
CS 471 Operating Systems

Yue Cheng
George Mason University

Spring 2019

1



Midterm II
o Wednesday, April 10, 9:00am – 10:15am

– 75 min, closed book, closed note

o Covering topics from lec-3a to lec-4d (not
including “Workload Examples” at the end of lec-4d)
– CPU scheduling: FIFO/SJF/SRTF/RR/Priority/MLFQ
– Memory management: Paging/PT/TLB/Page 

Replacement

2



CPU Scheduling Policies
o FIFO

– How it works?
– Its inherent issues (why we need SJF)?

o SJF
– How it works?
– Any limitations (why we need SRTF)?

o SRTF (preemptive SJF)
– How it works? How it solves SJF’s limitations?
– Optimality of SJF & SRTF (under what scenarios)

• Any implication or problem with SJF & SRTF?

3



Various Metrics
o Average waiting time
o Average turnaround time
o Average response time

o How to calculate each metric under a specific 
schedule (Gantt chart)

4



CPU Scheduling Policies (cont.)
o RR

– How it works?
– Why it is needed (compared to SJF & SRTF)?

• The turnaround time vs. response time tradeoff
– Impact of quantum tuning on turnaround time

o Priority
– How it works?
– Problems of Priority sched and solution?

o MLFQ
– How it works?
– Rules that are discussed in lecture. Which rule solves what 

problem?

5



Virtual Memory Accesses
o Virtual memory accesses involved in one 

assembly instruction
– Fetch instruction at addr XYZ
– Mem load/store if any

o Segfault vs. page fault
– Basic concepts of memory segmentation

6



Paging
o Virtual addresses and physical addresses
– VPN, PFN, page offset

o Virtual to physical address translation
– (Basic) linear page table: index of the array as VPN

• Each PTE contains PFN and other status info

o The baseline linear page table has problems
– Performance problem – TLB to the rescue
– Memory consumption problem – various solutions

7



Translation Lookaside Buffer (TLB)

o Address translation steps
– Each virtual address access requires two physical 

memory accesses: one for PTE access, one for data 
access

– Two much performance overhead!

o Having TLB as a hardware cache to accelerate
address translation
– PT access workloads exhibit data locality
– To save the 1st memory access for fetching PTE

8



PT-related calculation
o Assume a linear page table array

o Virtual address: VPN + offset
– Assume a 32-bit virtual address space
– 4KB pages: offset has 12 bits
– How many pages: 220 pages since VPN has 20 bits
– How much memory: 4MB assuming each page-table 

entry is of 4 bytes
• 2 ^ (32-log(4KB)) * 4 = 4MB

9



PT’s are Too Big
o Approach 1: Linear Inverted Page Table

– Whole system maintains only one PT
– Performs a whole-table linear search using pid+VPN

to get the index
• The index corresponds to the PFN: An “Inverted” process 

compared against the baseline linear page table array

o Approach 2: Hash Inverted Page Table
– Leverages hashing to reduce the algorithmic time 

complexity from O(N) to O(1)
o Approach 3: Multi-Level Page Table

– Uses hierarchy to reduce the overall memory usage
10



Multi-Level Page Tables (cont.)

11

OFFSETPT idxPD idx

VPN

1244

First-level 
page directory

Second-level 
page table

PFN Valid
- 0

- 0
0x14 1
- 0
- 0

…
…

0x6D 1
- 0
- 0

page directory

PFN Valid
0x10 1

- 0
- 0

0x23 1
- 0

…
…

0xEE 1
- 0
- 0

PT page (@PFN: 0x14)

PFN Valid
- 0

0x22 1
0x23 1
0x26 1
- 0

…
…

- 0
- 0
- 0

PT page (@PFN: 0x6D)



Page Replacement Policies
o FIFO

– Why it might work? Maybe the one brought in the longest ago is one 
we are not using now

– Why it might not work? No real info to tell if it’s being used or not
– Suffers “Belady’s Anomaly”

o Random
– Sometimes non intelligence is better

o OPT
– Assume we know about the future
– Not practical in real cases: offline policy
– However, can be used as a best case baseline for comparison 

purpose
o LRU

– Intuition: we can’t look into the future, but let’s look at past 
experience to make a good guess

– Our “bet” is that pages used recently are ones which will be used 
again (principle of locality)

12



Average Memory Access Time
o Metric to quantify the effective memory access 

performance
– Assume a more generic two-tier memory (or storage) 

model
– AMAT = Hit_rate*TT1 + Miss_rate*TT2
– TT1 : Performance cost given existence of Tier 1
– TT2 : Performance cost given absence of Tier 1

o If Tier 1 is TLB, then Tier 2 can be memory
o If Tier 1 is memory, then Tier 2 can be disk

13


