CS 471 Operating Systems

Yue Cheng

George Mason University
Spring 2019

Google File System MapReduce Key-Value Store

Google File System MapReduce Key-Value Store

Google File System (GFS) Overview

Motivation

Architecture

GFS

- Goal: a global (distributed) file system that stores data across many machines
 - Need to handle 100's TBs

- Google published details in 2003
- Open source implementation:
 - Hadoop Distributed File System (HDFS)

Workload-driven Design

- Google workload characteristics
 - Huge files (GBs)
 - Almost all writes are appends
 - Concurrent appends common
 - High throughput is valuable
 - Low latency is not

Example Workloads

- Read entire dataset, do computation over it
 - Batch processing
- Producer/consumer: many producers append work to file concurrently; one consumer reads and does work

Workload-driven Design

 Build a global (distributed) file system that incorporates all these application properties

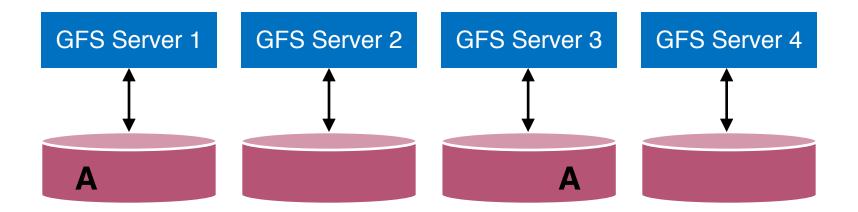
- Only supports features required by applications
- Avoid difficult local file system features, e.g.:
 - rename dir
 - links

Google File System (GFS) Overview

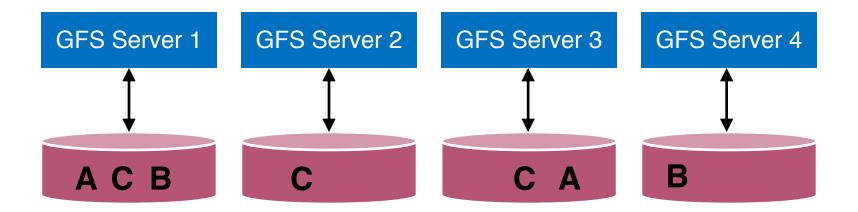
Motivation

Architecture

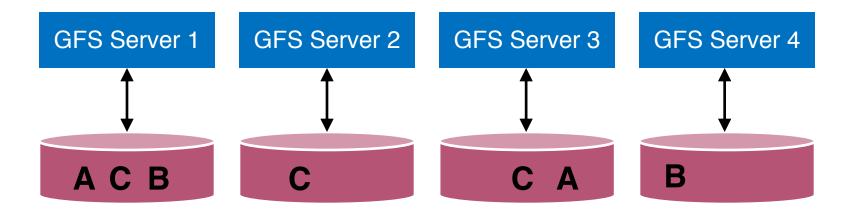
Replication



Replication

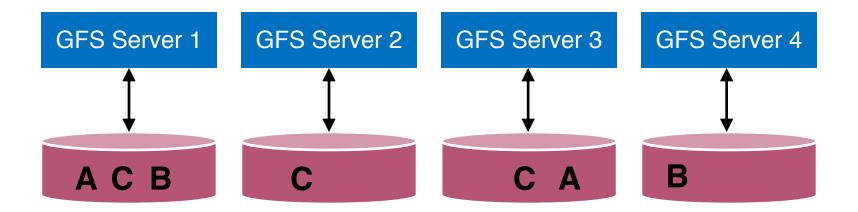


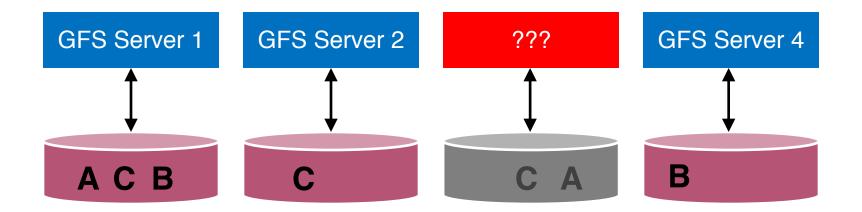
Replication

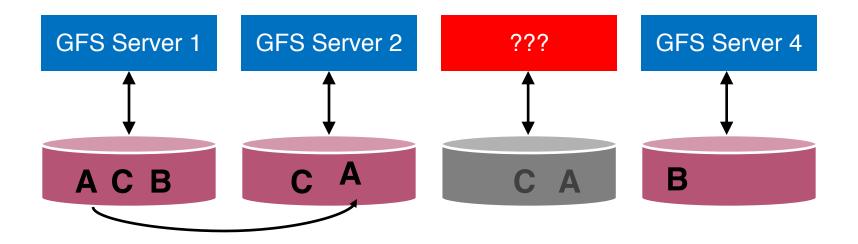


Similar to RAID, but less orderly than RAID

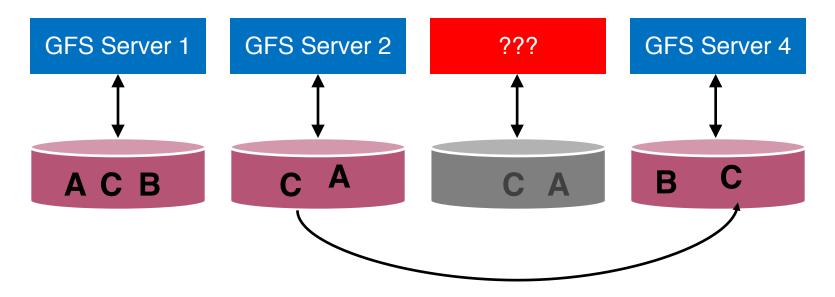
- Machines' capacity may vary (resource heterogeneity)
- Different data may have different replication factors (application-driven)



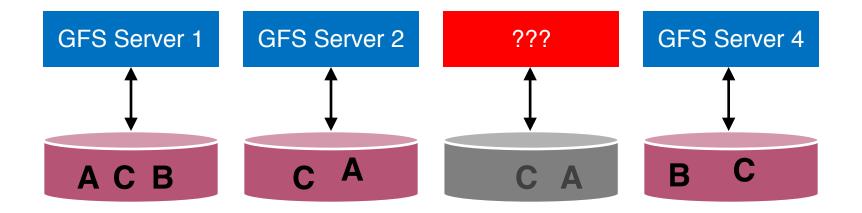




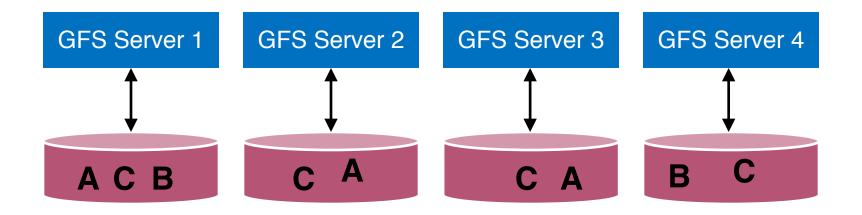
Replicating A to maintain a replication factor of 2



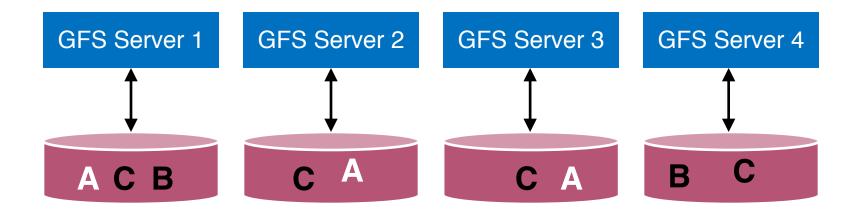
Replicating C to maintain a replication factor of 3

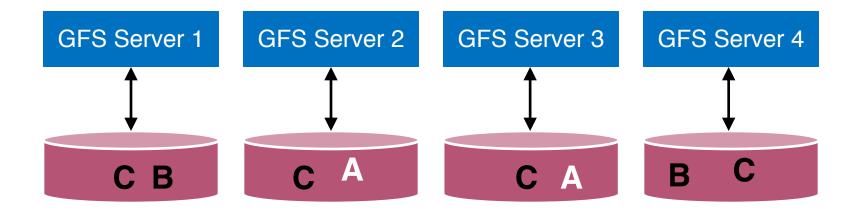


Machine may be dead forever, or it may come back



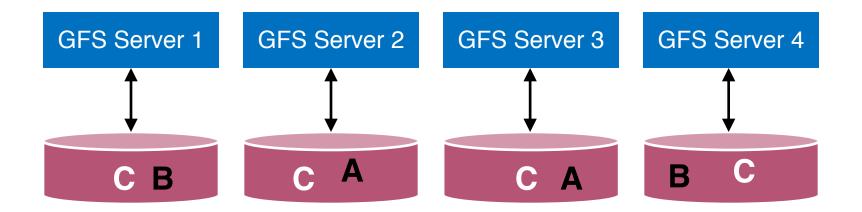
Machine may be dead forever, or it may come back

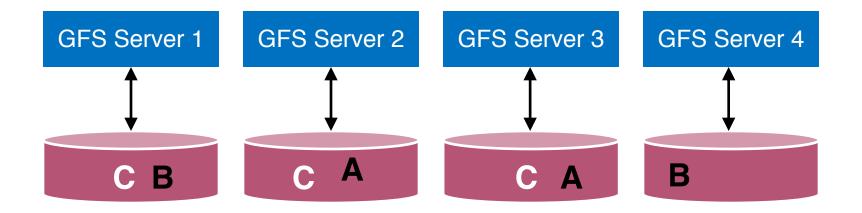




Data Rebalancing

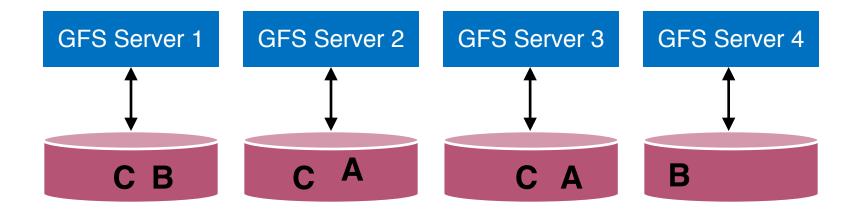
Deleting one A to maintain a replication factor of 2



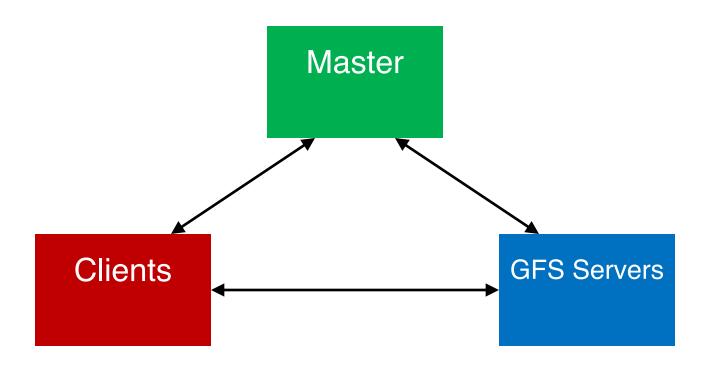


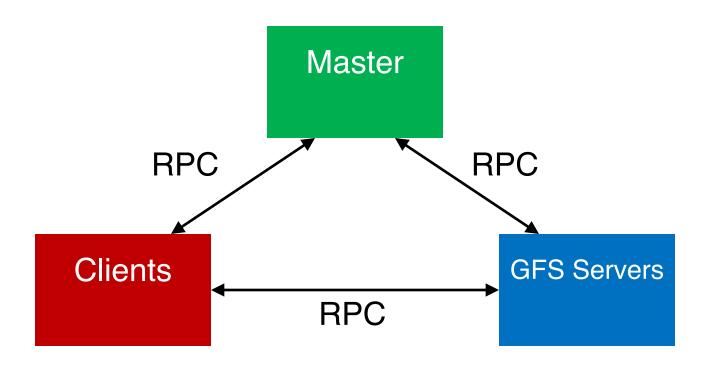
Data Rebalancing

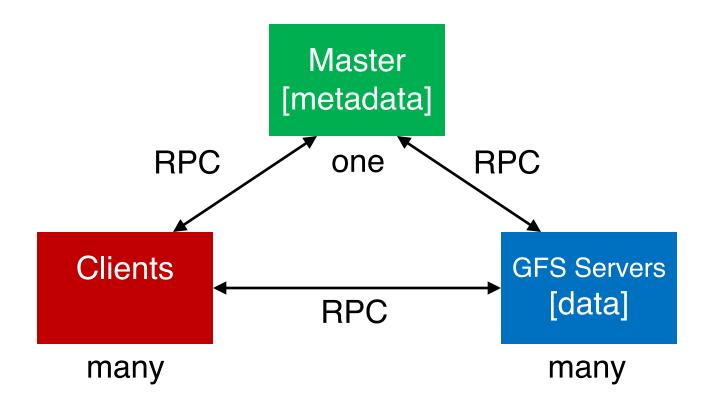
Deleting one C to maintain a replication factor of 3

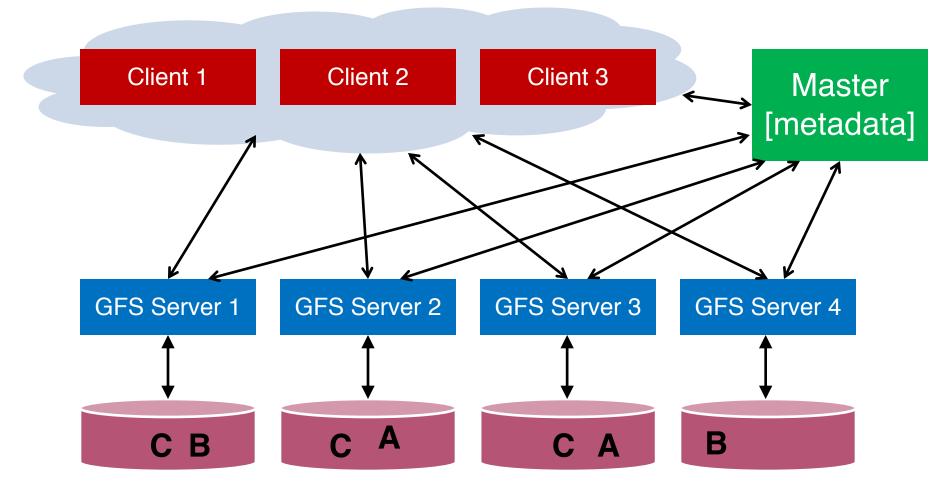


Question: how to maintain a global view of all data distributed across machines?









Data Chunks

 Break large GFS files into coarse-grained data chunks (e.g., 64MB)

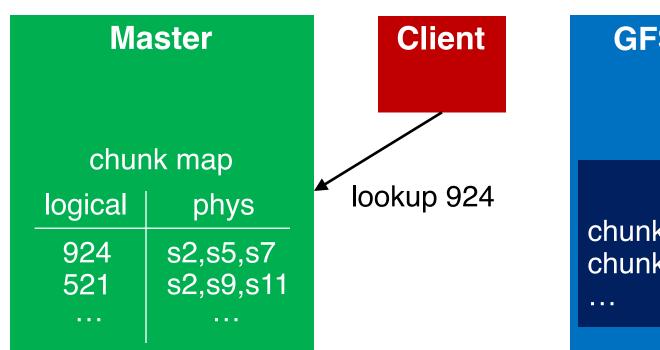
- GFS servers store physical data chunks in local Linux file system (detail discussed in lec-6a/6b)
- Centralized master keeps track of mapping between logical and physical chunks

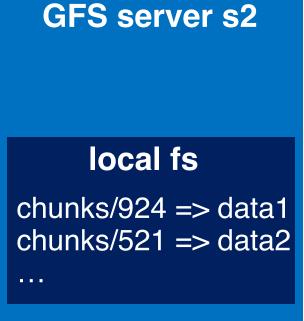
Chunk Map

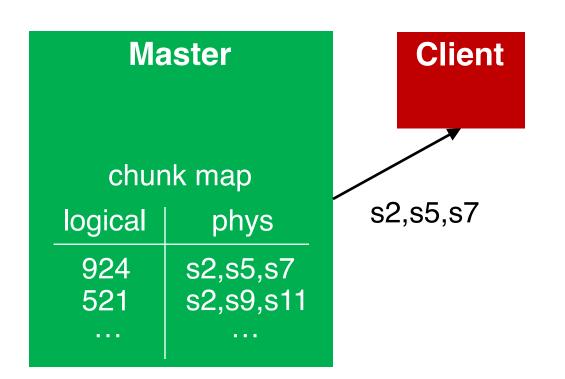
chunk map logical phys 924 s2,s5,s7 521 s2,s9,s11 ...

GFS Server s2

chunk map logical phys 924 s2,s5,s7 521 s2,s9,s11 ...



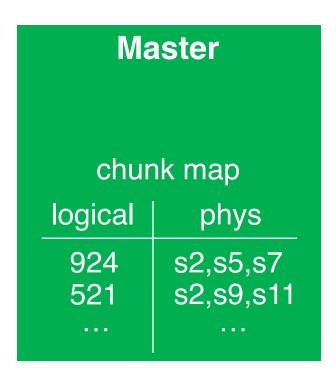


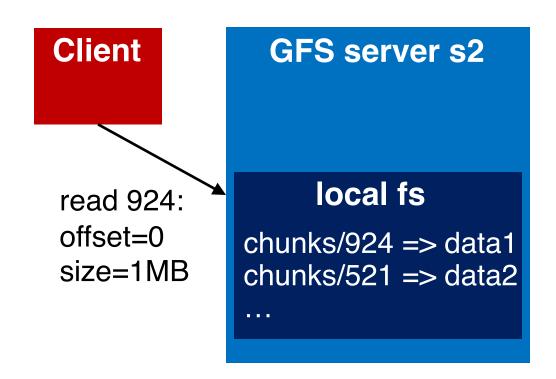


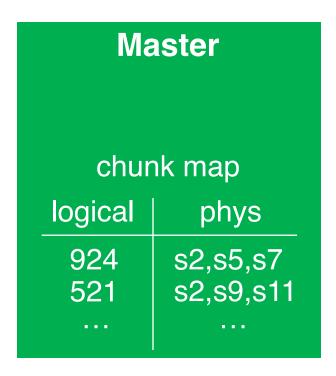
chunk map
logical phys
924 s2,s5,s7
521 s2,s9,s11
...

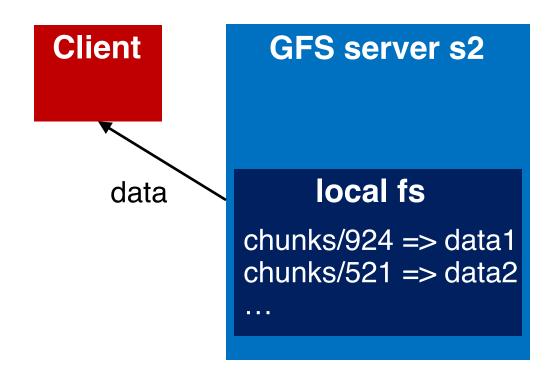
Client

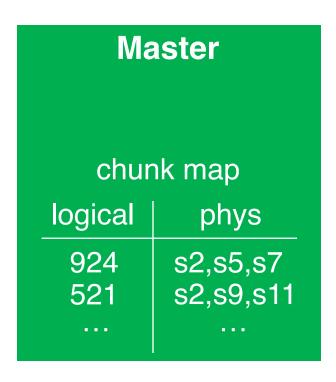
Iocal fs
chunks/924 => data1
chunks/521 => data2
...

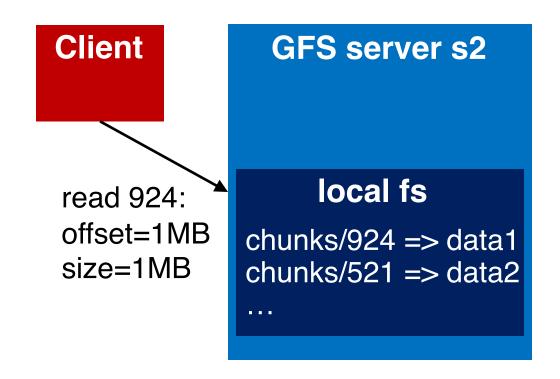




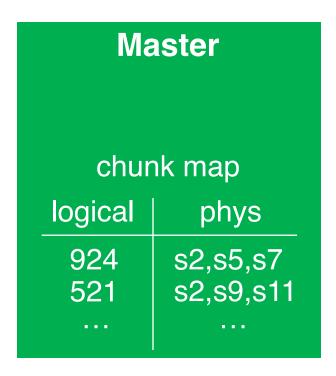


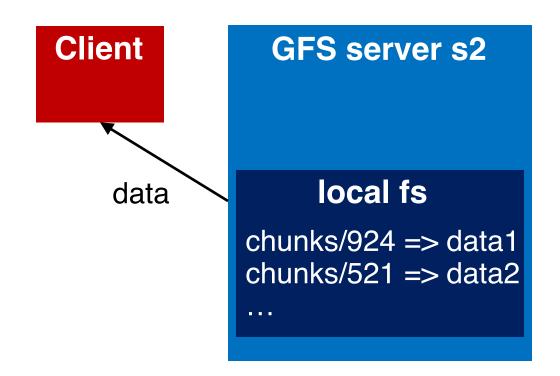






Client Reads a Chunk





File Namespace

path names mapped to logical names

Google File System MapReduce Key-Value Store

MapReduce Overview

Motivation

Architecture

Programming Model

Problem

 Datasets are too big to process using single machine

- Good concurrent processing engines are rare (back then in the late 90s)
- Want a concurrent processing framework that is:
 - easy to use (no locks, CVs, race conditions)
 - general (works for many problems)

MapReduce

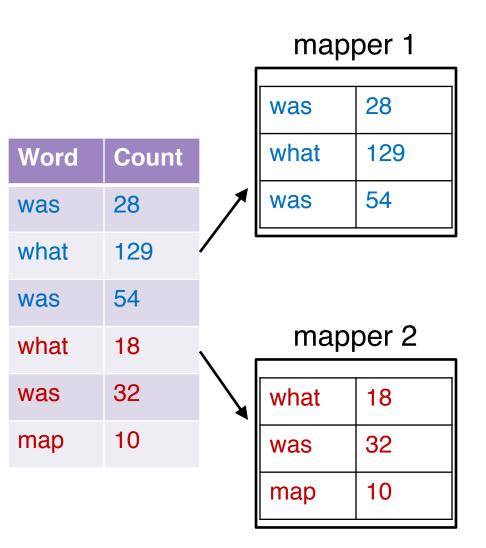
 Strategy: break data into buckets, do computation over each bucket

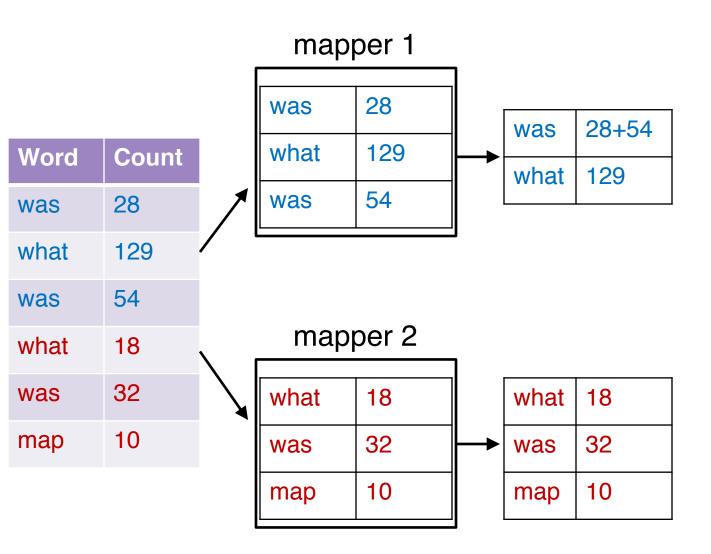
Google published details in 2004

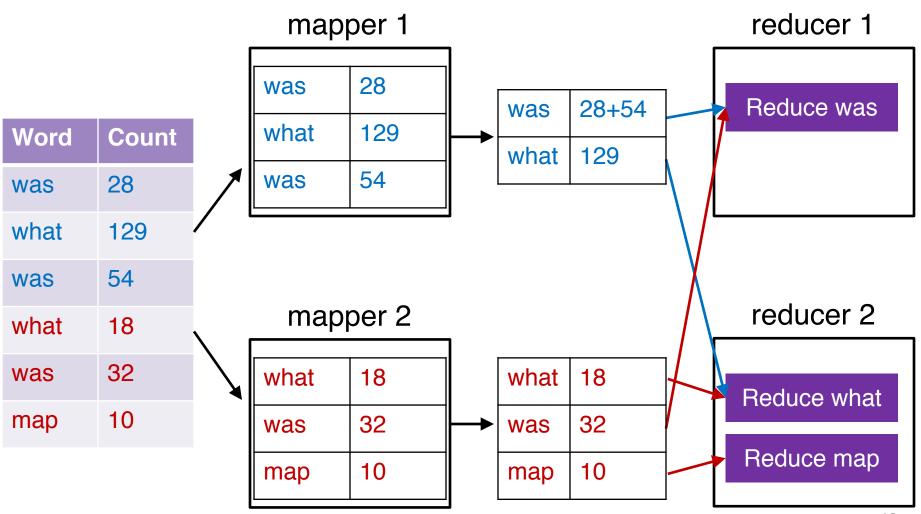
Open source implementation: Hadoop

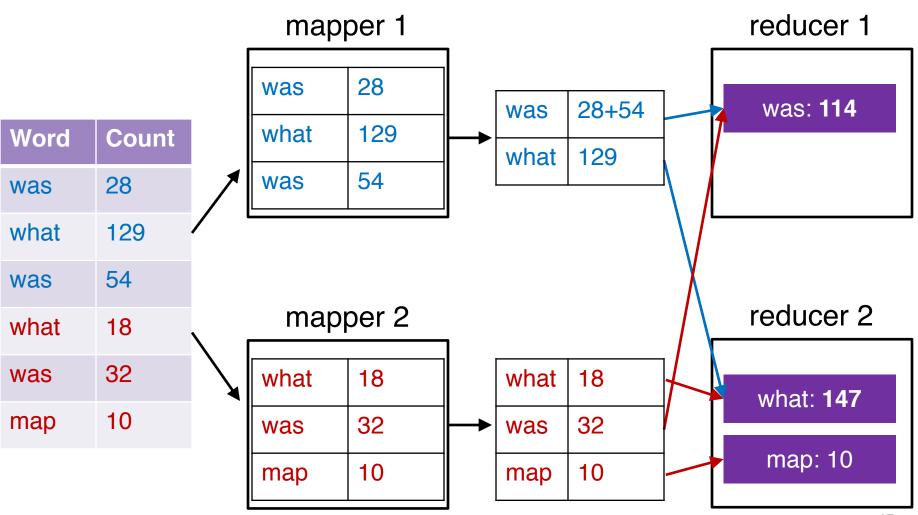
Word	Count
was	28
what	129
was	54
what	18
was	32
map	10

How to quickly sum word counts with multiple machines concurrently?









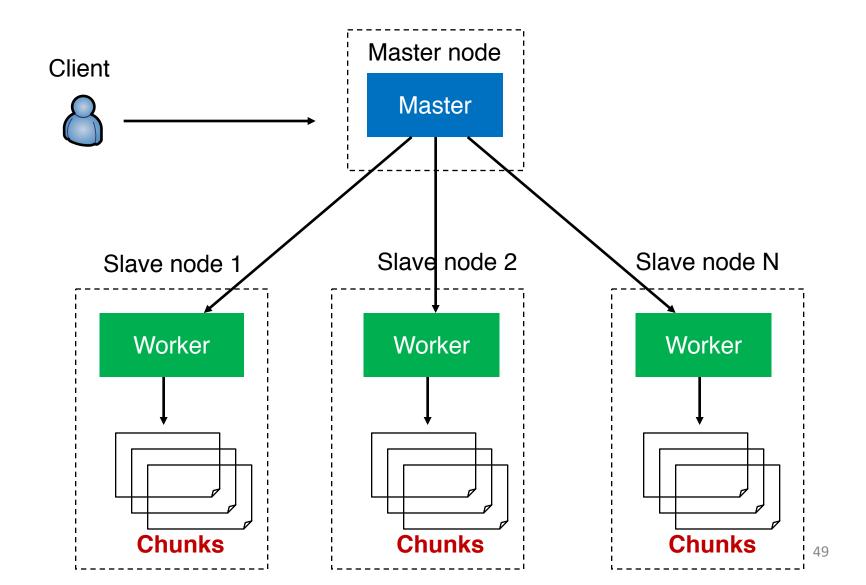
MapReduce Overview

Motivation

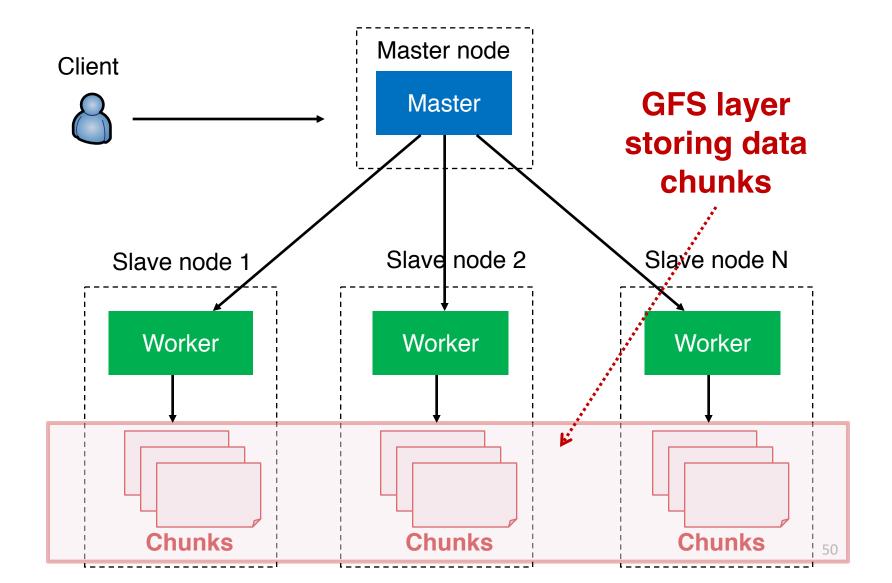
Architecture

Programming Model

MapReduce Architecture



MapReduce Architecture



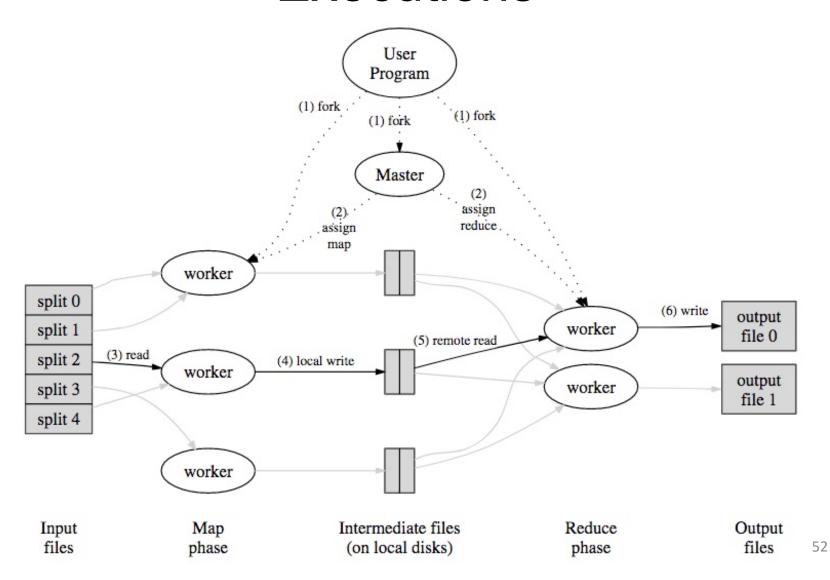
MapReduce over GFS

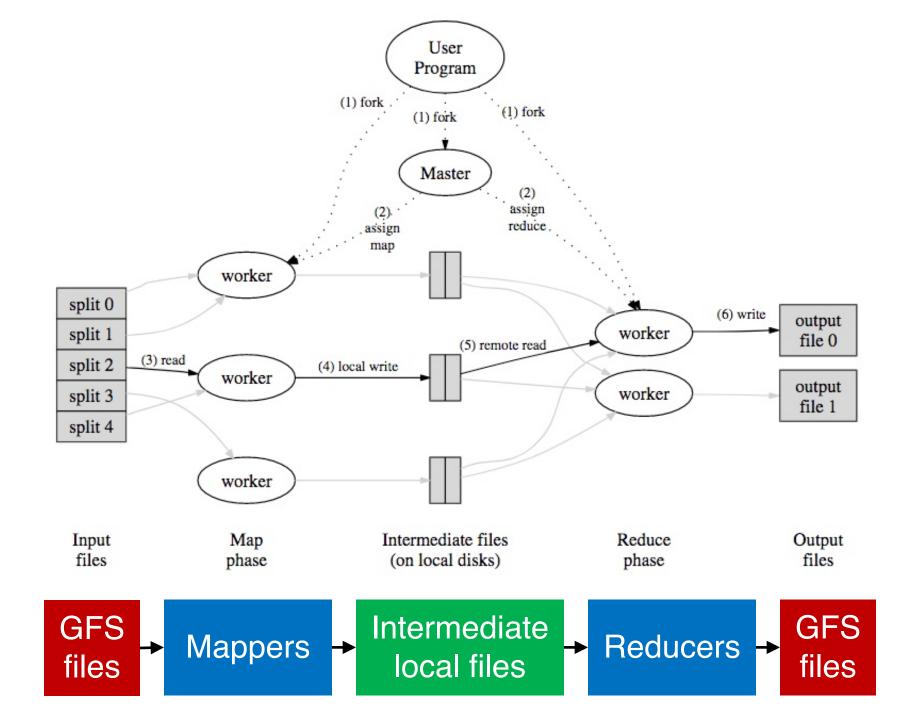
MapReduce writes and reads data to/from GFS

 MapReduce workers run on same machines as GFS server daemons



MapReduce Data Flows & Executions





MapReduce Overview

Motivation

Architecture

Programming Model

Map/Reduce Function Types

```
\circ map(k1, v1) \rightarrow list(k2, v2)
```

 \circ reduce(k2, list(v2)) \rightarrow list(k3, v3)

Hadoop API

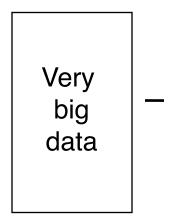
```
public void map(LongWritable key, Text value) {
    // WRITE CODE HERE
}

public void reduce(Text key, Iterator<IntWritable> values) {
    // WRITE CODE HERE
}
```

MapReduce Word Count Pseudo Code

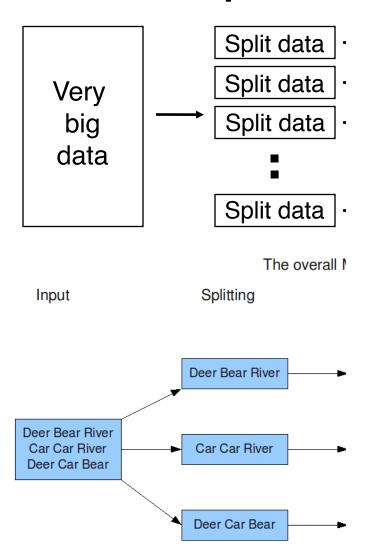
```
func mapper(key, line) {
    for word in line.split()
        yield word, 1
}

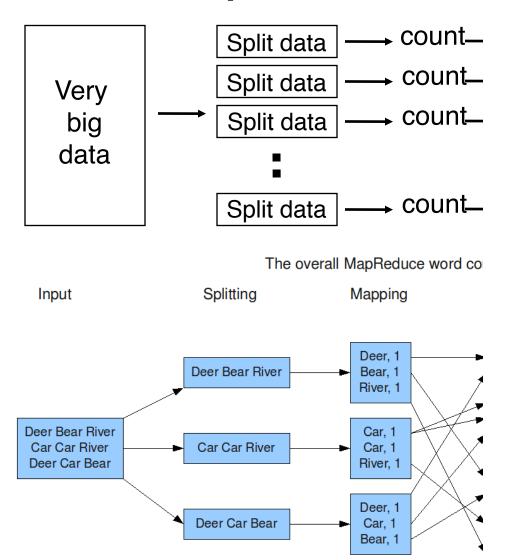
func reducer(word, occurrences) {
    yield word, sum(occurrences)
}
```

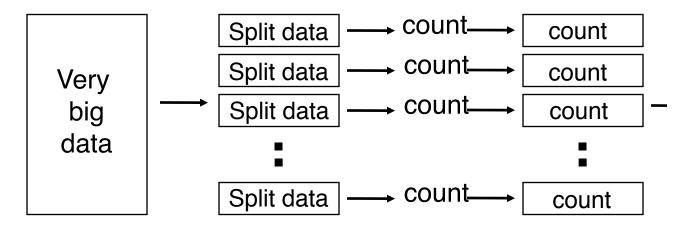


Input

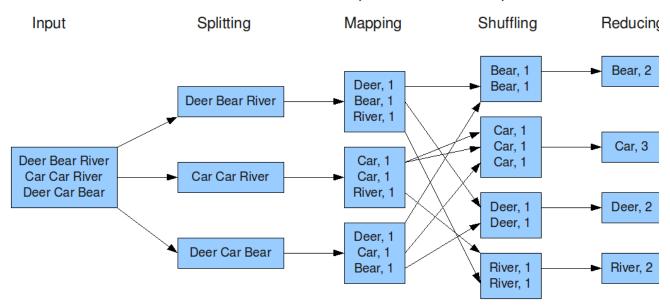


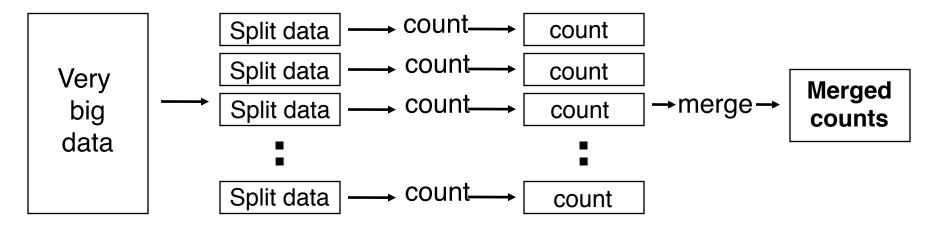




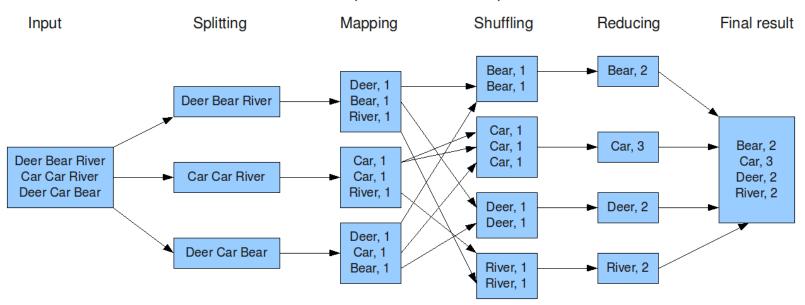


The overall MapReduce word count process

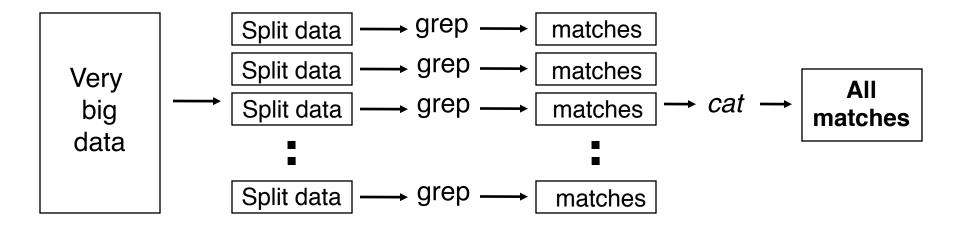




The overall MapReduce word count process



MapReduce Grep



Google File System MapReduce Key-Value Store

Key-Value Store

Table T:

key	value
k1	v1
k2	v2
k3	v3
k4	v4

Key-Value Store

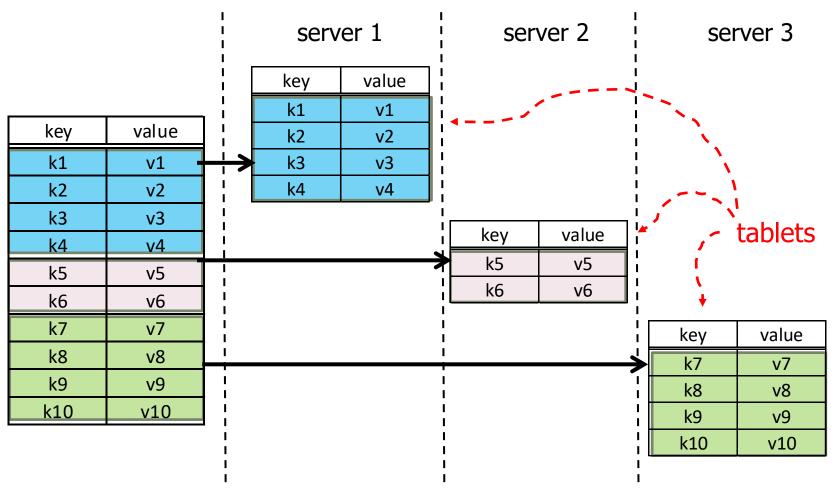
key	value
k1	v1
k2	v2
k3	v3
k4	v4

keys are sorted

o API:

- lookup(key) \rightarrow value
- lookup(key range) \rightarrow values
- getNext \rightarrow value
- insert(key, value)
- delete(key)
- Each row has timestemp
- Single row actions atomic (but not persistent in some systems?)
- No multi-key transactions
- No query language!

Partitioning (Sharding)



- use a partition vector
- "auto-sharding": vector selected automatically

Tablet Replication

server 3 server 4 server 5 key value key value key value k7 v7 k7 v7 k7 v7 k8 v8 k8 **8**v k8 v8 k9 v9 k9 v9 k9 v9 k10 v10 k10 v10 k10 v10 primary backup backup

Cassandra:

Replication Factor (# copies)

R/W Rule: One, Quorum, All

Policy (e.g., Rack Unaware, Rack Aware, ...)

Read all copies (return fastest reply, do repairs if necessary)

HBase: Does not manage replication, relies on HDFS

Need a "directory"

Add naming hierarchy to a flat namespace

- Table Name:
 - Key → Servers: stores key → Backup servers
- Can be implemented as a special table

Tablet Internals

key	value
k3	v3
k8	v8
k9	delete
k15	v15

memory

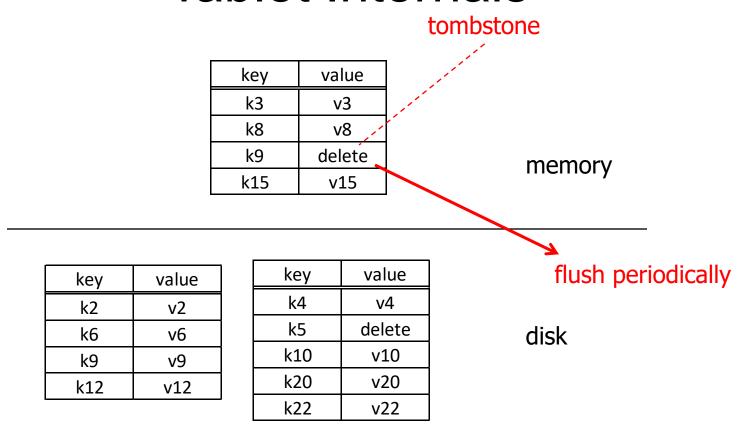
key	value
k2	v2
k6	v6
k9	v9
k12	v12

key	value
k4	v4
k5	delete
k10	v10
k20	v20
k22	v22

disk

Design Philosophy (?): Primary scenario is where all data is in memory Disk storage added as an afterthought

Tablet Internals



- tablet is <u>merge</u> of all segments (files)
- disk segments imutable
- writes efficient; reads only efficient when all data in memory
- periodically reorganize into single segment

Column Family

K	Α	В	С	D	Е
k1	a1	b1	c1	d1	e1
k2	a2	null	c2	d2	e2
k3	null	null	null	d3	e3
k4	a4	b4	c4	e4	e4
k5	a5	b5	null	null	null

Column Family

K	А	В	С	D	E		
k1	a1	b1	c1	d1	e1		
k2	a2	null	c2	d2	e2		
k3	null	null	null	d3	e3		
k4	a4	b4	c4	e4	e4		
k5	a5	b5	null	null	null		

- for storage, treat each row as a single "super value"
- API provides access to sub-values
 (use family:qualifier to refer to sub-values
 e.g., price:euros, price:dollars)
- Cassandra allows "super-column": two level nesting of columns (e.g., Column A can have sub-columns X & Y)

Vertical Partitions

K	Α	В	С	D	Е
k1	a1	b1	c1	d1	e1
k2	a2	null	c2	d2	e2
k3	null	null	null	d3	e3
k4	a4	b4	c4	e4	e4
k5	a5	b5	null	null	null

can be manually implemented as

K	Α
k1	a1
k2	a2
k4	a4
k5	a5

K	В
k1	b1
k4	b4
k5	b5

K	С
k1	c1
k2	c2
k4	c4

K	D	Е
k1	d1	e1
k2	d2	e2
k3	d3	e3
k4	e4	e4

server 1

server 2

server 3

server 4

Vertical Partitions

K	А	В	С	D	Е
k1	a1	b1	c1	d1	e1
k2	a2	null	c2	d2	e2
k3	null	null	null	d3	e3
k4	a4	b4	c4	e4	e4
k5	a5	b5	null	null	null

column family

K	А
k1	a1
k2	a2
k4	a4
k5	a5

K	В
k1	b1
k4	b4
k5	b5

K	С
k1	c1
k2	c2
k4	c4
IN-T	C-T

/^		
K	Ο,	E
k1	d1	e1
k2	d2	e2
k3	d3	e3
k4	e4	e4

- good for sparse data;
- good for column scans
- not so good for tuple reads
- are atomic updates to row still supported?
- API supports actions on full table; mapped to actions on column tables
- API supports column "project"
- To decide on vertical partition, need to know access patterns