CS 471 Operating Systems

Yue Cheng

George Mason University
Spring 2019

Google File System
MapReduce
Key-Value Store

Google File System
MapReduce
Key-Value Store

Google File System (GFS)
Overview

o Motivation

o Architecture

GFS

o Goal: a global (distributed) file system that
stores data across many machines

— Need to handle 100’s TBs
o Google published details in 2003

o Open source implementation:
— Hadoop Distributed File System (HDFS)

e

Workload-driven Design

o Google workload characteristics
— Huge files (GBs)
— Almost all writes are appends
— Concurrent appends common
— High throughput is valuable
— Low latency is not

Example Workloads

o Read entire dataset, do computation over it
— Batch processing

o Producer/consumer: many producers append
work to file concurrently; one consumer reads
and does work

Workload-driven Design

o Build a global (distributed) file system that
iIncorporates all these application properties

o Only supports features required by applications

o Avoid difficult local file system features, e.g.:
— rename dir
— links

Google File System (GFS)
Overview

o Motivation

o Architecture

GFS Server 1

Replication

GFS Server 2

GFS Server 1

Replication

GFS Server 2

Replication

a5 senver 1 J] G Semer m w

Similar to RAID, but less orderly than RAID

« Machines’ capacity may vary (resource heterogeneity)

« Different data may have different replication factors (application-driven)

12

GFS Server 1

Data Recovery

GFS Server 2

GFS Server 1

Data Recovery

mpo—" *

Data Recovery

* m
\
Replicating A to maintain a replication factor of 2

—

15

Data Recovery

a5 senver 1 J] G Semer * w

Replicating C to maintain a replication factor of 3

16

Data Recovery

m—" *

Machine may be dead forever, or it may come back

GFS Server 1

17

Data Recovery

GFS Server 1

GFS Server 2

Machine may be dead forever, or it may come back

18

GFS Server 1

Data Recovery

GFS Server 2

Data Recovery

a5 senver 1 J] G Semer m w

Data Rebalancing

Deleting one A to maintain a replication factor of 2

20

GFS Server 1

Data Recovery

GFS Server 2

21

Data Recovery

a5 senver 1 J] G Semer m w
LI

Data Rebalancing

Deleting one C to maintain a replication factor of 3

22

Data Recovery

GFS Server 1

GFS Server 2

Question: how to maintain a global view of all data
distributed across machines?

23

GFS Architecture

Master

Clients GFS Servers

24

GFS Architecture

Master

Clients GFS Servers

25

GFS Architecture

Master
[metadata]

Clients GFS Servers
[data]

many many

26

GFS Architecture

=N o .

[metadata]

Data Chunks

o Break large GFS files into coarse-grained data
chunks (e.g., 64MB)

o GFS servers store physical data chunks in local
Linux file system (detail discussed in lec-6a/6b)

o Centralized master keeps track of mapping
between logical and physical chunks

28

Master

chunk map

logical

s2,85,s7
s2,59,s11

Chunk Map

29

GFS Server s2

Master GFS server s2

chunk map local fs

chunks/924 => data1

$2,85,87 hunks/521 = 2
5259 511 chunks/5 > data

logical

30

Client Reads a Chunk

Master Client GFS server s2

chunk map

s2,85,57
s2,59,s11

local fs

chunks/924 => data1
chunks/521 => data2

31

Client Reads a Chunk

Master Client GFS server s2

chunk map
|Ogica| 52,35,57

s2,85,57
s2,59,s11

local fs

chunks/924 => data1
chunks/521 => data2

32

Client Reads a Chunk

Master GFS server s2

chunk map local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical

33

Client Reads a Chunk

Client GFS server s2

Master

chunk map

: local fs
tofios] read 924:
offset=0 chunks/924 => data1
s2,s5,87 SIPERIVIS N chunks/521 => data2

s2,59,s11

34

Client Reads a Chunk

Master Client GFS server s2

chunk map local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical

35

Client Reads a Chunk

Client GFS server s2

Master

chunk map

: local fs
tofios] read 924:
offset=1 VISl chunks/924 => data1
s2,s5,87 SIPERIVIS N chunks/521 => data2

s2,59,s11

36

Client Reads a Chunk

Master Client GFS server s2

chunk map local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical

37

File Namespace

Master Client GFS server s2
.Jile namespace: .
/ffoo/bar =>924,813

chunk map local fs

chunks/924 => data1

s2,85,s7 chunks/521 => data2
s2,59,s11

logical

path names mapped to logical names

38

Google File System
MapReduce
Key-Value Store

MapReduce Overview

o Motivation
o Architecture

o Programming Model

40

Problem

o Datasets are too big to process using single
machine

o Good concurrent processing engines are rare
(back then in the late 90s)

o Want a concurrent processing framework that is:
— easy to use (no locks, CVs, race conditions)
— general (works for many problems)

MapReduce

o Strategy: break data into buckets, do
computation over each bucket

o Google published details in 2004

o Open source implementation: Hadoop

G hEDbED

was
what
was
what
was

map

Example: Word Count

28
129
54
18
32
10

How to quickly sum word counts with
multiple machines concurrently?

: Word Count

was

what
was
what
was

map

28
129
54
18
32
10

Example
mapper 1

was 28
129

was 54
mapper 2

what 18

was 32

map 10

44

Vord coun

was
what
was
what
was

map

28
129
54
18
32
10

Example: Word Count

mapper 1
was 28

was | 28+54
what 129

what | 129
was 54
mapper 2
what 18 what | 18
was 32 was |32
map 10 map |10

45

was
what
was
what
was

map

28
129

54
18
32
10

Example: Word Count

reducer 1

was

28+54

Reduce was

what

129

reducer 2

what

18

Reduce what

mapper 1
was 28
what 129
was 24

mapper 2
what 18
was 32
map 10

was

32

map

10

e

46

was
what
was
what
was

map

28
129

54
18
32
10

Example: Word Count

reducer 1

was

28+54

was: 114

what

129

reducer 2

what

18

what: 147

mapper 1
was 28
what 129
was 24

mapper 2
what 18
was 32
map 10

was

32

map

10

i

47

MapReduce Overview

o Motivation
o Architecture

o Programming Model

48

MapReduce Architecture

. M rn :
Client : aster node !

3

Slave node 1 Slave node N

Chunks | | Chunks | . Chunks |,

MapReduce Architecture

. Master node

Client
8 GFS layer
storing data
""""""" chunks

Slave node N

Slave node 1

! | g | |
IJ : IJ : IJ

MapReduce over GFS

o MapReduce writes and reads data to/from GFS

o MapReduce workers run on same machines as
GFS server daemons

Intermediate GFS
Mappers : Reducers .
local files files

51

MapReduce Data Flows &
Executions

User
Program
() fork ." : e
© (1) fork t1) fork
. e
&) assign
_.assign reduce .

map :

split 0

split 1

split 2

output
file O

(6) wrile
worker
(5) remote read

split 3

M(—\ (4) local write
worker

split 4

output
file 1

Input
files

Map Intermediate files Reduce
phase (on local disks) phase

Output
files

52

User

Program
1) fork .* : s
(1) for] (1) fork (l.).fork
. - ®
) assign
.assign reduce .
" map
split 0 (6) write
b hit 1 (5) remote read s
split 2 —M“___O (4) local write
worker >
split 4
Input Map Intermediate files Reduce
files phase (on local disks) phase

Intermediate

Mappers ocal files Reducers

output
file O

output
file 1

Output
files

MapReduce Overview

o Motivation
o Architecture

o Programming Model

54

Map/Reduce Function Types

o map(ki1, v1) = list(k2, v2)
o reduce(k2, list(v2)) = list(k3, v3)

Hadoop API

public void map(LongWritable key, Text value) {
// WRITE CODE HERE

public void reduce(Text key, Iterator<IntWritable> values)

{
// WRITE CODE HERE

56

MapReduce Word Count Pseudo Code

func mapper(key, line) {
for word in line.split()
vield word, 1

b

func reducer(word, occurrences) {
vield word, sum(occurrences)

b

57

Very
big
data

90F
o 20

= =
058
=
o B
o uy)

MapReduce Word Count

MapReduce Word Count

Split data |-
big | — | Split data |-
data .

Split data |-

The overall !
Input Splitting

Deer Bear River ——m

Deer Bear River
Car Car River » CarCarRiver ——m
Deer Car Bear

Deer CarBear —»

MapReduce Word Count

Split data | — count—
Very Split data | — COUNt—
big | | Split data | — count—
data n
|
Split data | — count—
The overall MapReduce word co
Input Splitting Mapping
Deer,1 —— =
Deer Bear River » Bear, 1
River, 1
Deer Bear River Car, 1
Car Car River » Car Car River » Car, 1
Deer Car Bear River, 1
Deer, 1
Deer Car Bear » Car, 1
Bear, 1

MapReduce Word Count

Split data | — COUNt— | count
Very Split data | — COUNt— | count
big | | Splitdata |— COUNt—| count |~
data . .

Split data | — COUNt— | coynt

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing
Bear, 1 » Bear, 2
Deer, 1 » Bear, 1
Deer Bear River » Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3
Deer Bear River Car, 1 Car, 1
Car Car River » Car Car River » Car, 1
Deer Car Bear River, 1
Deer, 1 » Deer, 2
Deer, 1
Deer, 1
Deer Car Bear » Car, 1
Bear, 1 River, 1 » River, 2
River, 1

Very
big
data

Split data

Split data

Split data

Input

Split data

Splitting

Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Car Car River

Deer Car Bear

MapReduce Word Count

— COU nt—» count
Merged
—_— count—, —-mnerge —
count 9 counts
|
|
The overall MapReduce word count process
Mapping Shuffling Reducing Final result
Bear, 1 » Bear, 2
Deer, 1 » Bear, 1
» Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3 » Bear, 2
Car, 1 Car, 1 Car, 3
» Car, 1 Deer, 2
River, 1 River, 2
Deer, 1 » Deer, 2 -
Deer, 1
Deer, 1
» Car, 1
Bear, 1 River, 1 » River, 2
River, 1

62

Very
big
data

MapReduce Grep

Split data

Split data

Split data

Split data

— grep —
— grep —
— grep —

— grep —

matches

matches

matches

matches

— cat —

All
matches

Google File System
MapReduce
Key-Value Store

Credit: Prof. Hector Garcia-Molina@ Stanford

Table T:

Key-Value Store

key value
k1 vl
k2 v2
k3 v3
k4 v4

65

Key-Value Store

o API:

Table T: key value — lookup(key) — wvalue
k1 vi — lookup(key range) — values
k2 v2
— getNext — value
k3 v3 .
— 1nsert(key, value)
k4 v4

— delete(key)
! o Each row has timestemp

/

keys are sorted o Single row actions atomic
(but not persistent in some systems?)

o No multi-key transactions
o No query language!

>
N

66

Partitioning (Sharding)

use a partition vector
“auto-sharding”: vector selected automatically

| | |
! server 1 ! server 2 ! server 3
: : :
| key value |, o —4
: k1 vl \ _ LS
1 4= = | N\
key value ! k2 v2 , , \
k1 vi == k3 v3 ; : '
k2 v2 ; k4 v4 ! ! PRI \|
k3 v3 ! ! 1 J \
" 2 : | key value |* ,~ tablets
k5 s | i HI' kS v5 i !
k6 v6 : : k6 v6 : ¥
5 i : : : key value
k8 v8 ' : > k7 v7
k9 v9 : ' I>
1 1 1 k8 v8
ko | wvio || | e | w
: ! ' ko v10
| | |
| | |

67

Tablet Replication

| | |

! server 3 ! server 4 ! server 5

: : I

| | |

| | |

: key value : key value ! key value
: k7 v7 : k7 v7 : k7 v7
: k8 v8 : k8 v8 : k8 v8
I k9 v9 I ko v9 I k9 v9
[k10 vio | 1| k10 vio | k10 v10
: : |

| | |

: primary . backup : backup

| | |

| | |

e (Cassandra:

Replication Factor (# copies)

R/W Rule: One, Quorum, All

Policy (e.g., Rack Unaware, Rack Aware, ...)

Read all copies (return fastest reply, do repairs if necessary)
e HBase: Does not manage replication, relies on HDFS

68

Need a “directory”

o Add naming hierarchy to a flat namespace

o Table Name:
— Key — Servers: stores key —» Backup servers

o Can be implemented as a special table

69

Tablet Internals

Design Philosophy (?): Primary scenario is where all data is in memory

Disk storage added as an afterthought

key value
k3 v3
k8 v8
ko delete memory
k15 v15
key value key value
k2 v2 k4 v4
k6 V6 k5 delete disk
k9 vO k10 v10
k12 v12 k20 v20
k22 v22

70

Tablet Internals

tablet is merge of all segments (files)

tombstone

key value /,//

k3 v3 . ’

k8 v8 .’

k9 delete _ memory

k15 v1l5
key value key value flush periodically
k2 v2 k4 v4
k6 v6 k5 delete disk
k9 V9 k10 v10
k12 v12 k20 v20

k22 v22

disk segments imutable
writes efficient; reads only efficient when all data in memory
periodically reorganize into single segment

71

Column

Family

K A B C D E

k1 al bl cl dl el
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 ad b4 cd el ed
k5 a5 b5 null null null

72

Column Family

K A B C D E
k1 al bl cl dl el
k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 ad b4 c4 ed ed
k5 null

(a5 b5 null null null i)
S——

o for storage, treat each row as a single “super value”
e API provides access to sub-values
(use family:qualifier to refer to sub-values
e.g., price:euros, price:dollars)
e (Cassandra allows “super-column”:
two level nesting of columns
(e.g., Column A can have sub-columns X & Y)

73

Vertical Partitions

K A B C D E

k1 al bl cl dl el

k2 a2 null c2 d2 e2

k3 null null null d3 e3

k4 a4 b4 c4 e4 e4

k5 ab b5 null null null

@ can be manually implemented as

K A K B K C K D E
k1 al k1l bl k1 cl k1 di el
k2 a2 k4 b4 k2 c2 k2 d2 e2
k4 a4 k5 b5 k4 c4 k3 d3 e3
k5 a5 k4 e4 e4
server 1 server 2 server 3 server 4

74

Vertical [s [s [c T o [
k1 al bl cl di el
Pa rtitions k2 a2 null c2 d2 e2
k3 null null null d3 e3
k4 ad b4 c4 ed ed
k5 a5 b5 null null null
@ column family
K A K B K C K ‘D E
k1 al k1 bl k1 c1 k1 dl | el
k2 a2 k4 b4 k2 c2 k2 d2 e2
k4 a4 k5 b5 k4 c4 k3 d3 e3
k5 a5 k4 ed ed

e good for sparse data;

e good for column scans

e not so good for tuple reads

e are atomic updates to row still supported?

e API supports actions on full table; mapped to actions on column tables

e API supports column “project”

e To decide on vertical partition, need to know access patterns 75

