CS 471 Operating Systems

Yue Cheng

George Mason University Spring 2019

Final Exam

- Monday, May 13, 7:30am 10:00am
 150 min, closed book, closed note
- Covering topics from lec-0 to lec-6b
 (not including "big data infrastructure" of lec-7)
- Overall topic distribution: Three pillars of OS
 Synchronization: ~20%
 - Memory mgmt. & cache replacement policies: ~30%
 - I/O, storage (HDD, flash), RAID, and FS: ~50%

Solving Synchronization Problems w/ CV

- Condition variables (CV): an explicit queue that threads can put themselves when some condition is not as desired (by waiting on that condition)
- Good rules of thumb when using CV
 - Always do wait and signal while holding the lock
 - Lock is used to provide mutual exclusive access to the shared resource
 - while() is used to always guarantee to re-check (reenter) if the condition is being updated by others

Classic Problems of Synchronization

- Producer-consumer problem (various CV-based implementations)
 - How/why a buggy implementation breaks
 - Why the correct implementation works

Readers-writers problem

- Should understand how it works
- Constraints for the readers, and constraints for the writers

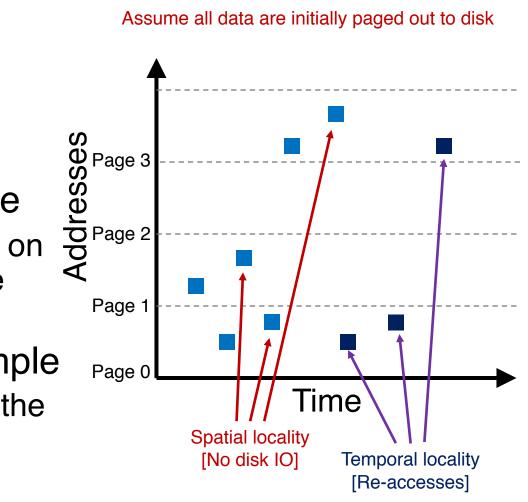
Memory Management: Addresses & PT

Virtual addresses and physical addresses

- VPN, PFN, page offset
- Virtual address = VPN I offset
 - Assume a 18-bit virtual address space
 - 4KB pages: offset has 12 bits
 - 18–12=6: VPN has 6 bits (2⁶ pages)
- Virtual to physical address translation
 - (Basic) linear page table: index of array using VPN
 - Each PTE contains PFN and other status info

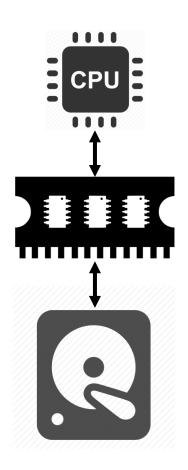
Memory Management: Demand Paging

Demand paging


- Paging-in: Access to a single byte on disk causes a page fault, which brings in the whole page
- Swapping-out: System is suffering memory pressure

o Thrashing

 High paging activities – The system is spending more time paging than executing


Memory Management: Locality & Cache Replacement Policies

- Cache exploits both
 - Spatial and temporal locality
- LRU/FIFO/OPT
- Spatial locality example
 - Access to a single byte on disk brings in the whole page
- Temporal locality example
 - Repetitive accesses to the same data

Memory Management: AMAT

- Storage hierarchy:
 - CPU cache
 - Main memory
 - Disk
- Data access flow
 - A CPU cache miss → A memory access
 - A page fault (memory miss) → A disk access

Storage: I/O and Storage Basics

o PIO vs. DMA

- How it works
- Why DMA protocol is superior
- Disk scheduling algorithms
 - FIFO, SPTF, SCAN, C-SCAN, C-LOOK
- Hardware storage mediums
 - HDD:
 - Internal mechanical pieces
 - Performance model: seek, rotate, data transfer
 - Flash:
 - Asymmetric read-write performance
 - Due to inherently different architecture

Storage: RAID and File Systems

- o RAID
 - Tradeoffs of different RAID configurations
 - RAID-0: No redundancy, perf-capacity upper bound
 - RAID-1: Mirroring
 - RAID-4: A disk is solely used for storing parity
 - RAID-5: Rotating parity across disks
- File systems
 - File names: inode, path (files, directories), fd
 - Various FS syscalls: what they do
 - Disk-based FS implementation: on-disk structures

Question Types

- Multiple-choice questions
- True/false questions
- Problem solving

Good Luck!