
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

1



Midterm I
o Wednesday, Feb 27, 9:00am – 10:15am

– 75 min, closed book, closed note

o Covering topics from lec-0 to lec-2c (not
including 5DP)
– Process vs. thread
– fork(), pthread_create()
– Race condition, spin lock, semaphore, CV

2



Process Creation in Linux
o System call fork()

– The return value of fork()

o The difference of process identifier (pid) vs.
return value of fork(): int pid = fork();

o See example problems in HW1

3



Process vs. Thread
o Multiple threads within a process share

– The memory address space
– Open files
– Global variables, etc.

o Why thread abstraction?
– Efficient utilization of the multi-/many-core architecture with 

only one process (Moore’s law ending)
– Efficient resource sharing and flexible inter-thread 

communication
– Less context switching overheads

4



Pthread
o Creating child threads using pthread_create()

o Parent thread waits for a certain child thread to 
terminate on pthread_join()

o Spawning multiple child threads, the execution 
order of each child thread is non-deterministic

5



Race Conditions
o Multiple processes or threads are writing to and 

reading from some shared data, and final result 
depends on who runs precisely when
– This situation is called a race condition

o To protect shared data and guarantee mutual 
exclusion
– We can use spin locks
– We can use semaphores
– We can use condition variables

6



Spin Locks
o A simple implementation of a spin lock

– Provide mutual exclusion with atomic instruction 
TestAndSet()

– Busy waiting: the waiting process/thread loops (spins) 
continuously at the entry point, until the lock is 
released

o Disadvantages?
– Fairness?
– Performance?

o Use binary locks to protect shared data
structures

7



Semaphores
o Motivation: avoid busy waiting by blocking a 

process until some condition is satisfied

o Two operations
– sem_wait(s): decrease the value of s by 1, the 

caller is blocked with value < 0
– sem_post(s): increase the value of s by 1, if one or 

more process/thread is waiting, wake one

8



Condition Variables
o CV: an explicit queue that threads can put 

themselves when some condition is not as desired 
(by waiting on that condition)

o cond_wait(cond_t *cv, mutex_t *lock)
– assume the lock is held when cond_wait() is called
– puts caller to sleep + release the lock (atomically)
– when awaken, reacquires lock before returning

o cond_signal(cond_t *cv)
– wake a single waiting thread (if >= 1 thread is waiting)
– if there is no waiting thread, just return, doing nothing

9



Condition Variables (cont.)
o Traps when using CV

– A cond_signal() may only wake one thread,
though multiple are waiting

– Signal on a CV with no thread waiting results in a lost 
signal

o Good rule of thumb when using CV
– Always do wait and signal while holding the lock
– Lock is used to provide mutual exclusive access to 

the shared variable
– while() is used to always guarantee to re-check if 

the condition is being updated by other thread
10



Classic Problems of Synchronization

o Producer-consumer problem (CV-based version)

o Readers-writers problem

o Goal is to use the examples in lectures to
gain a deep understanding of how to use CV
and semaphore

11


