and Py IS 0.1

o AMAT = 0.9*%100ns + 0.1*10ms = 90ns + 1lms =
1.00009ms

— Or around 1 millisecond
o What if the hit rate is 99.9%7?

— Result changes to 10.1 microseconds (or us)
— Roughly 100 times faster!



First-In First-Out (FIFO)



First-in First-out (FIFO)
o Simplest page replacement algorithm

o ldea: items are evicted in the order they are
inserted

o Implementation: FIFO queue holds identifiers of
all the pages in memory
— We replace the page at the head of the queue

— When a page is brought into memory, it is inserted at
the tail of the queue



FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 012013030121



FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 012013030121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
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FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 012013030121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2

NP, QOO WRFRrRONRFRO



FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 012013030121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1, 2

NP, QOO WRFRrRONRFRO
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FIFO Replacement Policy

o ldea: items are evicted in the order they are

Inserted

o Example workload: 012013030121

Resulting
Access Hit/Miss? Evict Cache State
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1, 2
Hit First-in— 0,1, 2

NP, QOO WRFRrRONRFRO

assume
cache size 3
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FIFO Replacement Policy

o ldea: items are evicted in the order they are

Inserted

o Example workload: 012013030121

Resulting

Access Hit/Miss? Evict Cache State
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1, 2
Hit First-in— 0,1, 2
Miss

NP, QOO WRFRrRONRFRO

assume
cache size 3
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FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 012013030121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2
Miss 0 First-in— 1,2,3

NP, QOO WRFRrRONRFRO
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FIFO Replacement Policy

o ldea: items are evicted in the order they are
inserted

o Example workload: 012013030121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
0 Miss First-in— 0
1 Miss First-in— 35 |
2 Miss First-in— 0,1, 2
0 Hit First-in— 0,1,2
1 Hit First-in— 0,1,2
3 Miss 0 First-in— 1,2,3
0 Miss 1 First-in— 2,3,0
3 Hit First-in— 2,3,0
1 Miss 2 First-in— 3,0,1
2 Miss 3 First-in— 0,1,2
1 Hit First-in— 0,1,2

~
~
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FIFO Replacement Policy

o Idea: items are evicted in the order they are
inserted

o Issue: the “oldest” page may contain a heavily
used data
— Will need to bring back that page in near future



FIFO Replacement Policy

o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2,3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4

ccess |t | state (atter) I Access | Hit | Stats atten

o B~ WO N = 00NV = B W N =
o B~ WO N = 00NV = B W N =



FIFO Replacement Policy

o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2,3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4

Access | Hit | State (atter) [Nl Access | it | State (after)
1 no 1 1

2 no 1,2 2

3 no 1,2,3 3

4 no 2,3,4 4

1 no 3,4,1 1

2 no 41,2 2

5 no 1,2,5 5

1 yes 1,2,5 1

2 yes 1,2,5 2

3 no 2,5,3 3

4 no 5,3,4 4

5 yes 5,3,4 5



FIFO Replacement Policy

o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2,3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4
Access | Hit | State (atter) [Nl Access | it | State (after)

1 no 1 1 no 1
2 no 1,2 2 no 1,2
3 no 1,2,3 3 no 1,2,3
4 no 2,3,4 4 no 1,2,3,4
1 no 3,4,1 1 yes 1,2,3,4
2 no 41,2 2 yes 1,2,3,4
5 no 1,2,5 5 no 2,3,4,5
1 yes 1,2,5 1 no 3,4,5,1
2 yes 1,2,5 2 no 451,2
3 no 2,5,3 3 no 5,1,2,3
4 no 53,4 4 no 1,2,3,4
5 yes 5,3,4 5 no 2,3,4,5



Belady’'s Anomaly

o Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
— Size-3 (3-frames) case results in 9 page faults
— Size-4 (4-frames) case results in 10 page faults

o Program runs potentially slower w/ more memory!

o Belady’s anomaly

— More frames = more page faults for some access pattern

2 12| 1 3 9page faults

H WD

W DN

10 page faults
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Random



Random Policy

o ldea: picks a random page to replace
o Simple to implement like FIFO

o No intelligence of preserving locality



Random Policy

o ldea: picks a random page to replace
o Example workload: 012013030121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss 0 assume
1 Miss 0,1 cache size 3
2 Miss 0.2
0 Hit 0,1,2
1 Hit 01,2
! Miss 0 1.2.3
0 Miss 1 2:3:0
3 Hit 2.3:0
(] Miss 3 2,0,1
2 Hit 201
1 Hit 2001
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How Random Policy Performs?

o Depends entirely on how lucky you are
o Example workload:012013030121

Random performance over 10000 trials
50 -

Frequency
N w A
o o o
1 1

-t
o
1

o

1 2 3 4 5 6 7
Number of Hits

o



How Random Policy Performs?

o Depends entirely on how lucky you are
o Example workload:012013030121

Random performance over 10000 trials

o - s - -

50 - ==
40 : :
) Extremely I |
g % bad result! !
(33'20 ad result! : : Same as
s [ | - optimal
10 - : i
0 1 r 1 1 \!- I | E 1 : 1
0 1 1 2 3 ) 4 51 6 | 7

Number of Hits ===’
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Belady's Optimal



OPT: The Optimal Replacement Policy

o Many years ago Belady demonstrated that there
is a simple policy (OPT or MIN) which always
leads to fewest number of misses

o ldea: evict the page that will be accessed
furthest in the future

o Assumption: we know about the future
o Impossible to implement OPT in practice!

o But it is extremely useful as a practical best-case
baseline for comparison purpose



Proof of Optimality for Belady’s
Optimal Replacement Policy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

A Short Proof of Optimality for
the MIN Cache Replacement Algorithm

Benjamin Van Roy
Stanford University

December 2, 2010

Abstract

The MIN algorithm is an offline strategy for deciding which item to replace
when writing a new item to a cache. Its optimality was first established by Mattson,
Gecsei, Slutz, and Traiger [2] through a lengthy analysis. We provide a short and
elementary proof based on a dynamic programming argument.

Keywords: analysis of algorithms, on-line algorithms, caching, paging

1 The MIN Algorithm



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

Erasing Belady's Limitations

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng

- " :
. b
usenix
.‘ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Erasing Belady’s Limitations: In Search of Flash
Cache Offline Optimality

Yue Cheng, Virginia Polytechnic Institute and State University; Fred Douglis,
Philip Shilane, Michael Trachtman, and Grant Wallace, EMC Corporation;
Peter Desnoyers, Northeastern University; Kai Li, Princeton University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121



OPT the Optimal

o ldea: evict the page that will be accessed
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o Example workload: 012013030121

Resulting assume
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . ? ° .
Access Hlthlss. Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 0oL 2

N WO WRRrONRKE



OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
Access HIUMlsS? Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 0,1,2
Hit 0.1.2
Hit 0.1, 2

N WO WRRrONRKE
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. ° ? . [

Access HIUMlss. Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 01,2
Hit Bl

Hit 0,1,2 What to evict??

N WO WRRrONRKE
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

Miss 0
Miss 0,1
Miss 01,2
Page 2 happens to Hlit 0.1.2
be the one that will Hit 0,1,2 What to evict??

be accessed
furthest in future!

H@H@O@HONHO
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
Access HIUMlsS? Evict Cache State cache size 3
0 Miss 0
Miss 0,1
Miss 0,1,2
Hit 0.0
Hit 0,1,2
Miss 2 0,1,3

N WO WRRrONRKE
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
Access HIUMlss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 0,1,2
0 Hit 0,1,2
1 Hit 0,1,2
3 Miss 2 973 B
0 Hit 0,1,3
3 Hit 033
1 Hit 1
2

1
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

0 Miss 0

1 Miss 0,1

2 Miss il 2

0 Hit 0,1,2

1 Hit 012

3 Miss 2 01,3

0 Hit 0,1,3

3 Hit 0113

- L 013 \What to evict??
1
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . 7 . .
Access Hit/Miss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 0,1,2
. 0 Hit 012
Page 1 WI||. be 1 Hit 01,2
accessed right 3 Miss ) K
after page 2. 0 Hit 0.5
Hence 1 is safe! 3 Hit 003

1 Hit 0.5 :

\ 5 : What to evict??
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 01,2
0 Hit 0. 1.2
1 Hit 012
3 Miss 2 015
0 Hit 015
5 Hit .13
1 Hit 0.5
2 Miss 3 012
1
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

Miss

Miss

Miss
Hit
Hit

Miss 2
Hit
Hit
Hit

Miss 5
Hit

~ ~
~ ~ ~

~
~

~ ~

~

NFNRFWOWRONRO
€ SN elEy Enies e

— e e e e e e e e O
NNWWWWNNNR~RO

~
~ ~ ~ ~ ~ ~
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OPT the Optimal

o ldea: evict the page that will be accessed
furthest in the future

o Example workload: 012013030121

Resulting assume
. . 7 . .
Access Hit/Miss? Evict Cache State cache size 3

Miss
Miss
Miss
Hit
Hit
Miss 2
Hit
Hit
Hit
Miss 5
Hit
The optimal number of cache hits is 6 for this workload!

NDNWWWWNDNDNRFERO

~

~

~

N—_WOWRONRO
€ SN elEy Enies e
— e e e e e e e e O

~ ~ ~ ~ ~ ~ ~ ~ ~

st

~
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Least-Recently-Used
(LRU)



Least-Recently-Used Policy (LRU)

o Use the recent pass as an approximation of the
near future (using history)

o ldea: evict the page that has not been used for
the longest period of time



Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload:012013030121

Resulting
Access Hit/Miss? Evict Cache State

-
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Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload:012013030121

Resulting
Access Hit/Miss? Evict Cache State
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Least-Recently-Used Policy (LRU)

o ldea: evict the page that has not been used for
the longest period of time

o Example workload:012013030121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU— 1,3,0
3 Hit LRU—~ 10,3
1 Hit LRU— 0,31
2 Miss 0 LRU— 3,1,2
i | Hit LRU— 3,2,1

~
~



LRU Stack Implementation

o Stack implementation: keep a stack of page
numbers in a doubly linked list form
— Page referenced, move it to the top
— Requires quite a few pointers to be changed
— No search required for replacement operation!



Using a Stack to Approximate LRU

reference string

4 v o 7 1 0 1 2 1 2 7 1 2

: I

Most recently
used

a b
1
0
7
Least recently 4
used
stack
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Using a Stack to Approximate LRU

reference string
4 7 o0 7 1 0 1 2 1 2 7 1 2

Most recently

used // a b
1 7 moved to 2
0 ME!U position y
7 I 0
Least recently 4 4
used
stack stack
before after

a b

101



L RU Hardware Support

o Sophisticated hardware support may involve high
overhead/cost!

o Some limited HW support is common:

Reference (or use) bit
— With each page associate a bit, initially setto 0
— When the page is referenced, bit set to 1

— By examining the reference bits, we can determine which
pages have been used

— We do not know the order of use, however!

o Cheap approximation
— Useful for clock algorithm

102
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Summary:

Page Replacement Policies

FIFO

— Why it might work? Maybe the one brought in the longest ago is one
we are not using now

— Why it might not work? No real info to tell if it’s being used or not
— Suffers “Belady’s Anomaly”

Random
— Sometimes non intelligence is better

OPT

— Assume we know about the future
— Not practical in real cases: offline policy
— However, can be used as a best case baseline for comparison
purpose
LRU
— Intuition: we can’t look into the future, but let’s look at past
experience to make a good guess

— Out “bet” is that pages used recently are ones which will be used
again (principle of locality)



