
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

2

Swapping:
Beyond Physical Memory

3

Virtual memory

Program

code
data

Disk

4

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

5

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

What’s in code?

6

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

Many large libraries, some of which are rarely/never used

LibA LibB

LibC Prog

LibA LibB

LibC Prog

What’s in code?

7

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

How to avoid wasting physical pages to
back rarely used virtual pages?

LibA LibB

LibC Prog

LibA LibB

LibC Prog

8

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog

9

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog

10

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgProcess 1 accesses LibB

11

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgOS copies LibB to mem
LibB

12

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Progcalled “swapping in” or
“paging in” LibB

13

How to Know Where a Page Lives?

Present Bit
o With each PTE a present is associated

– 1 è in-memory, 0 è out in disk

o During address translation, if present bit in PTE
is 0 è page fault

14

An 32-bit X86 page table entry (PTE)

Present bit

Present Bit

15

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Page table

Present Bit

16

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

Present Bit

17

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Present Bit

18

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

8 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

19

What if NO Memory is Left?

Present Bit

20

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

FULL

Present Bit

21

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

Present Bit

22

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

evict

Present Bit

23

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

Present Bit

24

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

called “swapping out”
or “paging out”

Present Bit

25

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Present Bit

26

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

5 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

again, another “swapping in”
or “paging in”

27

Why not Leave Page on Disk?

Storage Hierarchy

28

Main memory:
Smaller capacity
Faster accesses

Secondary storage:
Larger capacity

Way slower accesses

Why not Leave Page on Disk?
o Performance: Memory vs. Disk

o How long does it take to access a 4-byte int
from main memory vs. disk?
– DRAM: ~100ns
– Disk: ~10ms

29

Beyond the Physical Memory
o Idea: use the disk space as an extension of main

memory

o Two ways of interaction b/w memory and disk
– Demand paging
– Swapping

30

Demand Paging
o Bring a page into memory only when it is

needed (demanded)
– Less I/O needed
– Less memory needed
– Faster response
– Support more processes/users

o Page is needed Þ use the reference to page
– If not in memory Þ must bring from the disk

31

Swapping
o Swapping allows OS to support the illusion of a

large virtual memory for multiprogramming
– Multiple programs can run “at once”
– Better utilization
– Ease of use

o Demand paging vs. swapping
– On demand vs. page replacement under memory

pressure

32

Swapping
o Swapping allows OS to support the illusion of a

large virtual memory for multiprogramming
– Multiple programs can run “at once”
– Better utilization
– Ease of use

33

Swap Space
o Part of disk space reserved for moving pages

back and forth
– Swap pages out of memory
– Swap pages into memory from disk

o OS reads from and writes to the swap space at
page-sized unit

34

In this example,
Process 3 is all swapped to

disk

Address Translation Steps
o Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit:

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??

35

Address Translation Steps
o Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit:

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

o Q: Which steps are expensive??

36

(cheap)

(expensive)

(cheap)

(cheap)

(cheap)

(expensive)
(expensive)
(expensive)

Page Fault
o The act of accessing a page that is not in

physical memory is called a page fault

o OS is invoked to service the page fault
– Page fault handler

o Typically, PTE contains the page address on
disk

37

Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

38

Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?
39

Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?
40

(expensive)

(cheap)

(cheap)

(depends)

(cheap)

(cheap)

(cheap)

Page-Fault Handler (OS)
PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

41

(expensive)

(cheap)

(cheap)

(depends)

(cheap)

(cheap)

(cheap)

What to evict?
What to read?

Major Steps of A Page Fault

42

Impact of Page Faults
o Each page fault affects the system performance

negatively
– The process experiencing the page fault will not be

able to continue until the missing page is brought to
the main memory

– The process will be blocked (moved to the waiting
state)

– Dealing with the page fault involves disk I/O
• Increased demand to the disk drive
• Increased waiting time for process experiencing page fault

43

Memory as a Cache
o As we increase the degree of multiprogramming,

over-allocation of memory becomes a problem

o What if we are unable to find a free frame at the
time of the page fault?

o OS chooses to page out one or more pages to
make room for new page(s) OS is about to bring
in
– The process to replace page(s) is called page

replacement policy

44

Memory as a Cache
o OS keeps a small portion of memory free

proactively
– High watermark (HW) and low watermark (LW)

o When OS notices free memory is below LW (i.e.,
memory pressure)
– A background thread (i.e., swap/page daemon) starts

running to free memory
– It evicts pages until there are HW pages available

45

46

What to Evict?

Page Replacement
o Page replacement completes the separation

between the logical memory and the physical
memory
– Large virtual memory can be provided on a smaller

physical memory

o Impact on performance
– If there are no free frames, two page transfers needed at

each page fault!

o We can use a modify (dirty) bit to reduce overhead
of page transfers – only modified pages are written
back to disk

47

Page Replacement Policy
o Formalizing the problem

– Cache management: Physical memory is a cache for
virtual memory pages in the system

– Primary objective:
• High performance
• High efficiency
• Low cost

– Goal: Minimize cache misses
• To minimize # times OS has to fetch a page from disk
• -OR- maximize cache hits

48

Average Memory Access Time
o Average (or effective) memory access time (AMAT)

is the metric to calculate the effective memory
performance

o TM: Cost of accessing memory
o TD: Cost of accessing disk
o PHit: Probability of finding data in cache (hit)

– Hit rate
o PMiss: Probability of not finding data in cache (miss)

– Miss rate
49

An Example
o Assuming

– TM is 100 nanoseconds (ns), TD is 10 milliseconds
(ms)

– PHit is 0.9, and PMiss is 0.1
o AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms =

1.00009ms

– Or around 1 millisecond
o What if the hit rate is 99.9%?

– Result changes to 10.1 microseconds (or us)
– Roughly 100 times faster!

50

51

First-In First-Out (FIFO)

First-in First-out (FIFO)
o Simplest page replacement algorithm

o Idea: items are evicted in the order they are
inserted

o Implementation: FIFO queue holds identifiers of
all the pages in memory
– We replace the page at the head of the queue
– When a page is brought into memory, it is inserted at

the tail of the queue

52

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

53

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

54

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

55

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

56

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

57

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

58

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

59

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

60

assume
cache size 3

FIFO Replacement Policy
o Idea: items are evicted in the order they are

inserted

o Issue: the “oldest” page may contain a heavily
used data
– Will need to bring back that page in near future

61

FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

62

Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

63

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

FIFO Replacement Policy
o FIFO: items are evicted in the order they are inserted
o Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

64

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 1,2,3,4
1 yes 1,2,3,4
2 yes 1,2,3,4
5 no 2,3,4,5
1 no 3,4,5,1
2 no 4,5,1,2
3 no 5,1,2,3
4 no 1,2,3,4
5 no 2,3,4,5

Belady’s Anomaly
o Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

– Size-3 (3-frames) case results in 9 page faults
– Size-4 (4-frames) case results in 10 page faults

o Program runs potentially slower w/ more memory!

o Belady’s anomaly
– More frames è more page faults for some access pattern

65

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5
10 page faults

44 3

66

Random

Random Policy
o Idea: picks a random page to replace

o Simple to implement like FIFO

o No intelligence of preserving locality

67

Random Policy
o Idea: picks a random page to replace
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

68

assume
cache size 3

How Random Policy Performs?
o Depends entirely on how lucky you are
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

69

Random performance over 10000 trials

How Random Policy Performs?
o Depends entirely on how lucky you are
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

70

Same as
optimal

Extremely
bad result!

Random performance over 10000 trials

71

Belady’s Optimal

OPT: The Optimal Replacement Policy

o Many years ago Belady demonstrated that there
is a simple policy (OPT or MIN) which always
leads to fewest number of misses

o Idea: evict the page that will be accessed
furthest in the future

o Assumption: we know about the future
o Impossible to implement OPT in practice!

o But it is extremely useful as a practical best-case
baseline for comparison purpose

72

Proof of Optimality for Belady’s
Optimal Replacement Policy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

73

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

Erasing Belady’s Limitations
https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng

74

This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIC ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Erasing Belady’s Limitations: In Search of Flash
Cache Offline Optimality

Yue Cheng, Virginia Polytechnic Institute and State University; Fred Douglis,
Philip Shilane, Michael Trachtman, and Grant Wallace, EMC Corporation;

Peter Desnoyers, Northeastern University; Kai Li, Princeton University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

75

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

76

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

77

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

78

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

79

assume
cache size 3

What to evict??

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

80

assume
cache size 3

What to evict??
Page 2 happens to
be the one that will

be accessed
furthest in future!

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

81

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

82

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

83

assume
cache size 3

What to evict??

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

84

assume
cache size 3

What to evict??

Page 1 will be
accessed right
after page 2.

Hence 1 is safe!

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

85

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

86

assume
cache size 3

OPT the Optimal
o Idea: evict the page that will be accessed

furthest in the future
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

87

assume
cache size 3

The optimal number of cache hits is 6 for this workload!

88

Least-Recently-Used
(LRU)

Least-Recently-Used Policy (LRU)
o Use the recent pass as an approximation of the

near future (using history)
o Idea: evict the page that has not been used for

the longest period of time

89

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

90

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

91

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

92

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

93

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

94

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

95

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

96

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

97

Least-Recently-Used Policy (LRU)
o Idea: evict the page that has not been used for

the longest period of time
o Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

98

LRU Stack Implementation
o Stack implementation: keep a stack of page

numbers in a doubly linked list form
– Page referenced, move it to the top
– Requires quite a few pointers to be changed
– No search required for replacement operation!

99

Using a Stack to Approximate LRU

100

Most recently
used

Least recently
used

Using a Stack to Approximate LRU

101

Most recently
used

Least recently
used

7 moved to
MRU position

LRU Hardware Support
o Sophisticated hardware support may involve high

overhead/cost!

o Some limited HW support is common:
Reference (or use) bit

– With each page associate a bit, initially set to 0
– When the page is referenced, bit set to 1
– By examining the reference bits, we can determine which

pages have been used
– We do not know the order of use, however!

o Cheap approximation
– Useful for clock algorithm

102

Clock: Look For a Page

103

0 1 2 3 …Physical mem:

clock hand

use=1 use=1 use=0 use=1

Clock: Look For a Page

104

0 1 2 3 …Physical mem:

clock hand

use=1 use=1 use=0 use=1

Mem is full, and to evict a
page to make room

Clock: Look For a Page

105

0 1 2 3 …Physical mem:

clock hand

use=0 use=1 use=0 use=1

Mem is full, and to evict a
page to make room

Clock: Look For a Page

106

0 1 2 3 …Physical mem:

clock hand

use=0 use=0 use=0 use=1

Mem is full, and to evict a
page to make room

Clock: Look For a Page

107

0 1 2 3 …Physical mem:

clock hand

use=0 use=0 use=0 use=1

Mem is full, and to evict a
page to make room

Evict page 2 because it has not been recently used

Clock: Look For a Page

108

0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=1

Clock: Access a Page

109

0 1 4 3 …Physical mem:

clock hand

use=1 use=0 use=1 use=1

page 0 is accessed

Clock: Look For a Page

110

0 1 4 3 …Physical mem:

clock hand

use=1 use=0 use=1 use=1

Clock: Look For a Page

111

0 1 4 3 …Physical mem:

clock hand

use=1 use=0 use=1 use=1

Mem is full, and to evict a
page to make room

Clock: Look For a Page

112

0 1 4 3 …Physical mem:

clock hand

use=1 use=0 use=1 use=0

Mem is full, and to evict a
page to make room

Clock: Look For a Page

113

0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=0

Mem is full, and to evict a
page to make room

Clock: Look For a Page

114

0 1 4 3 …Physical mem:

clock hand

use=0 use=0 use=1 use=0

Mem is full, and to evict a
page to make room

Evict page 1 because it has not been recently used

Clock: Look For a Page

115

0 5 4 3 …Physical mem:

clock hand

use=0 use=1 use=1 use=0

Summary:
Page Replacement Policies

o FIFO
– Why it might work? Maybe the one brought in the longest ago is one

we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

116

Summary:
Page Replacement Policies

o FIFO
– Why it might work? Maybe the one brought in the longest ago is one

we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

o Random
– Sometimes non intelligence is better

117

Summary:
Page Replacement Policies

o FIFO
– Why it might work? Maybe the one brought in the longest ago is one

we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

o Random
– Sometimes non intelligence is better

o OPT
– Assume we know about the future
– Not practical in real cases: offline policy
– However, can be used as a best case baseline for comparison

purpose

118

Summary:
Page Replacement Policies

o FIFO
– Why it might work? Maybe the one brought in the longest ago is one

we are not using now
– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

o Random
– Sometimes non intelligence is better

o OPT
– Assume we know about the future
– Not practical in real cases: offline policy
– However, can be used as a best case baseline for comparison

purpose
o LRU

– Intuition: we can’t look into the future, but let’s look at past
experience to make a good guess

– Out “bet” is that pages used recently are ones which will be used
again (principle of locality)

119

