
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019



Google File System
MapReduce

Key-Value Store

2



Google File System
MapReduce

Key-Value Store

3



Google File System (GFS) 
Overview

o Motivation

o Architecture

4



GFS
o Goal: a global (distributed) file system that 

stores data across many machines
– Need to handle 100’s TBs

o Google published details in 2003

o Open source implementation: 
– Hadoop Distributed File System (HDFS)

5



Workload-driven Design
o Google workload characteristics

– Huge files (GBs)
– Almost all writes are appends
– Concurrent appends common
– High throughput is valuable
– Low latency is not

6



Example Workloads
o Read entire dataset, do computation over it

– Batch processing

o Producer/consumer: many producers append 
work to file concurrently; one consumer reads 
and does work

7



Workload-driven Design
o Build a global (distributed) file system that 

incorporates all these application properties

o Only supports features required by applications

o Avoid difficult local file system features, e.g.:
– rename dir
– links

8



Google File System (GFS) 
Overview

o Motivation

o Architecture

9



Replication

10

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A A



Replication

11

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C



Replication

12

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C

Similar to RAID, but less orderly than RAID
• Machines’ capacity may vary (resource heterogeneity)
• Different data may have different replication factors (application-driven)



Data Recovery

13

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C



Data Recovery

14

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C C



Data Recovery

15

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA

Replicating A to maintain a replication factor of 2



Data Recovery

16

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Replicating C to maintain a replication factor of 3



Data Recovery

17

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back



Data Recovery

18

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back



Data Recovery

19

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C



Data Recovery

20

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C

Data Rebalancing
Deleting one A to maintain a replication factor of 2



Data Recovery

21

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C



Data Recovery

22

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Data Rebalancing
Deleting one C to maintain a replication factor of 3



Data Recovery

23

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Question: how to maintain a global view of all data
distributed across machines?



GFS Architecture

24

Master

Clients GFS Servers



GFS Architecture

25

Master

Clients GFS Servers

RPC RPC

RPC



GFS Architecture

26

Master
[metadata]

Clients GFS Servers
[data]

RPC RPC

RPC
many many

one



GFS Architecture

27

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Master
[metadata]

Client 1 Client 2 Client 3



Data Chunks
o Break large GFS files into coarse-grained data 

chunks (e.g., 64MB)

o GFS servers store physical data chunks in local 
Linux file system (detail discussed in lec-6a/6b)

o Centralized master keeps track of mapping 
between logical and physical chunks

28



Chunk Map

29

Master

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…



GFS Server s2

30

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Master



Client Reads a Chunk

31

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

lookup 924

Master



Client Reads a Chunk

32

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

s2,s5,s7

Master



Client Reads a Chunk

33

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

ClientMaster



Client Reads a Chunk

34

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=0
size=1MB

Master



Client Reads a Chunk

35

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master



Client Reads a Chunk

36

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=1MB
size=1MB

Master



Client Reads a Chunk

37

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master



File Namespace

38

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

local fs
chunks/924 => data1
chunks/521 => data2
…

Client

path names mapped to logical names

file namespace:
/foo/bar => 924,813
/var/log => 123,999

Master



Google File System
MapReduce

Key-Value Store

39



MapReduce Overview
o Motivation

o Architecture

o Programming Model

40



Problem
o Datasets are too big to process using single 

machine

o Good concurrent processing engines are rare 
(back then in the late 90s)

o Want a concurrent processing framework that is:
– easy to use (no locks, CVs, race conditions)
– general (works for many problems)

41



MapReduce
o Strategy: break data into buckets, do 

computation over each bucket

o Google published details in 2004

o Open source implementation: Hadoop

42



Example: Word Count

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

43

How to quickly sum word counts with
multiple machines concurrently?



Example: Word Count

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

44

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

45

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

46

reducer 1

reducer 2

Reduce was

Reduce what

Reduce map

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

47

reducer 1

reducer 2

was: 114

what: 147

map: 10

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



MapReduce Overview
o Motivation

o Architecture

o Programming Model

48



MapReduce Architecture

49

Master

Worker Worker Worker

Master node

Slave node 1 Slave node 2 Slave node N

Chunks

Client

Chunks Chunks



MapReduce Architecture

50

Master

Worker Worker Worker

Master node

Slave node 1 Slave node 2 Slave node N

Chunks

Client

Chunks Chunks

GFS layer 
storing data 

chunks



MapReduce over GFS
o MapReduce writes and reads data to/from GFS

o MapReduce workers run on same machines as 
GFS server daemons

51

GFS
files Mappers Intermediate 

local files Reducers GFS
files



MapReduce Data Flows & 
Executions

52



53

GFS
files Mappers Intermediate 

local files Reducers GFS
files



MapReduce Overview
o Motivation

o Architecture

o Programming Model

54



Map/Reduce Function Types
o map(k1, v1) à list(k2, v2)
o reduce(k2, list(v2)) à list(k3, v3)

55



Hadoop API
public void map(LongWritable key, Text value) {

// WRITE CODE HERE
}

public void reduce(Text key, Iterator<IntWritable> values) 
{

// WRITE CODE HERE
}

56



MapReduce Word Count Pseudo Code

func mapper(key, line) {
for word in line.split()

yield word, 1
}

func reducer(word, occurrences) {
yield word, sum(occurrences)

}

57



MapReduce Word Count

58

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

59

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

60

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

61

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

62

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Grep

63

Very 
big

data

Split data
Split data
Split data

Split data

grep
grep
grep

grep

matches

matches
matches

matches

cat All
matches



Google File System
MapReduce

Key-Value Store

64Credit: Prof. Hector Garcia-Molina@Stanford



Key-Value Store

65

key value
k1 v1
k2 v2
k3 v3
k4 v4

Table T:



Key-Value Store

66

key value
k1 v1
k2 v2
k3 v3
k4 v4

Table T:

keys are sorted

o API:
– lookup(key) ® value
– lookup(key range) ® values
– getNext ® value
– insert(key, value)
– delete(key)

o Each row has timestemp
o Single row actions atomic

(but not persistent in some systems?)
o No multi-key transactions
o No query language!



Partitioning (Sharding)

67

key value
k1 v1
k2 v2
k3 v3
k4 v4
k5 v5
k6 v6
k7 v7
k8 v8
k9 v9
k10 v10

key value
k1 v1
k2 v2
k3 v3
k4 v4

key value
k5 v5
k6 v6

key value
k7 v7
k8 v8
k9 v9
k10 v10

server 1 server 2 server 3

• use a partition vector
• “auto-sharding”: vector selected automatically

tablets



Tablet Replication

68

key value
k7 v7
k8 v8
k9 v9
k10 v10

server 3 server 4 server 5

key value
k7 v7
k8 v8
k9 v9
k10 v10

key value
k7 v7
k8 v8
k9 v9
k10 v10

primary backup backup

• Cassandra:

Replication Factor (# copies)

R/W Rule: One, Quorum, All

Policy (e.g., Rack Unaware, Rack Aware, ...)

Read all copies (return fastest reply, do repairs if necessary)

• HBase: Does not manage replication, relies on HDFS



Need a “directory”
o Add naming hierarchy to a flat namespace

o Table Name: 
– Key ® Servers: stores key ® Backup servers

o Can be implemented as a special table

69



Tablet Internals

70

key value
k3 v3
k8 v8
k9 delete
k15 v15

key value
k2 v2
k6 v6
k9 v9
k12 v12

key value
k4 v4
k5 delete
k10 v10
k20 v20
k22 v22

memory

disk

Design Philosophy (?): Primary scenario is where all data is in memory
Disk storage added as an afterthought 



key value
k3 v3
k8 v8
k9 delete
k15 v15

key value
k2 v2
k6 v6
k9 v9
k12 v12

key value
k4 v4
k5 delete
k10 v10
k20 v20
k22 v22

memory

disk

Tablet Internals

71

flush periodically

• tablet is merge of all segments (files)
• disk segments imutable
• writes efficient; reads only efficient when all data in memory
• periodically reorganize into single segment

tombstone



Column Family

72

K A B C D E
k1 a1 b1 c1 d1 e1
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 a4 b4 c4 e4 e4
k5 a5 b5 null null null



Column Family

73

K A B C D E
k1 a1 b1 c1 d1 e1
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 a4 b4 c4 e4 e4
k5 a5 b5 null null null

• for storage, treat each row as a single “super value”
• API provides access to sub-values

(use family:qualifier to refer to sub-values
e.g., price:euros, price:dollars )

• Cassandra allows “super-column”:
two level nesting of columns
(e.g., Column A can have sub-columns X & Y )



Vertical Partitions

74

K A B C D E
k1 a1 b1 c1 d1 e1
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 a4 b4 c4 e4 e4
k5 a5 b5 null null null

K A
k1 a1
k2 a2
k4 a4
k5 a5

K B
k1 b1
k4 b4
k5 b5

K C
k1 c1
k2 c2
k4 c4

K D E
k1 d1 e1
k2 d2 e2
k3 d3 e3
k4 e4 e4

can be manually implemented as

server 1 server 2 server 3 server 4



Vertical 
Partitions

75

K A B C D E
k1 a1 b1 c1 d1 e1
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 a4 b4 c4 e4 e4
k5 a5 b5 null null null

K A
k1 a1
k2 a2
k4 a4
k5 a5

K B
k1 b1
k4 b4
k5 b5

K C
k1 c1
k2 c2
k4 c4

K D E
k1 d1 e1
k2 d2 e2
k3 d3 e3
k4 e4 e4

column family

• good for sparse data;
• good for column scans
• not so good for tuple reads
• are atomic updates to row still supported?
• API supports actions on full table; mapped to actions on column tables
• API supports column “project”
• To decide on vertical partition, need to know access patterns


