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Swapping: 
Beyond Physical Memory
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How to Know Where a Page Lives?



Present Bit
o With each PTE a present is associated 

– 1 è in-memory, 0 è out in disk

o During address translation, if present bit in PTE 
is 0 è page fault
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An 32-bit X86 page table entry (PTE)

Present bit
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Page table
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What if NO Memory is Left?
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PFN valid prot present
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or “paging in”
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Why not Leave Page on Disk?



Storage Hierarchy

28

Main memory:
Smaller capacity
Faster accesses

Secondary storage:
Larger capacity

Way slower accesses



Why not Leave Page on Disk?
o Performance: Memory vs. Disk

o How long does it take to access a 4-byte int
from main memory vs. disk?
– DRAM: ~100ns
– Disk: ~10ms
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Beyond the Physical Memory
o Idea: use the disk space as an extension of main 

memory

o Two ways of interaction b/w memory and disk
– Demand paging
– Swapping
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Demand Paging
o Bring a page into memory only when it is 

needed (demanded)
– Less I/O needed
– Less memory needed 
– Faster response
– Support more processes/users

o Page is needed Þ use the reference to page
– If not in memory Þ must bring from the disk
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Swapping
o Swapping allows OS to support the illusion of a 

large virtual memory for multiprogramming
– Multiple programs can run “at once”
– Better utilization
– Ease of use

o Demand paging vs. swapping
– On demand vs. page replacement under memory 

pressure 
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Swapping
o Swapping allows OS to support the illusion of a 

large virtual memory for multiprogramming
– Multiple programs can run “at once”
– Better utilization
– Ease of use
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Swap Space
o Part of disk space reserved for moving pages 

back and forth 
– Swap pages out of memory
– Swap pages into memory from disk

o OS reads from and writes to the swap space at 
page-sized unit
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In this example,
Process 3 is all swapped to 

disk



Address Translation Steps
o Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??
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(cheap)

(cheap)

(cheap)

(expensive)
(expensive)
(expensive)



Page Fault
o The act of accessing a page that is not in 

physical memory is called a page fault

o OS is invoked to service the page fault
– Page fault handler

o Typically, PTE contains the page address on 
disk
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Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction
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Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction
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(cheap)

What to evict?
What to read?



Major Steps of A Page Fault

42



Impact of Page Faults
o Each page fault affects the system performance 

negatively
– The process experiencing the page fault will not be 

able to continue until the missing page is brought to 
the main memory

– The process will be blocked (moved to the waiting 
state)

– Dealing with the page fault involves disk I/O 
• Increased demand to the disk drive 
• Increased waiting time for process experiencing page fault
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Memory as a Cache
o As we increase the degree of multiprogramming, 

over-allocation of memory becomes a problem

o What if we are unable to find a free frame at the 
time of the page fault? 

o OS chooses to page out one or more pages to 
make room for new page(s) OS is about to bring 
in
– The process to replace page(s) is called page 

replacement policy
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Memory as a Cache
o OS keeps a small portion of memory free 

proactively
– High watermark (HW) and low watermark (LW)

o When OS notices free memory is below LW (i.e., 
memory pressure)
– A background thread (i.e., swap/page daemon) starts 

running to free memory
– It evicts pages until there are HW pages available

45
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What to Evict?



Page Replacement
o Page replacement completes the separation 

between the logical memory and the physical 
memory 
– Large virtual memory can be provided on a smaller 

physical memory

o Impact on performance
– If there are no free frames, two page transfers needed at 

each page fault!

o We can use a modify (dirty) bit to reduce overhead 
of page transfers – only modified pages are written 
back to disk
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Page Replacement Policy
o Formalizing the problem

– Cache management: Physical memory is a cache for 
virtual memory pages in the system

– Primary objective:
• High performance
• High efficiency
• Low cost

– Goal: Minimize cache misses
• To minimize # times OS has to fetch a page from disk 
• -OR- maximize cache hits 
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Average Memory Access Time
o Average (or effective) memory access time (AMAT) 

is the metric to calculate the effective memory 
performance

o TM: Cost of accessing memory
o TD: Cost of accessing disk
o PHit: Probability of finding data in cache (hit)

– Hit rate
o PMiss: Probability of not finding data in cache (miss)

– Miss rate
49



An Example
o Assuming 

– TM is 100 nanoseconds (ns), TD is 10 milliseconds 
(ms)

– PHit is 0.9, and PMiss is 0.1
o AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms = 

1.00009ms

– Or around 1 millisecond
o What if the hit rate is 99.9%?

– Result changes to 10.1 microseconds (or us)
– Roughly 100 times faster!
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First-In First-Out (FIFO)



First-in First-out (FIFO)
o Simplest page replacement algorithm 

o Idea: items are evicted in the order they are 
inserted

o Implementation: FIFO queue holds identifiers of 
all the pages in memory
– We replace the page at the head of the queue
– When a page is brought into memory, it is inserted at 

the tail of the queue
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FIFO Replacement Policy
o Idea: items are evicted in the order they are 

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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FIFO Replacement Policy
o Idea: items are evicted in the order they are 

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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assume 
cache size 3



FIFO Replacement Policy
o Idea: items are evicted in the order they are 

inserted

o Issue: the “oldest” page may contain a heavily 
used data
– Will need to bring back that page in near future
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FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

62

Access Hit State (after)
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2
3
4
1
2
5
1
2
3
4
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Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5



FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4
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FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 1,2,3,4
1 yes 1,2,3,4
2 yes 1,2,3,4
5 no 2,3,4,5
1 no 3,4,5,1
2 no 4,5,1,2
3 no 5,1,2,3
4 no 1,2,3,4
5 no 2,3,4,5



Belady’s Anomaly
o Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

– Size-3 (3-frames) case results in 9 page faults
– Size-4 (4-frames) case results in 10 page faults

o Program runs potentially slower w/ more memory!

o Belady’s anomaly
– More frames è more page faults for some access pattern
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Random



Random Policy
o Idea: picks a random page to replace

o Simple to implement like FIFO

o No intelligence of preserving locality
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Random Policy
o Idea: picks a random page to replace
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

68

assume 
cache size 3



How Random Policy Performs?
o Depends entirely on how lucky you are
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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Random performance over 10000 trials



How Random Policy Performs?
o Depends entirely on how lucky you are
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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Same as 
optimal

Extremely 
bad result!

Random performance over 10000 trials
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Belady’s Optimal



OPT: The Optimal Replacement Policy

o Many years ago Belady demonstrated that there 
is a simple policy (OPT or MIN) which always 
leads to fewest number of misses

o Idea: evict the page that will be accessed 
furthest in the future

o Assumption: we know about the future
o Impossible to implement OPT in practice!

o But it is extremely useful as a practical best-case 
baseline for comparison purpose
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Proof of Optimality for Belady’s
Optimal Replacement Policy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

73

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf


Erasing Belady’s Limitations
https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng
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This paper is included in the Proceedings of the 
2016 USENIX Annual Technical Conference (USENIC ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the 
2016 USENIX Annual Technical Conference 
(USENIX ATC ’16) is sponsored by USENIX.

Erasing Belady’s Limitations: In Search of Flash 
Cache Offline Optimality

Yue Cheng, Virginia Polytechnic Institute and State University; Fred Douglis,  
Philip Shilane,  Michael Trachtman, and Grant Wallace, EMC Corporation;  

Peter Desnoyers, Northeastern University;  Kai Li, Princeton University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng


OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

75



OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

76

assume 
cache size 3



OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

77

assume 
cache size 3



OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

78

assume 
cache size 3



OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

79

assume 
cache size 3

What to evict??



OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

80

assume 
cache size 3

What to evict??
Page 2 happens to 
be the one that will 

be accessed 
furthest in future!
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OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

84

assume 
cache size 3

What to evict??

Page 1 will be 
accessed right 
after page 2. 

Hence 1 is safe!
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OPT the Optimal
o Idea: evict the page that will be accessed 

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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assume 
cache size 3

The optimal number of cache hits is 6 for this workload!
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Least-Recently-Used 
(LRU)



Least-Recently-Used Policy (LRU)
o Use the recent pass as an approximation of the 

near future (using history)
o Idea: evict the page that has not been used for 

the longest period of time
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Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for 

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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LRU Stack Implementation
o Stack implementation: keep a stack of page 

numbers in a doubly linked list form
– Page referenced, move it to the top
– Requires quite a few pointers to be changed
– No search required for replacement operation!
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Using a Stack to Approximate LRU

100

Most recently 
used

Least recently 
used



Using a Stack to Approximate LRU
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Most recently 
used

Least recently 
used

7 moved to 
MRU position



LRU Hardware Support
o Sophisticated hardware support may involve high 

overhead/cost!

o Some limited HW support is common: 
Reference (or use) bit

– With each page associate a bit, initially set to 0
– When the page is referenced, bit set to 1
– By examining the reference bits, we can determine which 

pages have been used
– We do not know the order of use, however!

o Cheap approximation
– Useful for clock algorithm
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Clock: Look For a Page
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0 1 2 3 …Physical mem:

clock hand

use=1 use=1 use=0 use=1
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Clock: Look For a Page
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0 1 2 3 …Physical mem:

clock hand

use=0 use=0 use=0 use=1

Mem is full, and to evict a 
page to make room

Evict page 2 because it has not been recently used



Clock: Look For a Page

108

0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=1



Clock: Access a Page
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0 1 4 3 …Physical mem:

clock hand

use=1 use=0 use=1 use=1

page 0 is accessed
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0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=0

Mem is full, and to evict a 
page to make room



Clock: Look For a Page
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0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=0

Mem is full, and to evict a 
page to make room

Evict page 1 because it has not been recently used



Clock: Look For a Page
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0 5 4 3 …Physical mem:

clock hand

use=0 use=1 use=1 use=0
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Page Replacement Policies

o FIFO
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– Suffers “Belady’s Anomaly”
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Summary: 
Page Replacement Policies
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we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

o Random
– Sometimes non intelligence is better

o OPT
– Assume we know about the future
– Not practical in real cases: offline policy
– However, can be used as a best case baseline for comparison 

purpose
o LRU

– Intuition: we can’t look into the future, but let’s look at past 
experience to make a good guess

– Out “bet” is that pages used recently are ones which will be used 
again (principle of locality)
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