
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

Review: RAID

2

RAID
o Idea: Build an awesome disk from small, cheap

disks

o Metrics: Capacity, performance, reliability

3

RAID
o Idea: Build an awesome disk from small, cheap

disks

o Metrics: Capacity, performance, reliability

o The art of tradeoff navigation

4

RAID Levels
o RAID-0:

– No redundancy, perf & capacity upper-bound
o RAID-1:

– Mirroring
o RAID-4:

– Parity disk
o RAID-5:

– Parity disk (rotated among disks)

5

File System Abstraction

6

What is a File?
o File: Array of bytes

– Ranges of bytes can be read/written

o File system (FS) consists of many files

o Files need names so programs can choose the
right one

7

File Names
o Three types of names (abstractions)

– inode (low-level names)
– path (human readable)
– file descriptor (runtime state)

8

Inodes
o Each file has exactly one inode number

o Inodes are unique (at a given time) within a FS

o Numbers may be recycled after deletes

9

Inodes
o Each file has exactly one inode number

o Inodes are unique (at a given time) within a FS

o Numbers may be recycled after deletes

o Show inodes via stat
– $ stat <file or dir>

10

‘stat’ Example
PROMPT>: stat test.dat
File: ‘test.dat’ Size: 5 Blocks: 8 IO Block: 4096 regular file

Device: 803h/2051d Inode: 119341128 Links: 1
Access: (0664/-rw-rw-r--) Uid: (1001/ yue) Gid: (1001/ yue)

Context: unconfined_u:object_r:user_home_t:s0
Access: 2015-12-17 04:12:47.935716294 -0500
Modify: 2014-12-12 19:25:32.669625220 -0500

Change: 2014-12-12 19:25:32.669625220 -0500

Birth: -

11

Path (multiple directories)

12

o A directory is a file
– Associated with an inode

o Contains a list of <user-
readable name, low-level
name> pairs

Path (multiple directories)
o A directory is a file

– Associated with an inode

o Contains a list of <user-
readable name, low-level
name> pairs

13

Path (multiple directories)

14

<“bar”, “12”><“foo”, “10”>
o A directory is a file

– Associated with an inode

o Contains a list of <user-
readable name, low-level
name> pairs

Path (multiple directories)
o A directory is a file

– Associated with an inode

o Contains a list of <user-
readable name, low-level
name> pairs

o Directory tree: reads for
getting final inode called
traversal

15

[traverse /bar/foo/bar.txt]

File Naming
o Directories and files can

have the same name as
long as they are in
different locations of the
file-system tree

o .txt, .c, etc.
– Naming convention
– In UNIX-like OS, no

enforcement for
extension name

16

Special Directory Entries
prompt> ls –al

total 216

drwxr-xr-x 19 yue staff 646 Nov 23 16:28 .
drwxr-xr-x+ 40 yue staff 1360 Nov 15 01:41 ..
-rw-r--r--@ 1 yue staff 1064 Aug 29 21:48 common.h

-rwxr-xr-x 1 yue staff 9356 Aug 30 14:03 cpu

-rw-r--r--@ 1 yue staff 258 Aug 29 21:48 cpu.c

-rwxr-xr-x 1 yue staff 9348 Sep 6 12:12 cpu_bound
-rw-r--r-- 1 yue staff 245 Sep 5 13:10 cpu_bound.c

…

17

File System Interfaces

18

Creating Files
o UNIX system call: open()

int fd = open(char *path, int flag, mode_t mode);
-OR-

int fd = open(char *path, int flag);

19

File Descriptor (fd)
o open() returns a file descriptor (fd)

– A fd is an integer
– Private per process

o An opaque handle that gives caller the power to
perform certain operations

o You can think of a fd as a pointer to an object of the
file
– By owning such an object, you can call other “methods” to

access the file

20

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 5

21

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2); // return 4

22

offset = 0
inode = …

fd

location = …
size = …

inode

fd table
0
1
2
3
4
5

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);
int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2); // return 4

23

offset = 8
inode = …

fd

location = …
size = …

inode

fd table
0
1
2
3
4
5

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 4

24

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

fd table
0
1
2
3
4
5

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 5

25

fd table
0
1
2
3
4

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

5

UNIX File Read and Write APIs
int fd = open(char *path, int flag, mode_t mode);
-OR-

int fd = open(char *path, int flag);

ssize_t sz = read(int fd, void *buf, size_t count);

ssize_t sz = write(int fd, void *buf, size_t count);

int ret = close(int fd);

26

Reading and Writing Files
prompt> echo hello > file.txt

prompt> cat file.txt

hello
prompt>

27

Reading and Writing Files

28

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

29

Open the file with read
only mode

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

30

Open the file with read
only mode

Read content from file

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

31

Open the file with read
only mode

Read content from file

Write string to std
output fd 1

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

32

cat tries to read more
but reaches EOF

Write string to std
output fd 1

Open the file with read
only mode

Read content from file

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

33

cat done with file ops
and closes the file

cat tries to read more
but reaches EOF

Write string to std
output fd 1

Open the file with read
only mode

Read content from file

Non-Sequential File Operations

34

off_t offset = lseek(int fd, off_t offset, int whence);

Non-Sequential File Operations

35

off_t offset = lseek(int fd, off_t offset, int whence);

whence:
o If whence is SEEK_SET, the offset is set to offset bytes
o If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes
o If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes

Non-Sequential File Operations

36

off_t offset = lseek(int fd, off_t offset, int whence);

whence:
o If whence is SEEK_SET, the offset is set to offset bytes
o If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes
o If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes

Note: Calling lseek() does not perform a disk seek!

Writing Immediately with fsync()

int fd = fsync(int fd);

o fsync(fd) forces buffers to flush to disk, and (usually)
tells the disk to flush its write cache too
– To make the data durable and persistent

o Write buffering improves performance

37

Renaming Files

38

prompt> mv file.txt new_name.txt

Renaming Files

39

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

Renaming Files

40

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

System call rename()
atomically renames a

file

Renaming Files

41

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

System call rename()
atomically renames a

file

What if user program crashes?
File system does extra work to guarantee atomicity.

File Renaming Example

42

prompt> vim file.txt

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

File Renaming Example

43

prompt> vim file.txt

… vim editing session …

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file (editing…)

File Renaming Example

44

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file
fsync(fd); // make data durable
close(fd); // close tmp file
rename(“.file.txt.swp”, “file.txt”);// change name and replacing old file

Using vim to edit a file and then save it

prompt> vim file.txt

… vim editing session …
prompt> :wq

Deleting Files

45

prompt> rm file.txt

Deleting Files

46

prompt> strace rm file.txt

...

unlink("file.txt") = 0
...

prompt>

Deleting Files

47

prompt> strace rm file.txt

...

unlink("file.txt") = 0
...

prompt>

System call unlink() is
called to delete a file

Deleting Files

48

prompt> strace rm file.txt

...

unlink("file.txt") = 0
...

prompt>

System call unlink() is
called to delete a file

Directories are deleted when unlink() is called

File descriptors are deleted when ???

Deleting Files

49

prompt> strace rm file.txt

...

unlink("file.txt") = 0
...

prompt>

System call unlink() is
called to delete a file

Directories are deleted when unlink() is called

File descriptors are deleted when close(), or
process quits

Demo: Hard Links vs. Symbolic Links

50

Concurrency
o How can multiple processes avoid updating the

same file at the same time?

o Normal locks don’t work, as developers may
have developed their programs independently

51

Concurrency
o How can multiple processes avoid updating the

same file at the same time?

o Normal locks don’t work, as developers may
have developed their programs independently

o Use flock(), e.g.
– flock(fd, LOCK_EX)

– flock(fd, LOCK_UN)

52

